IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
- Fix for the return type of xfs_iomap_eof_prealloc_initial_size
from a1e16c2666
- Fix for a failed buffer readahead causing subsequent callers to
fail incorrectly
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.11 (GNU/Linux)
iQIcBAABAgAGBQJRSOIAAAoJENaLyazVq6ZODqQP/2m1iZVIA9CXFf5hS2QZgkc2
MHq+QaQ1aaZlAIRCnZO4XrWoLw4tH7AmsHA7dVJVz/ZhVrJg4ahfdSS6qR5EGWFb
I5uE8LD8ZhpIiW6mBytJ7g9ST6xnaeean2sMwa0BcVK3uF84nO/uBopntZVrVlZE
sMuklZe8GfxDpF6SBxVGG+5+OeLXzFmf+s+xoCYN410uuzYoT8/jveFP6a5ARcmH
xEcOJA2+3o2z4/fsdx/Euf6LnDMSyOsAFUJCtnmBdKUA5w9DrJJqGpDDPEkg9h6d
/DTPYXEWx6+w4xoMnIf09oEdCSamBVTWcRFXtftN03VNrbRNtyVwAc8HUaSNmt0p
I3P/b5NJ5guH7uK72jp61N2RP7D5KOqwkwR58Y1SJWuwcgatYuB3NM5UeUyJBILj
ViZ4DsKGE6BCl8T3hwkN+mxSxB+o7O8AypjWdEviBXbVIG9CwOxr1IEatl3eyV5T
8QsNFb0LJcWzl1+F/uUYe1Goeqxvzupt7omUaRONdMnac3uFIk0ARrdxXFgawIJ9
lgeftBCmMkqqLZUACSfmfCYNwyupz3E6bYB7Azwx01qg7CzTPUfIL2SxqDYp2dup
/s+R7HL4HOJ0FCzjCZxHHO/1jsWgu265dJdpaQw/UcIe2IuEFGr558deHEM62bDW
rWCVHj5eY5NRGyzSwzqB
=41Vk
-----END PGP SIGNATURE-----
Merge tag 'for-linus-v3.9-rc4' of git://oss.sgi.com/xfs/xfs
Pull XFS fixes from Ben Myers:
- Fix for a potential infinite loop which was introduced in commit
4d559a3bcb ("xfs: limit speculative prealloc near ENOSPC
thresholds")
- Fix for the return type of xfs_iomap_eof_prealloc_initial_size from
commit a1e16c2666 ("xfs: limit speculative prealloc size on sparse
files")
- Fix for a failed buffer readahead causing subsequent callers to fail
incorrectly
* tag 'for-linus-v3.9-rc4' of git://oss.sgi.com/xfs/xfs:
xfs: ensure we capture IO errors correctly
xfs: fix xfs_iomap_eof_prealloc_initial_size type
xfs: fix potential infinite loop in xfs_iomap_prealloc_size()
Failed buffer readahead can leave the buffer in the cache marked
with an error. Most callers that then issue a subsequent read on the
buffer do not zero the b_error field out, and so we may incorectly
detect an error during IO completion due to the stale error value
left on the buffer.
Avoid this problem by zeroing the error before IO submission. This
ensures that the only IO errors that are detected those captured
from are those captured from bio submission or completion.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit c163f9a176)
Fix the return type of xfs_iomap_eof_prealloc_initial_size() to
xfs_fsblock_t to reflect the fact that the return value may be an
unsigned 64 bits if XFS_BIG_BLKNOS is defined.
Signed-off-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit e8108cedb1)
If freesp == 0, we could end up in an infinite loop while squashing
the preallocation. Break the loop when we've killed the prealloc
entirely.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit e78c420bfc)
Modify the request_module to prefix the file system type with "fs-"
and add aliases to all of the filesystems that can be built as modules
to match.
A common practice is to build all of the kernel code and leave code
that is not commonly needed as modules, with the result that many
users are exposed to any bug anywhere in the kernel.
Looking for filesystems with a fs- prefix limits the pool of possible
modules that can be loaded by mount to just filesystems trivially
making things safer with no real cost.
Using aliases means user space can control the policy of which
filesystem modules are auto-loaded by editing /etc/modprobe.d/*.conf
with blacklist and alias directives. Allowing simple, safe,
well understood work-arounds to known problematic software.
This also addresses a rare but unfortunate problem where the filesystem
name is not the same as it's module name and module auto-loading
would not work. While writing this patch I saw a handful of such
cases. The most significant being autofs that lives in the module
autofs4.
This is relevant to user namespaces because we can reach the request
module in get_fs_type() without having any special permissions, and
people get uncomfortable when a user specified string (in this case
the filesystem type) goes all of the way to request_module.
After having looked at this issue I don't think there is any
particular reason to perform any filtering or permission checks beyond
making it clear in the module request that we want a filesystem
module. The common pattern in the kernel is to call request_module()
without regards to the users permissions. In general all a filesystem
module does once loaded is call register_filesystem() and go to sleep.
Which means there is not much attack surface exposed by loading a
filesytem module unless the filesystem is mounted. In a user
namespace filesystems are not mounted unless .fs_flags = FS_USERNS_MOUNT,
which most filesystems do not set today.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Acked-by: Kees Cook <keescook@chromium.org>
Reported-by: Kees Cook <keescook@google.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
I'm not sure why, but the hlist for each entry iterators were conceived
list_for_each_entry(pos, head, member)
The hlist ones were greedy and wanted an extra parameter:
hlist_for_each_entry(tpos, pos, head, member)
Why did they need an extra pos parameter? I'm not quite sure. Not only
they don't really need it, it also prevents the iterator from looking
exactly like the list iterator, which is unfortunate.
Besides the semantic patch, there was some manual work required:
- Fix up the actual hlist iterators in linux/list.h
- Fix up the declaration of other iterators based on the hlist ones.
- A very small amount of places were using the 'node' parameter, this
was modified to use 'obj->member' instead.
- Coccinelle didn't handle the hlist_for_each_entry_safe iterator
properly, so those had to be fixed up manually.
The semantic patch which is mostly the work of Peter Senna Tschudin is here:
@@
iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host;
type T;
expression a,c,d,e;
identifier b;
statement S;
@@
-T b;
<+... when != b
(
hlist_for_each_entry(a,
- b,
c, d) S
|
hlist_for_each_entry_continue(a,
- b,
c) S
|
hlist_for_each_entry_from(a,
- b,
c) S
|
hlist_for_each_entry_rcu(a,
- b,
c, d) S
|
hlist_for_each_entry_rcu_bh(a,
- b,
c, d) S
|
hlist_for_each_entry_continue_rcu_bh(a,
- b,
c) S
|
for_each_busy_worker(a, c,
- b,
d) S
|
ax25_uid_for_each(a,
- b,
c) S
|
ax25_for_each(a,
- b,
c) S
|
inet_bind_bucket_for_each(a,
- b,
c) S
|
sctp_for_each_hentry(a,
- b,
c) S
|
sk_for_each(a,
- b,
c) S
|
sk_for_each_rcu(a,
- b,
c) S
|
sk_for_each_from
-(a, b)
+(a)
S
+ sk_for_each_from(a) S
|
sk_for_each_safe(a,
- b,
c, d) S
|
sk_for_each_bound(a,
- b,
c) S
|
hlist_for_each_entry_safe(a,
- b,
c, d, e) S
|
hlist_for_each_entry_continue_rcu(a,
- b,
c) S
|
nr_neigh_for_each(a,
- b,
c) S
|
nr_neigh_for_each_safe(a,
- b,
c, d) S
|
nr_node_for_each(a,
- b,
c) S
|
nr_node_for_each_safe(a,
- b,
c, d) S
|
- for_each_gfn_sp(a, c, d, b) S
+ for_each_gfn_sp(a, c, d) S
|
- for_each_gfn_indirect_valid_sp(a, c, d, b) S
+ for_each_gfn_indirect_valid_sp(a, c, d) S
|
for_each_host(a,
- b,
c) S
|
for_each_host_safe(a,
- b,
c, d) S
|
for_each_mesh_entry(a,
- b,
c, d) S
)
...+>
[akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c]
[akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c]
[akpm@linux-foundation.org: checkpatch fixes]
[akpm@linux-foundation.org: fix warnings]
[akpm@linux-foudnation.org: redo intrusive kvm changes]
Tested-by: Peter Senna Tschudin <peter.senna@gmail.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull vfs pile (part one) from Al Viro:
"Assorted stuff - cleaning namei.c up a bit, fixing ->d_name/->d_parent
locking violations, etc.
The most visible changes here are death of FS_REVAL_DOT (replaced with
"has ->d_weak_revalidate()") and a new helper getting from struct file
to inode. Some bits of preparation to xattr method interface changes.
Misc patches by various people sent this cycle *and* ocfs2 fixes from
several cycles ago that should've been upstream right then.
PS: the next vfs pile will be xattr stuff."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (46 commits)
saner proc_get_inode() calling conventions
proc: avoid extra pde_put() in proc_fill_super()
fs: change return values from -EACCES to -EPERM
fs/exec.c: make bprm_mm_init() static
ocfs2/dlm: use GFP_ATOMIC inside a spin_lock
ocfs2: fix possible use-after-free with AIO
ocfs2: Fix oops in ocfs2_fast_symlink_readpage() code path
get_empty_filp()/alloc_file() leave both ->f_pos and ->f_version zero
target: writev() on single-element vector is pointless
export kernel_write(), convert open-coded instances
fs: encode_fh: return FILEID_INVALID if invalid fid_type
kill f_vfsmnt
vfs: kill FS_REVAL_DOT by adding a d_weak_revalidate dentry op
nfsd: handle vfs_getattr errors in acl protocol
switch vfs_getattr() to struct path
default SET_PERSONALITY() in linux/elf.h
ceph: prepopulate inodes only when request is aborted
d_hash_and_lookup(): export, switch open-coded instances
9p: switch v9fs_set_create_acl() to inode+fid, do it before d_instantiate()
9p: split dropping the acls from v9fs_set_create_acl()
...
This patch is a follow up on below patch:
[PATCH] exportfs: add FILEID_INVALID to indicate invalid fid_type
commit: 216b6cbdcb
Signed-off-by: Namjae Jeon <namjae.jeon@samsung.com>
Signed-off-by: Vivek Trivedi <t.vivek@samsung.com>
Acked-by: Steven Whitehouse <swhiteho@redhat.com>
Acked-by: Sage Weil <sage@inktank.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Here is the big driver core merge for 3.9-rc1
There are two major series here, both of which touch lots of drivers all
over the kernel, and will cause you some merge conflicts:
- add a new function called devm_ioremap_resource() to properly be
able to check return values.
- remove CONFIG_EXPERIMENTAL
If you need me to provide a merged tree to handle these resolutions,
please let me know.
Other than those patches, there's not much here, some minor fixes and
updates.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.19 (GNU/Linux)
iEYEABECAAYFAlEmV0cACgkQMUfUDdst+yncCQCfbmnQZju7kzWXk6PjdFuKspT9
weAAoMCzcAtEzzc4LXuUxxG/sXBVBCjW
=yWAQ
-----END PGP SIGNATURE-----
Merge tag 'driver-core-3.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core patches from Greg Kroah-Hartman:
"Here is the big driver core merge for 3.9-rc1
There are two major series here, both of which touch lots of drivers
all over the kernel, and will cause you some merge conflicts:
- add a new function called devm_ioremap_resource() to properly be
able to check return values.
- remove CONFIG_EXPERIMENTAL
Other than those patches, there's not much here, some minor fixes and
updates"
Fix up trivial conflicts
* tag 'driver-core-3.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (221 commits)
base: memory: fix soft/hard_offline_page permissions
drivercore: Fix ordering between deferred_probe and exiting initcalls
backlight: fix class_find_device() arguments
TTY: mark tty_get_device call with the proper const values
driver-core: constify data for class_find_device()
firmware: Ignore abort check when no user-helper is used
firmware: Reduce ifdef CONFIG_FW_LOADER_USER_HELPER
firmware: Make user-mode helper optional
firmware: Refactoring for splitting user-mode helper code
Driver core: treat unregistered bus_types as having no devices
watchdog: Convert to devm_ioremap_resource()
thermal: Convert to devm_ioremap_resource()
spi: Convert to devm_ioremap_resource()
power: Convert to devm_ioremap_resource()
mtd: Convert to devm_ioremap_resource()
mmc: Convert to devm_ioremap_resource()
mfd: Convert to devm_ioremap_resource()
media: Convert to devm_ioremap_resource()
iommu: Convert to devm_ioremap_resource()
drm: Convert to devm_ioremap_resource()
...
When we are converting local data to an extent format as a result of
adding an attribute, the type of data contained in the local fork
determines the behaviour that needs to occur.
xfs_bmap_add_attrfork_local() already handles the directory data
case specially by using S_ISDIR() and calling out to
xfs_dir2_sf_to_block(), but with verifiers we now need to handle
each different type of metadata specially and different metadata
formats require different verifiers (and eventually block header
initialisation).
There is only a single place that we add and attribute fork to
the inode, but that is in the attribute code and it knows nothing
about the specific contents of the data fork. It is only the case of
local data that is the issue here, so adding code to hadnle this
case in the attribute specific code is wrong. Hence we are really
stuck trying to detect the data fork contents in
xfs_bmap_add_attrfork_local() and performing the correct callout
there.
Luckily the current cases can be determined by S_IS* macros, and we
can push the work off to data specific callouts, but each of those
callouts does a lot of work in common with
xfs_bmap_local_to_extents(). The only reason that this fails for
symlinks right now is is that xfs_bmap_local_to_extents() assumes
the data fork contains extent data, and so attaches a a bmap extent
data verifier to the buffer and simply copies the data fork
information straight into it.
To fix this, allow us to pass a "formatting" callback into
xfs_bmap_local_to_extents() which is responsible for setting the
buffer type, initialising it and copying the data fork contents over
to the new buffer. This allows callers to specify how they want to
format the new buffer (which is necessary for the upcoming CRC
enabled metadata blocks) and hence make xfs_bmap_local_to_extents()
useful for any type of data fork content.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The trylock log force invoked via xfs_buf_item_push() can attempt
to acquire xa_lock, thus leading to a recursion bug when called
with xa_lock held.
This log force was originally added to xfs_buf_trylock() to address
xfsaild stalls due to pinned and stale buffers. Since the addition
of this behavior, the log item pushing code had been reworked to
detect and track pinned items to inform xfsaild to issue a log
force itself when necessary. As such, the log force on trylock
failure is redundant and safe to remove.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The buffer pinned check and trylock sequence in xfs_buf_item_push()
can race with an active transaction on marking the buffer pinned.
This can result in the buffer becoming pinned and stale after the
initial check and the trylock failure, but before the check in
xfs_buf_trylock() that issues a log force. If the log force is
issued from this context, a spinlock recursion occurs on xa_lock.
Prepare xfs_buf_item_push() to handle the race by detecting a
pinned buffer after the trylock failure so xfsaild issues a log
force from a safe context. This, along with various previous fixes,
renders the log force in xfs_buf_trylock() redundant.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Speculative preallocation based on the current file size works well
for contiguous files, but is sub-optimal for sparse files where the
EOF preallocation can fill holes and result in large amounts of
zeros being written when it is not necessary.
The algorithm is modified to prevent EOF speculative preallocation
from triggering larger allocations on IO patterns of
truncate--to-zero-seek-write-seek-write-.... which results in
non-sparse files for large files. This, unfortunately, is the way cp
now behaves when copying sparse files and so needs to be fixed.
What this code does is that it looks at the existing extent adjacent
to the current EOF and if it determines that it is a hole we disable
speculative preallocation altogether. To avoid the next write from
doing a large prealloc, it takes the size of subsequent
preallocations from the current size of the existing EOF extent.
IOWs, if you leave a hole in the file, it resets preallocation
behaviour to the same as if it was a zero size file.
Example new behaviour:
$ xfs_io -f -c "pwrite 0 31m" \
-c "pwrite 33m 1m" \
-c "pwrite 128m 1m" \
-c "fiemap -v" /mnt/scratch/blah
wrote 32505856/32505856 bytes at offset 0
31 MiB, 7936 ops; 0.0000 sec (1.608 GiB/sec and 421432.7439 ops/sec)
wrote 1048576/1048576 bytes at offset 34603008
1 MiB, 256 ops; 0.0000 sec (1.462 GiB/sec and 383233.5329 ops/sec)
wrote 1048576/1048576 bytes at offset 134217728
1 MiB, 256 ops; 0.0000 sec (1.719 GiB/sec and 450704.2254 ops/sec)
/mnt/scratch/blah:
EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS
0: [0..65535]: 96..65631 65536 0x0
1: [65536..67583]: hole 2048
2: [67584..69631]: 67680..69727 2048 0x0
3: [69632..262143]: hole 192512
4: [262144..264191]: 262240..264287 2048 0x1
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
In xfs_ifunlock() there is a call to wake_up_bit() after clearing
the flush lock on the xfs inode. This is not guaranteed to be safe,
as noted in the comments above wake_up_bit() beginning with:
In order for this to function properly, as it uses
waitqueue_active() internally, some kind of memory
barrier must be done prior to calling this.
Signed-off-by: Alex Elder <elder@inktank.com>
Reviewed-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Currently, we calculate the attribute set transaction
log space reservation at runtime in two parts:
1) XFS_ATTRSET_LOG_RES() which is calcuated out at mount time.
2) ((ext * (mp)->m_sb.sb_sectsize) + \
(ext * XFS_FSB_TO_B((mp), XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK))) + \
(128 * (ext + (ext * XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK))))))
which is calculated out at runtime since it depend on the given extent length in blocks.
This patch renamed XFS_ATTRSET_LOG_RES(mp) to XFS_ATTRSETM_LOG_RES(mp) to indicate
that it is figured out at mount time. Introduce XFS_ATTRSETRT_LOG_RES(mp) which would
be used to calculate out the unit of the log space reservation for one block.
In this way, the total runtime space for the given extent length can be figured out by:
XFS_ATTRSETM_LOG_RES(mp) + XFS_ATTRSETRT_LOG_RES(mp) * ext
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
CC: Dave Chinner <david@fromorbit.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Make use of XFS_SB_LOG_RES() at xfs_fs_log_dummy().
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
CC: Dave Chinner <david@fromorbit.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Make use of XFS_SB_LOG_RES() at xfs_mount_log_sb().
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
CC: Dave Chinner <david@fromorbit.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Make use of XFS_SB_LOG_RES() at xfs_log_sbcount().
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
CC: Dave Chinner <david@fromorbit.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Introduce a new transaction space reservation XFS_SB_LOG_RES() for
those transactions that need to modify the superblock on disk.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
CC: Dave Chinner <david@fromorbit.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Convert the calculation for end of quotaoff log space reservation
from runtime to mount time.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
CC: Dave Chinner <david@fromorbit.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Convert the calculation of quota off transaction log space reservation
from runtime to mount time.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
CC: Dave Chinner <david@fromorbit.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The disk quota allocation log space reservation is calcuated at runtime,
this patch does it at mount time.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
CC: Dave Chinner <david@fromorbit.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
For adjusting quota limits transactions, we calculate out the log space
reservation at runtime, this patch does it at mount time.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
CC: Dave Chinner <david@fromorbit.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
For the transaction that write the incore superblock changes of quota flags
to disk, it would reserve the same log space to clear/reset quota flags
transaction, hence we can use XFS_TRANS_SBCHANGE_LOG_RES() for it as well.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
CC: Dave Chinner <david@fromorbit.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The transaction log space for clearing/reseting the quota flags
is calculated out at runtime, this patch can figure it out at
mount time.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
CC: Dave Chinner <david@fromorbit.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Refining the existing reservations with xfs_calc_buf_res() in xfs_trans.c
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
CC: Dave Chinner <david@fromorbit.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Add a new helper xfs_calc_buf_res() to calcuate out the transaction space
reservations per item. xfs_buf_log_overhead() is used to figure out the
extra space for struct xfs_buf_log_format that gets written into the log
for every buffer as well as a log opheader, i.e. struct xlog_op_header.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
CC: Dave Chinner <david@fromorbit.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Commit fb59581404 removed
xfs_flushinval_pages() and changed its callers to use
filemap_write_and_wait() and truncate_pagecache_range() directly.
But in xfs_swap_extents() this change accidental switched the argument
for 'tip' to 'ip'. This patch switches it back to 'tip'
Signed-off-by: Torsten Kaiser <just.for.lkml@googlemail.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Running AIO is pinning inode in memory using file reference. Once AIO
is completed using aio_complete(), file reference is put and inode can
be freed from memory. So we have to be sure that calling aio_complete()
is the last thing we do with the inode.
CC: xfs@oss.sgi.com
CC: Ben Myers <bpm@sgi.com>
CC: stable@vger.kernel.org
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
When the new inode verify in xfs_iread() fails, the create
transaction is aborted and a shutdown occurs. The subsequent unmount
then hangs in xfs_wait_buftarg() on a buffer that has an elevated
hold count. Debug showed that it was an AGI buffer getting stuck:
[ 22.576147] XFS (vdb): buffer 0x2/0x1, hold 0x2 stuck
[ 22.976213] XFS (vdb): buffer 0x2/0x1, hold 0x2 stuck
[ 23.376206] XFS (vdb): buffer 0x2/0x1, hold 0x2 stuck
[ 23.776325] XFS (vdb): buffer 0x2/0x1, hold 0x2 stuck
The trace of this buffer leading up to the shutdown (trimmed for
brevity) looks like:
xfs_buf_init: bno 0x2 nblks 0x1 hold 1 caller xfs_buf_get_map
xfs_buf_get: bno 0x2 len 0x200 hold 1 caller xfs_buf_read_map
xfs_buf_read: bno 0x2 len 0x200 hold 1 caller xfs_trans_read_buf_map
xfs_buf_iorequest: bno 0x2 nblks 0x1 hold 1 caller _xfs_buf_read
xfs_buf_hold: bno 0x2 nblks 0x1 hold 1 caller xfs_buf_iorequest
xfs_buf_rele: bno 0x2 nblks 0x1 hold 2 caller xfs_buf_iorequest
xfs_buf_iowait: bno 0x2 nblks 0x1 hold 1 caller _xfs_buf_read
xfs_buf_ioerror: bno 0x2 len 0x200 hold 1 caller xfs_buf_bio_end_io
xfs_buf_iodone: bno 0x2 nblks 0x1 hold 1 caller _xfs_buf_ioend
xfs_buf_iowait_done: bno 0x2 nblks 0x1 hold 1 caller _xfs_buf_read
xfs_buf_hold: bno 0x2 nblks 0x1 hold 1 caller xfs_buf_item_init
xfs_trans_read_buf: bno 0x2 len 0x200 hold 2 recur 0 refcount 1
xfs_trans_brelse: bno 0x2 len 0x200 hold 2 recur 0 refcount 1
xfs_buf_item_relse: bno 0x2 nblks 0x1 hold 2 caller xfs_trans_brelse
xfs_buf_rele: bno 0x2 nblks 0x1 hold 2 caller xfs_buf_item_relse
xfs_buf_unlock: bno 0x2 nblks 0x1 hold 1 caller xfs_trans_brelse
xfs_buf_rele: bno 0x2 nblks 0x1 hold 1 caller xfs_trans_brelse
xfs_buf_trylock: bno 0x2 nblks 0x1 hold 2 caller _xfs_buf_find
xfs_buf_find: bno 0x2 len 0x200 hold 2 caller xfs_buf_get_map
xfs_buf_get: bno 0x2 len 0x200 hold 2 caller xfs_buf_read_map
xfs_buf_read: bno 0x2 len 0x200 hold 2 caller xfs_trans_read_buf_map
xfs_buf_hold: bno 0x2 nblks 0x1 hold 2 caller xfs_buf_item_init
xfs_trans_read_buf: bno 0x2 len 0x200 hold 3 recur 0 refcount 1
xfs_trans_log_buf: bno 0x2 len 0x200 hold 3 recur 0 refcount 1
xfs_buf_item_unlock: bno 0x2 len 0x200 hold 3 flags DIRTY liflags ABORTED
xfs_buf_unlock: bno 0x2 nblks 0x1 hold 3 caller xfs_buf_item_unlock
xfs_buf_rele: bno 0x2 nblks 0x1 hold 3 caller xfs_buf_item_unlock
And that is the AGI buffer from cold cache read into memory to
transaction abort. You can see at transaction abort the bli is dirty
and only has a single reference. The item is not pinned, and it's
not in the AIL. Hence the only reference to it is this transaction.
The problem is that the xfs_buf_item_unlock() call is dropping the
last reference to the xfs_buf_log_item attached to the buffer (which
holds a reference to the buffer), but it is not freeing the
xfs_buf_log_item. Hence nothing will ever release the buffer, and
the unmount hangs waiting for this reference to go away.
The fix is simple - xfs_buf_item_unlock needs to detect the last
reference going away in this case and free the xfs_buf_log_item to
release the reference it holds on the buffer.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
There is a window on small filesytsems where specualtive
preallocation can be larger than that ENOSPC throttling thresholds,
resulting in specualtive preallocation trying to reserve more space
than there is space available. This causes immediate ENOSPC to be
triggered, prealloc to be turned off and flushing to occur. One the
next write (i.e. next 4k page), we do exactly the same thing, and so
effective drive into synchronous 4k writes by triggering ENOSPC
flushing on every page while in the window between the prealloc size
and the ENOSPC prealloc throttle threshold.
Fix this by checking to see if the prealloc size would consume all
free space, and throttle it appropriately to avoid premature
ENOSPC...
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
When _xfs_buf_find is passed an out of range address, it will fail
to find a relevant struct xfs_perag and oops with a null
dereference. This can happen when trying to walk a filesystem with a
metadata inode that has a partially corrupted extent map (i.e. the
block number returned is corrupt, but is otherwise intact) and we
try to read from the corrupted block address.
In this case, just fail the lookup. If it is readahead being issued,
it will simply not be done, but if it is real read that fails we
will get an error being reported. Ideally this case should result
in an EFSCORRUPTED error being reported, but we cannot return an
error through xfs_buf_read() or xfs_buf_get() so this lookup failure
may result in ENOMEM or EIO errors being reported instead.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
This is to fix up a build problem with a wireless driver due to the
dynamic-debug patches in this branch.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The stack_switch check currently occurs in __xfs_bmapi_allocate,
which means the stack switch only occurs when xfs_bmapi_allocate()
is called in a loop. Pull the check up before the loop in
xfs_bmapi_write() such that the first iteration of the loop has
consistent behavior.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Since we are using C99 we have one builtin defined in include/linux/types.h,
use that instead.
v2: you missed one in fs/xfs/xfs_qm_bhv.c, cleaned up. -bpm
Signed-off-by: Thiago Farina <tfarina@chromium.org>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
9802182 changed the return value from EWRONGFS (aka EINVAL)
to EFSCORRUPTED which doesn't seem to be handled properly by
the root filesystem probe.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Tested-by: Sergei Trofimovich <slyfox@gentoo.org>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Dave Jones hit this assert when doing a compile on recent git, with
CONFIG_XFS_DEBUG enabled:
XFS: Assertion failed: (char *)dup - (char *)hdr == be16_to_cpu(*xfs_dir2_data_unused_tag_p(dup)), file: fs/xfs/xfs_dir2_data.c, line: 828
Upon further digging, the tag found by xfs_dir2_data_unused_tag_p(dup)
contained "2" and not the proper offset, and I found that this value was
changed after the memmoves under "Use a stale leaf for our new entry."
in xfs_dir2_block_addname(), i.e.
memmove(&blp[mid + 1], &blp[mid],
(highstale - mid) * sizeof(*blp));
overwrote it.
What has happened is that the previous call to xfs_dir2_block_compact()
has rearranged things; it changes btp->count as well as the
blp array. So after we make that call, we must recalculate the
proper pointer to the leaf entries by making another call to
xfs_dir2_block_leaf_p().
Dave provided a metadump image which led to a simple reproducer
(create a particular filename in the affected directory) and this
resolves the testcase as well as the bug on his live system.
Thanks also to dchinner for looking at this one with me.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Tested-by: Dave Jones <davej@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The int casts here make it easy to trigger an assert with a large
soft limit. For example, set a >4TB soft limit on an empty volume
to reproduce a (0 > -x) comparison due to an overflow of
d_blk_softlimit.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Per Dave Chinner suggestion, this patch:
1) Corrects the detection of whether a multi-segment buffer is
still tracking data.
2) Clears all the buffer log formats for a multi-segment buffer.
Signed-off-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Not every segment in a multi-segment buffer is dirty in a
transaction and they will not be outputted. The assert in
xfs_buf_item_format_segment() that checks for the at least
one chunk of data in the segment to be used is not necessary
true for multi-segmented buffers.
Signed-off-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Rename the bli_format structure to __bli_format to avoid
accidently confusing them with the bli_formats pointer.
Signed-off-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Commits starting at 77c1a08 introduced a multiple segment support
to xfs_buf. xfs_trans_buf_item_match() could not find a multi-segment
buffer in the transaction because it was looking at the single segment
block number rather than the multi-segment b_maps[0].bm.bn. This
results on a recursive buffer lock that can never be satisfied.
This patch:
1) Changed the remaining b_map accesses to be b_maps[0] accesses.
2) Renames the single segment b_map structure to __b_map to avoid
future confusion.
Signed-off-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
This patch replaces usages of obsolete simple_strtoul with kstrtoint in
xfs_args and suffix_strtoul.
Signed-off-by: Abhijit Pawar <abhi.c.pawar@gmail.com>
Reviewed-by: Jie Liu <jeff.liu@oracle.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Dave Jones hit this assert when doing a compile on recent git, with
CONFIG_XFS_DEBUG enabled:
XFS: Assertion failed: (char *)dup - (char *)hdr == be16_to_cpu(*xfs_dir2_data_unused_tag_p(dup)), file: fs/xfs/xfs_dir2_data.c, line: 828
Upon further digging, the tag found by xfs_dir2_data_unused_tag_p(dup)
contained "2" and not the proper offset, and I found that this value was
changed after the memmoves under "Use a stale leaf for our new entry."
in xfs_dir2_block_addname(), i.e.
memmove(&blp[mid + 1], &blp[mid],
(highstale - mid) * sizeof(*blp));
overwrote it.
What has happened is that the previous call to xfs_dir2_block_compact()
has rearranged things; it changes btp->count as well as the
blp array. So after we make that call, we must recalculate the
proper pointer to the leaf entries by making another call to
xfs_dir2_block_leaf_p().
Dave provided a metadump image which led to a simple reproducer
(create a particular filename in the affected directory) and this
resolves the testcase as well as the bug on his live system.
Thanks also to dchinner for looking at this one with me.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Tested-by: Dave Jones <davej@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The CONFIG_EXPERIMENTAL config item has not carried much meaning for a
while now and is almost always enabled by default. As agreed during the
Linux kernel summit, remove it from any "depends on" lines in Kconfigs.
CC: Ben Myers <bpm@sgi.com>
CC: Alex Elder <elder@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Ben Myers <bpm@sgi.com>
Commit 408cc4e97a
added memset(0, ...) to allocation args structures,
so there is no need to explicitly set any of the fields
to 0 after that.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The int casts here make it easy to trigger an assert with a large
soft limit. For example, set a >4TB soft limit on an empty volume
to reproduce a (0 > -x) comparison due to an overflow of
d_blk_softlimit.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Remove the XFS_TRANS_DEBUG routines. They are no longer appropriate
and have not been used in years
Signed-off-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>