Commit Graph

7 Commits

Author SHA1 Message Date
Kai Huang
7b804135d4 x86/virt/tdx: Make TDX_MODULE_CALL handle SEAMCALL #UD and #GP
SEAMCALL instruction causes #UD if the CPU isn't in VMX operation.
Currently the TDX_MODULE_CALL assembly doesn't handle #UD, thus making
SEAMCALL when VMX is disabled would cause Oops.

Unfortunately, there are legal cases that SEAMCALL can be made when VMX
is disabled.  For instance, VMX can be disabled due to emergency reboot
while there are still TDX guests running.

Extend the TDX_MODULE_CALL assembly to return an error code for #UD to
handle this case gracefully, e.g., KVM can then quietly eat all SEAMCALL
errors caused by emergency reboot.

SEAMCALL instruction also causes #GP when TDX isn't enabled by the BIOS.
Use _ASM_EXTABLE_FAULT() to catch both exceptions with the trap number
recorded, and define two new error codes by XORing the trap number to
the TDX_SW_ERROR.  This opportunistically handles #GP too while using
the same simple assembly code.

A bonus is when kernel mistakenly calls SEAMCALL when CPU isn't in VMX
operation, or when TDX isn't enabled by the BIOS, or when the BIOS is
buggy, the kernel can get a nicer error code rather than a less
understandable Oops.

This is basically based on Peter's code.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/de975832a367f476aab2d0eb0d9de66019a16b54.1692096753.git.kai.huang%40intel.com
2023-09-12 16:30:27 -07:00
Kai Huang
c33621b4c5 x86/virt/tdx: Wire up basic SEAMCALL functions
Intel Trust Domain Extensions (TDX) protects guest VMs from malicious
host and certain physical attacks.  A CPU-attested software module
called 'the TDX module' runs inside a new isolated memory range as a
trusted hypervisor to manage and run protected VMs.

TDX introduces a new CPU mode: Secure Arbitration Mode (SEAM).  This
mode runs only the TDX module itself or other code to load the TDX
module.

The host kernel communicates with SEAM software via a new SEAMCALL
instruction.  This is conceptually similar to a guest->host hypercall,
except it is made from the host to SEAM software instead.  The TDX
module establishes a new SEAMCALL ABI which allows the host to
initialize the module and to manage VMs.

The SEAMCALL ABI is very similar to the TDCALL ABI and leverages much
TDCALL infrastructure.  Wire up basic functions to make SEAMCALLs for
the basic support of running TDX guests: __seamcall(), __seamcall_ret(),
and __seamcall_saved_ret() for TDH.VP.ENTER.  All SEAMCALLs involved in
the basic TDX support don't use "callee-saved" registers as input and
output, except the TDH.VP.ENTER.

To start to support TDX, create a new arch/x86/virt/vmx/tdx/tdx.c for
TDX host kernel support.  Add a new Kconfig option CONFIG_INTEL_TDX_HOST
to opt-in TDX host kernel support (to distinguish with TDX guest kernel
support).  So far only KVM uses TDX.  Make the new config option depend
on KVM_INTEL.

Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Isaku Yamahata <isaku.yamahata@intel.com>
Link: https://lore.kernel.org/all/4db7c3fc085e6af12acc2932294254ddb3d320b3.1692096753.git.kai.huang%40intel.com
2023-09-12 16:30:27 -07:00
Kai Huang
90f5ecd37f x86/tdx: Reimplement __tdx_hypercall() using TDX_MODULE_CALL asm
Now the TDX_HYPERCALL asm is basically identical to the TDX_MODULE_CALL
with both '\saved' and '\ret' enabled, with two minor things though:

1) The way to restore the structure pointer is different

The TDX_HYPERCALL uses RCX as spare to restore the structure pointer,
but the TDX_MODULE_CALL assumes no spare register can be used.  In other
words, TDX_MODULE_CALL already covers what TDX_HYPERCALL does.

2) TDX_MODULE_CALL only clears shared registers for TDH.VP.ENTER

For this just need to make that code available for the non-host case.

Thus, remove the TDX_HYPERCALL and reimplement the __tdx_hypercall()
using the TDX_MODULE_CALL.

Extend the TDX_MODULE_CALL to cover "clear shared registers" for
TDG.VP.VMCALL.  Introduce a new __tdcall_saved_ret() to replace the
temporary __tdcall_hypercall().

The __tdcall_saved_ret() can also be used for those new TDCALLs which
require more input/output registers than the basic TDCALLs do.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/e68a2473fb6f5bcd78b078cae7510e9d0753b3df.1692096753.git.kai.huang%40intel.com
2023-09-12 16:30:14 -07:00
Kai Huang
12f34ed862 x86/tdx: Extend TDX_MODULE_CALL to support more TDCALL/SEAMCALL leafs
The TDX guest live migration support (TDX 1.5) adds new TDCALL/SEAMCALL
leaf functions.  Those new TDCALLs/SEAMCALLs take additional registers
for input (R10-R13) and output (R12-R13).  TDG.SERVTD.RD is an example.

Also, the current TDX_MODULE_CALL doesn't aim to handle TDH.VP.ENTER
SEAMCALL, which monitors the TDG.VP.VMCALL in input/output registers
when it returns in case of VMCALL from TDX guest.

With those new TDCALLs/SEAMCALLs and the TDH.VP.ENTER covered, the
TDX_MODULE_CALL macro basically needs to handle the same input/output
registers as the TDX_HYPERCALL does.  And as a result, they also share
similar logic in the assembly, thus should be unified to use one common
assembly.

Extend the TDX_MODULE_CALL asm to support the new TDCALLs/SEAMCALLs and
also the TDH.VP.ENTER SEAMCALL.  Eventually it will be unified with the
TDX_HYPERCALL.

The new input/output registers fit with the "callee-saved" registers in
the x86 calling convention.  Add a new "saved" parameter to support
those new TDCALLs/SEAMCALLs and TDH.VP.ENTER and keep the existing
TDCALLs/SEAMCALLs minimally impacted.

For TDH.VP.ENTER, after it returns the registers shared by the guest
contain guest's values.  Explicitly clear them to prevent speculative
use of guest's values.

Note most TDX live migration related SEAMCALLs may also clobber AVX*
state ("AVX, AVX2 and AVX512 state: may be reset to the architectural
INIT state" -- see TDH.EXPORT.MEM for example).  And TDH.VP.ENTER also
clobbers XMM0-XMM15 when the corresponding bit is set in RCX.  Don't
handle them in the TDX_MODULE_CALL macro but let the caller save and
restore when needed.

This is basically based on Peter's code.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/d4785de7c392f7c5684407f6c24a73b92148ec49.1692096753.git.kai.huang%40intel.com
2023-09-11 16:33:51 -07:00
Kai Huang
57a420bb81 x86/tdx: Pass TDCALL/SEAMCALL input/output registers via a structure
Currently, the TDX_MODULE_CALL asm macro, which handles both TDCALL and
SEAMCALL, takes one parameter for each input register and an optional
'struct tdx_module_output' (a collection of output registers) as output.
This is different from the TDX_HYPERCALL macro which uses a single
'struct tdx_hypercall_args' to carry all input/output registers.

The newer TDX versions introduce more TDCALLs/SEAMCALLs which use more
input/output registers.  Also, the TDH.VP.ENTER (which isn't covered
by the current TDX_MODULE_CALL macro) basically can use all registers
that the TDX_HYPERCALL does.  The current TDX_MODULE_CALL macro isn't
extendible to cover those cases.

Similar to the TDX_HYPERCALL macro, simplify the TDX_MODULE_CALL macro
to use a single structure 'struct tdx_module_args' to carry all the
input/output registers.  Currently, R10/R11 are only used as output
register but not as input by any TDCALL/SEAMCALL.  Change to also use
R10/R11 as input register to make input/output registers symmetric.

Currently, the TDX_MODULE_CALL macro depends on the caller to pass a
non-NULL 'struct tdx_module_output' to get additional output registers.
Similar to the TDX_HYPERCALL macro, change the TDX_MODULE_CALL macro to
take a new 'ret' macro argument to indicate whether to save the output
registers to the 'struct tdx_module_args'.  Also introduce a new
__tdcall_ret() for that purpose, similar to the __tdx_hypercall_ret().

Note the tdcall(), which is a wrapper of __tdcall(), is called by three
callers: tdx_parse_tdinfo(), tdx_get_ve_info() and tdx_early_init().
The former two need the additional output but the last one doesn't.  For
simplicity, make tdcall() always call __tdcall_ret() to avoid another
"_ret()" wrapper.  The last caller tdx_early_init() isn't performance
critical anyway.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/483616c1762d85eb3a3c3035a7de061cfacf2f14.1692096753.git.kai.huang%40intel.com
2023-09-11 16:33:38 -07:00
Kai Huang
03a423d40c x86/tdx: Skip saving output regs when SEAMCALL fails with VMFailInvalid
If SEAMCALL fails with VMFailInvalid, the SEAM software (e.g., the TDX
module) won't have chance to set any output register.  Skip saving the
output registers to the structure in this case.

Also, as '.Lno_output_struct' is the very last symbol before RET, rename
it to '.Lout' to make it short.

Opportunistically make the asm directives unindented.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/704088f5b4d72c7e24084f7f15bd1ac5005b7213.1692096753.git.kai.huang%40intel.com
2023-09-11 16:32:23 -07:00
Kirill A. Shutemov
527a534c73 x86/tdx: Provide common base for SEAMCALL and TDCALL C wrappers
Secure Arbitration Mode (SEAM) is an extension of VMX architecture.  It
defines a new VMX root operation (SEAM VMX root) and a new VMX non-root
operation (SEAM VMX non-root) which are both isolated from the legacy
VMX operation where the host kernel runs.

A CPU-attested software module (called 'TDX module') runs in SEAM VMX
root to manage and protect VMs running in SEAM VMX non-root.  SEAM VMX
root is also used to host another CPU-attested software module (called
'P-SEAMLDR') to load and update the TDX module.

Host kernel transits to either P-SEAMLDR or TDX module via the new
SEAMCALL instruction, which is essentially a VMExit from VMX root mode
to SEAM VMX root mode.  SEAMCALLs are leaf functions defined by
P-SEAMLDR and TDX module around the new SEAMCALL instruction.

A guest kernel can also communicate with TDX module via TDCALL
instruction.

TDCALLs and SEAMCALLs use an ABI different from the x86-64 system-v ABI.
RAX is used to carry both the SEAMCALL leaf function number (input) and
the completion status (output).  Additional GPRs (RCX, RDX, R8-R11) may
be further used as both input and output operands in individual leaf.

TDCALL and SEAMCALL share the same ABI and require the largely same
code to pass down arguments and retrieve results.

Define an assembly macro that can be used to implement C wrapper for
both TDCALL and SEAMCALL.

Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20220405232939.73860-3-kirill.shutemov@linux.intel.com
2022-04-07 08:27:50 -07:00