138 Commits

Author SHA1 Message Date
David Howells
bf99a53ce2 afs: Make use of the YFS service upgrade to fully support IPv6
YFS VL servers offer an upgraded Volume Location service that can return
IPv6 addresses to fileservers and volume servers in addition to IPv4
addresses using the YFSVL.GetEndpoints operation which we should use if
it's available.

To this end:

 (1) Make rxrpc_kernel_recv_data() return the call's current service ID so
     that the caller can detect service upgrade and see what the service
     was upgraded to.

 (2) When we see a VL server address we haven't seen before, send a
     VL.GetCapabilities operation to it with the service upgrade bit set.

     If we get an upgrade to the YFS VL service, change the service ID in
     the address list for that address to use the upgraded service and set
     a flag to note that this appears to be a YFS-compatible server.

 (3) If, when a server's addresses are being looked up, we note that we
     previously detected a YFS-compatible server, then send the
     YFSVL.GetEndpoints operation rather than VL.GetAddrsU.

 (4) Build a fileserver address list from the reply of YFSVL.GetEndpoints,
     including both IPv4 and IPv6 addresses.  Volume server addresses are
     discarded.

 (5) The address list is sorted by address and port now, instead of just
     address.  This allows multiple servers on the same host sitting on
     different ports.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13 15:38:19 +00:00
David Howells
d2ddc776a4 afs: Overhaul volume and server record caching and fileserver rotation
The current code assumes that volumes and servers are per-cell and are
never shared, but this is not enforced, and, indeed, public cells do exist
that are aliases of each other.  Further, an organisation can, say, set up
a public cell and a private cell with overlapping, but not identical, sets
of servers.  The difference is purely in the database attached to the VL
servers.

The current code will malfunction if it sees a server in two cells as it
assumes global address -> server record mappings and that each server is in
just one cell.

Further, each server may have multiple addresses - and may have addresses
of different families (IPv4 and IPv6, say).

To this end, the following structural changes are made:

 (1) Server record management is overhauled:

     (a) Server records are made independent of cell.  The namespace keeps
     	 track of them, volume records have lists of them and each vnode
     	 has a server on which its callback interest currently resides.

     (b) The cell record no longer keeps a list of servers known to be in
     	 that cell.

     (c) The server records are now kept in a flat list because there's no
     	 single address to sort on.

     (d) Server records are now keyed by their UUID within the namespace.

     (e) The addresses for a server are obtained with the VL.GetAddrsU
     	 rather than with VL.GetEntryByName, using the server's UUID as a
     	 parameter.

     (f) Cached server records are garbage collected after a period of
     	 non-use and are counted out of existence before purging is allowed
     	 to complete.  This protects the work functions against rmmod.

     (g) The servers list is now in /proc/fs/afs/servers.

 (2) Volume record management is overhauled:

     (a) An RCU-replaceable server list is introduced.  This tracks both
     	 servers and their coresponding callback interests.

     (b) The superblock is now keyed on cell record and numeric volume ID.

     (c) The volume record is now tied to the superblock which mounts it,
     	 and is activated when mounted and deactivated when unmounted.
     	 This makes it easier to handle the cache cookie without causing a
     	 double-use in fscache.

     (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU
     	 to get the server UUID list.

     (e) The volume name is updated if it is seen to have changed when the
     	 volume is updated (the update is keyed on the volume ID).

 (3) The vlocation record is got rid of and VLDB records are no longer
     cached.  Sufficient information is stored in the volume record, though
     an update to a volume record is now no longer shared between related
     volumes (volumes come in bundles of three: R/W, R/O and backup).

and the following procedural changes are made:

 (1) The fileserver cursor introduced previously is now fleshed out and
     used to iterate over fileservers and their addresses.

 (2) Volume status is checked during iteration, and the server list is
     replaced if a change is detected.

 (3) Server status is checked during iteration, and the address list is
     replaced if a change is detected.

 (4) The abort code is saved into the address list cursor and -ECONNABORTED
     returned in afs_make_call() if a remote abort happened rather than
     translating the abort into an error message.  This allows actions to
     be taken depending on the abort code more easily.

     (a) If a VMOVED abort is seen then this is handled by rechecking the
     	 volume and restarting the iteration.

     (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is
         handled by sleeping for a short period and retrying and/or trying
         other servers that might serve that volume.  A message is also
         displayed once until the condition has cleared.

     (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the
     	 moment.

     (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to
     	 see if it has been deleted; if not, the fileserver is probably
     	 indicating that the volume couldn't be attached and needs
     	 salvaging.

     (e) If statfs() sees one of these aborts, it does not sleep, but
     	 rather returns an error, so as not to block the umount program.

 (5) The fileserver iteration functions in vnode.c are now merged into
     their callers and more heavily macroised around the cursor.  vnode.c
     is removed.

 (6) Operations on a particular vnode are serialised on that vnode because
     the server will lock that vnode whilst it operates on it, so a second
     op sent will just have to wait.

 (7) Fileservers are probed with FS.GetCapabilities before being used.
     This is where service upgrade will be done.

 (8) A callback interest on a fileserver is set up before an FS operation
     is performed and passed through to afs_make_call() so that it can be
     set on the vnode if the operation returns a callback.  The callback
     interest is passed through to afs_iget() also so that it can be set
     there too.

In general, record updating is done on an as-needed basis when we try to
access servers, volumes or vnodes rather than offloading it to work items
and special threads.

Notes:

 (1) Pre AFS-3.4 servers are no longer supported, though this can be added
     back if necessary (AFS-3.4 was released in 1998).

 (2) VBUSY is retried forever for the moment at intervals of 1s.

 (3) /proc/fs/afs/<cell>/servers no longer exists.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13 15:38:19 +00:00
David Howells
8b2a464ced afs: Add an address list concept
Add an RCU replaceable address list structure to hold a list of server
addresses.  The list also holds the

To this end:

 (1) A cell's VL server address list can be loaded directly via insmod or
     echo to /proc/fs/afs/cells or dynamically from a DNS query for AFSDB
     or SRV records.

 (2) Anyone wanting to use a cell's VL server address must wait until the
     cell record comes online and has tried to obtain some addresses.

 (3) An FS server's address list, for the moment, has a single entry that
     is the key to the server list.  This will change in the future when a
     server is instead keyed on its UUID and the VL.GetAddrsU operation is
     used.

 (4) An 'address cursor' concept is introduced to handle iteration through
     the address list.  This is passed to the afs_make_call() as, in the
     future, stuff (such as abort code) that doesn't outlast the call will
     be returned in it.

In the future, we might want to annotate the list with information about
how each address fares.  We might then want to propagate such annotations
over address list replacement.

Whilst we're at it, we allow IPv6 addresses to be specified in
colon-delimited lists by enclosing them in square brackets.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13 15:38:18 +00:00
David Howells
989782dcdc afs: Overhaul cell database management
Overhaul the way that the in-kernel AFS client keeps track of cells in the
following manner:

 (1) Cells are now held in an rbtree to make walking them quicker and RCU
     managed (though this is probably overkill).

 (2) Cells now have a manager work item that:

     (A) Looks after fetching and refreshing the VL server list.

     (B) Manages cell record lifetime, including initialising and
     	 destruction.

     (B) Manages cell record caching whereby threads are kept around for a
     	 certain time after last use and then destroyed.

     (C) Manages the FS-Cache index cookie for a cell.  It is not permitted
     	 for a cookie to be in use twice, so we have to be careful to not
     	 allow a new cell record to exist at the same time as an old record
     	 of the same name.

 (3) Each AFS network namespace is given a manager work item that manages
     the cells within it, maintaining a single timer to prod cells into
     updating their DNS records.

     This uses the reduce_timer() facility to make the timer expire at the
     soonest timed event that needs happening.

 (4) When a module is being unloaded, cells and cell managers are now
     counted out using dec_after_work() to make sure the module text is
     pinned until after the data structures have been cleaned up.

 (5) Each cell's VL server list is now protected by a seqlock rather than a
     semaphore.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13 15:38:18 +00:00
David Howells
be080a6f43 afs: Overhaul permit caching
Overhaul permit caching in AFS by making it per-vnode and sharing permit
lists where possible.

When most of the fileserver operations are called, they return a status
structure indicating the (revised) details of the vnode or vnodes involved
in the operation.  This includes the access mark derived from the ACL
(named CallerAccess in the protocol definition file).  This is cacheable
and if the ACL changes, the server will tell us that it is breaking the
callback promise, at which point we can discard the currently cached
permits.

With this patch, the afs_permits structure has, at the end, an array of
{ key, CallerAccess } elements, sorted by key pointer.  This is then cached
in a hash table so that it can be shared between vnodes with the same
access permits.

Permit lists can only be shared if they contain the exact same set of
key->CallerAccess mappings.

Note that that table is global rather than being per-net_ns.  If the keys
in a permit list cross net_ns boundaries, there is no problem sharing the
cached permits, since the permits are just integer masks.

Since permit lists pin keys, the permit cache also makes it easier for a
future patch to find all occurrences of a key and remove them by means of
setting the afs_permits::invalidated flag and then clearing the appropriate
key pointer.  In such an event, memory barriers will need adding.

Lastly, the permit caching is skipped if the server has sent either a
vnode-specific or an entire-server callback since the start of the
operation.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13 15:38:18 +00:00
David Howells
c435ee3455 afs: Overhaul the callback handling
Overhaul the AFS callback handling by the following means:

 (1) Don't give up callback promises on vnodes that we are no longer using,
     rather let them just expire on the server or let the server break
     them.  This is actually more efficient for the server as the callback
     lookup is expensive if there are lots of extant callbacks.

 (2) Only give up the callback promises we have from a server when the
     server record is destroyed.  Then we can just give up *all* the
     callback promises on it in one go.

 (3) Servers can end up being shared between cells if cells are aliased, so
     don't add all the vnodes being backed by a particular server into a
     big FID-indexed tree on that server as there may be duplicates.

     Instead have each volume instance (~= superblock) register an interest
     in a server as it starts to make use of it and use this to allow the
     processor for callbacks from the server to find the superblock and
     thence the inode corresponding to the FID being broken by means of
     ilookup_nowait().

 (4) Rather than iterating over the entire callback list when a mass-break
     comes in from the server, maintain a counter of mass-breaks in
     afs_server (cb_seq) and make afs_validate() check it against the copy
     in afs_vnode.

     It would be nice not to have to take a read_lock whilst doing this,
     but that's tricky without using RCU.

 (5) Save a ref on the fileserver we're using for a call in the afs_call
     struct so that we can access its cb_s_break during call decoding.

 (6) Write-lock around callback and status storage in a vnode and read-lock
     around getattr so that we don't see the status mid-update.

This has the following consequences:

 (1) Data invalidation isn't seen until someone calls afs_validate() on a
     vnode.  Unfortunately, we need to use a key to query the server, but
     getting one from a background thread is tricky without caching loads
     of keys all over the place.

 (2) Mass invalidation isn't seen until someone calls afs_validate().

 (3) Callback breaking is going to hit the inode_hash_lock quite a bit.
     Could this be replaced with rcu_read_lock() since inodes are destroyed
     under RCU conditions.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13 15:38:18 +00:00
David Howells
d0676a1678 afs: Rename struct afs_call server member to cm_server
Rename the server member of struct afs_call to cm_server as we're only
going to be using it for incoming calls for the Cache Manager service.
This makes it easier to differentiate from the pointer to the target server
for the client, which will point to a different structure to allow for
callback handling.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13 15:38:18 +00:00
David Howells
33cd7f2b76 afs: Potentially return call->reply[0] from afs_make_call()
If call->ret_reply0 is set, return call->reply[0] on success.  Change the
return type of afs_make_call() to long so that this can be passed back
without bit loss and then cast to a pointer if required.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13 15:38:17 +00:00
David Howells
97e3043ad8 afs: Condense afs_call's reply{,2,3,4} into an array
Condense struct afs_call's reply anchor members - reply{,2,3,4} - into an
array.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13 15:38:17 +00:00
David Howells
f780c8ea0e afs: Consolidate abort_to_error translators
The AFS abort code space is shared across all services, so there's no need
for separate abort_to_error translators for each service.

Consolidate them into a single function and remove the function pointers
for them.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13 15:38:17 +00:00
David Howells
4d9df9868f afs: Keep and pass sockaddr_rxrpc addresses rather than in_addr
Keep and pass sockaddr_rxrpc addresses around rather than keeping and
passing in_addr addresses to allow for the use of IPv6 and non-standard
port numbers in future.

This also allows the port and service_id fields to be removed from the
afs_call struct.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13 15:38:17 +00:00
David Howells
ad6a942a9e afs: Update the cache index structure
Update the cache index structure in the following ways:

 (1) Don't use the volume name followed by the volume type as levels in the
     cache index.  Volumes can be renamed.  Use the volume ID instead.

 (2) Don't store the VLDB data for a volume in the tree.  If the volume
     database should be cached locally, then it should be done in a separate
     tree.

 (3) Expand the volume ID stored in the cache to 64 bits.

 (4) Expand the file/vnode ID stored in the cache to 96 bits.

 (5) Increment the cache structure version number to 1.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13 15:38:17 +00:00
David Howells
9ed900b116 afs: Push the net ns pointer to more places
Push the network namespace pointer to more places in AFS, including the
afs_server structure (which doesn't hold a ref on the netns).

In particular, afs_put_cell() now takes requires a net ns parameter so that
it can safely alter the netns after decrementing the cell usage count - the
cell will be deallocated by a background thread after being cached for a
period, which means that it's not safe to access it after reducing its
usage count.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13 15:38:17 +00:00
David Howells
49566f6f06 afs: Note the cell in the superblock info also
Keep a reference to the cell in the superblock info structure in addition
to the volume and net pointers.  This will make it easier to clean up in a
future patch in which afs_put_volume() will need the cell pointer.

Whilst we're at it, make the cell and volume getting functions return a
pointer to the object got to make the call sites look neater.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13 15:38:16 +00:00
David Howells
59fa1c4a9f afs: Fix server reaping
Fix server reaping and make sure it's all done before we start trying to
purge cells, given that servers currently pin cells.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13 15:38:16 +00:00
David Howells
f044c8847b afs: Lay the groundwork for supporting network namespaces
Lay the groundwork for supporting network namespaces (netns) to the AFS
filesystem by moving various global features to a network-namespace struct
(afs_net) and providing an instance of this as a temporary global variable
that everything uses via accessor functions for the moment.

The following changes have been made:

 (1) Store the netns in the superblock info.  This will be obtained from
     the mounter's nsproxy on a manual mount and inherited from the parent
     superblock on an automount.

 (2) The cell list is made per-netns.  It can be viewed through
     /proc/net/afs/cells and also be modified by writing commands to that
     file.

 (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell.
     This is unset by default.

 (4) The 'rootcell' module parameter, which sets a cell and VL server list
     modifies the init net namespace, thereby allowing an AFS root fs to be
     theoretically used.

 (5) The volume location lists and the file lock manager are made
     per-netns.

 (6) The AF_RXRPC socket and associated I/O bits are made per-ns.

The various workqueues remain global for the moment.

Changes still to be made:

 (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced
     from the old name.

 (2) A per-netns subsys needs to be registered for AFS into which it can
     store its per-netns data.

 (3) Rather than the AF_RXRPC socket being opened on module init, it needs
     to be opened on the creation of a superblock in that netns.

 (4) The socket needs to be closed when the last superblock using it is
     destroyed and all outstanding client calls on it have been completed.
     This prevents a reference loop on the namespace.

 (5) It is possible that several namespaces will want to use AFS, in which
     case each one will need its own UDP port.  These can either be set
     through /proc/net/afs/cm_port or the kernel can pick one at random.
     The init_ns gets 7001 by default.

Other issues that need resolving:

 (1) The DNS keyring needs net-namespacing.

 (2) Where do upcalls go (eg. DNS request-key upcall)?

 (3) Need something like open_socket_in_file_ns() syscall so that AFS
     command line tools attempting to operate on an AFS file/volume have
     their RPC calls go to the right place.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13 15:38:16 +00:00
David Howells
a68f4a27f5 rxrpc: Support service upgrade from a kernel service
Provide support for a kernel service to make use of the service upgrade
facility.  This involves:

 (1) Pass an upgrade request flag to rxrpc_kernel_begin_call().

 (2) Make rxrpc_kernel_recv_data() return the call's current service ID so
     that the caller can detect service upgrade and see what the service
     was upgraded to.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-10-18 11:37:20 +01:00
David Howells
d3e3b7eac8 afs: Add metadata xattrs
Add xattrs to allow the user to get/set metadata in lieu of having pioctl()
available.  The following xattrs are now available:

 - "afs.cell"

   The name of the cell in which the vnode's volume resides.

 - "afs.fid"

   The volume ID, vnode ID and vnode uniquifier of the file as three hex
   numbers separated by colons.

 - "afs.volume"

   The name of the volume in which the vnode resides.

For example:

	# getfattr -d -m ".*" /mnt/scratch
	getfattr: Removing leading '/' from absolute path names
	# file: mnt/scratch
	afs.cell="mycell.myorg.org"
	afs.fid="10000b:1:1"
	afs.volume="scratch"

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-09 14:40:12 -07:00
Christoph Hellwig
41bb26f8db uuid,afs: move struct uuid_v1 back into afs
This essentially is a partial revert of commit ff548773
("afs: Move UUID struct to linux/uuid.h") and moves struct uuid_v1 back into
fs/afs as struct afs_uuid.  It however keeps it as big endian structure
so that we can use the normal uuid generation helpers when casting to/from
struct afs_uuid.

The V1 uuid intrepretation in struct form isn't really useful to the
rest of the kernel, and not really compatible to it either, so move it
back to AFS instead of polluting the global uuid.h.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: David Howells <dhowells@redhat.com>
2017-06-05 16:56:34 +02:00
Jan Kara
edd3ba94c4 afs: Convert to separately allocated bdi
Allocate struct backing_dev_info separately instead of embedding it
inside the superblock. This unifies handling of bdi among users.

CC: David Howells <dhowells@redhat.com>
CC: linux-afs@lists.infradead.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-20 12:09:55 -06:00
David Howells
6a0e3999e5 afs: Make struct afs_read::remain 64-bit
Make struct afs_read::remain 64-bit so that it can handle huge transfers if
we ever request them or the server decides to give us a bit extra data (the
other fields there are already 64-bit).

Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Marc Dionne <marc.dionne@auristor.com>
2017-03-16 16:27:46 +00:00
Tina Ruchandani
56e714312e afs: Prevent callback expiry timer overflow
get_seconds() returns real wall-clock seconds. On 32-bit systems
this value will overflow in year 2038 and beyond. This patch changes
afs_vnode record to use ktime_get_real_seconds() instead, for the
fields cb_expires and cb_expires_at.

Signed-off-by: Tina Ruchandani <ruchandani.tina@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2017-03-16 16:27:46 +00:00
Tina Ruchandani
8a79790bf0 afs: Migrate vlocation fields to 64-bit
get_seconds() returns real wall-clock seconds. On 32-bit systems
this value will overflow in year 2038 and beyond. This patch changes
afs's vlocation record to use ktime_get_real_seconds() instead, for the
fields time_of_death and update_at.

Signed-off-by: Tina Ruchandani <ruchandani.tina@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2017-03-16 16:27:46 +00:00
David Howells
944c74f472 afs: Distinguish mountpoints from symlinks by file mode alone
In AFS, mountpoints appear as symlinks with mode 0644 and normal symlinks
have mode 0777, so use this to distinguish them rather than reading the
content and parsing it.  In the case of a mountpoint, the symlink body is a
formatted string indicating the location of the target volume.

Note that with this, kAFS no longer 'pre-fetches' the contents of symlinks,
so afs_readpage() may fail with an access-denial because when the VFS calls
d_automount(), it wraps the call in an credentials override that sets the
initial creds - thereby preventing access to the caller's keyrings and the
authentication keys held therein.

To this end, a patch reverting that change to the VFS is required also.

Reported-by: Jeffrey Altman <jaltman@auristor.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2017-03-16 16:27:45 +00:00
David Howells
58fed94dfb afs: Flush outstanding writes when an fd is closed
Flush outstanding writes in afs when an fd is closed.  This is what NFS and
CIFS do.

Reported-by: Marc Dionne <marc.c.dionne@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2017-03-16 16:27:45 +00:00
David Howells
e8e581a88c afs: Handle a short write to an AFS page
Handle the situation where afs_write_begin() is told to expect that a
full-page write will be made, but this doesn't happen (EFAULT, CTRL-C,
etc.), and so afs_write_end() sees a partial write took place.  Currently,
no attempt is to deal with the discrepency.

Fix this by loading the gap from the server.

Reported-by: Al Viro <viro@ZenIV.linux.org.uk>
Signed-off-by: David Howells <dhowells@redhat.com>
2017-03-16 16:27:44 +00:00
David Howells
3448e65217 afs: Kill struct afs_read::pg_offset
Kill struct afs_read::pg_offset as nothing uses it.  It's unnecessary as pos
can be masked off.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-03-16 16:27:44 +00:00
Marc Dionne
bcd89270d9 afs: Deal with an empty callback array
Servers may send a callback array that is the same size as
the FID array, or an empty array.  If the callback count is
0, the code would attempt to read (fid_count * 12) bytes of
data, which would fail and result in an unmarshalling error.
This would lead to stale data for remotely modified files
or directories.

Store the callback array size in the internal afs_call
structure and use that to determine the amount of data to
read.

Signed-off-by: Marc Dionne <marc.dionne@auristor.com>
2017-03-16 16:27:44 +00:00
David Howells
a528d35e8b statx: Add a system call to make enhanced file info available
Add a system call to make extended file information available, including
file creation and some attribute flags where available through the
underlying filesystem.

The getattr inode operation is altered to take two additional arguments: a
u32 request_mask and an unsigned int flags that indicate the
synchronisation mode.  This change is propagated to the vfs_getattr*()
function.

Functions like vfs_stat() are now inline wrappers around new functions
vfs_statx() and vfs_statx_fd() to reduce stack usage.

========
OVERVIEW
========

The idea was initially proposed as a set of xattrs that could be retrieved
with getxattr(), but the general preference proved to be for a new syscall
with an extended stat structure.

A number of requests were gathered for features to be included.  The
following have been included:

 (1) Make the fields a consistent size on all arches and make them large.

 (2) Spare space, request flags and information flags are provided for
     future expansion.

 (3) Better support for the y2038 problem [Arnd Bergmann] (tv_sec is an
     __s64).

 (4) Creation time: The SMB protocol carries the creation time, which could
     be exported by Samba, which will in turn help CIFS make use of
     FS-Cache as that can be used for coherency data (stx_btime).

     This is also specified in NFSv4 as a recommended attribute and could
     be exported by NFSD [Steve French].

 (5) Lightweight stat: Ask for just those details of interest, and allow a
     netfs (such as NFS) to approximate anything not of interest, possibly
     without going to the server [Trond Myklebust, Ulrich Drepper, Andreas
     Dilger] (AT_STATX_DONT_SYNC).

 (6) Heavyweight stat: Force a netfs to go to the server, even if it thinks
     its cached attributes are up to date [Trond Myklebust]
     (AT_STATX_FORCE_SYNC).

And the following have been left out for future extension:

 (7) Data version number: Could be used by userspace NFS servers [Aneesh
     Kumar].

     Can also be used to modify fill_post_wcc() in NFSD which retrieves
     i_version directly, but has just called vfs_getattr().  It could get
     it from the kstat struct if it used vfs_xgetattr() instead.

     (There's disagreement on the exact semantics of a single field, since
     not all filesystems do this the same way).

 (8) BSD stat compatibility: Including more fields from the BSD stat such
     as creation time (st_btime) and inode generation number (st_gen)
     [Jeremy Allison, Bernd Schubert].

 (9) Inode generation number: Useful for FUSE and userspace NFS servers
     [Bernd Schubert].

     (This was asked for but later deemed unnecessary with the
     open-by-handle capability available and caused disagreement as to
     whether it's a security hole or not).

(10) Extra coherency data may be useful in making backups [Andreas Dilger].

     (No particular data were offered, but things like last backup
     timestamp, the data version number and the DOS archive bit would come
     into this category).

(11) Allow the filesystem to indicate what it can/cannot provide: A
     filesystem can now say it doesn't support a standard stat feature if
     that isn't available, so if, for instance, inode numbers or UIDs don't
     exist or are fabricated locally...

     (This requires a separate system call - I have an fsinfo() call idea
     for this).

(12) Store a 16-byte volume ID in the superblock that can be returned in
     struct xstat [Steve French].

     (Deferred to fsinfo).

(13) Include granularity fields in the time data to indicate the
     granularity of each of the times (NFSv4 time_delta) [Steve French].

     (Deferred to fsinfo).

(14) FS_IOC_GETFLAGS value.  These could be translated to BSD's st_flags.
     Note that the Linux IOC flags are a mess and filesystems such as Ext4
     define flags that aren't in linux/fs.h, so translation in the kernel
     may be a necessity (or, possibly, we provide the filesystem type too).

     (Some attributes are made available in stx_attributes, but the general
     feeling was that the IOC flags were to ext[234]-specific and shouldn't
     be exposed through statx this way).

(15) Mask of features available on file (eg: ACLs, seclabel) [Brad Boyer,
     Michael Kerrisk].

     (Deferred, probably to fsinfo.  Finding out if there's an ACL or
     seclabal might require extra filesystem operations).

(16) Femtosecond-resolution timestamps [Dave Chinner].

     (A __reserved field has been left in the statx_timestamp struct for
     this - if there proves to be a need).

(17) A set multiple attributes syscall to go with this.

===============
NEW SYSTEM CALL
===============

The new system call is:

	int ret = statx(int dfd,
			const char *filename,
			unsigned int flags,
			unsigned int mask,
			struct statx *buffer);

The dfd, filename and flags parameters indicate the file to query, in a
similar way to fstatat().  There is no equivalent of lstat() as that can be
emulated with statx() by passing AT_SYMLINK_NOFOLLOW in flags.  There is
also no equivalent of fstat() as that can be emulated by passing a NULL
filename to statx() with the fd of interest in dfd.

Whether or not statx() synchronises the attributes with the backing store
can be controlled by OR'ing a value into the flags argument (this typically
only affects network filesystems):

 (1) AT_STATX_SYNC_AS_STAT tells statx() to behave as stat() does in this
     respect.

 (2) AT_STATX_FORCE_SYNC will require a network filesystem to synchronise
     its attributes with the server - which might require data writeback to
     occur to get the timestamps correct.

 (3) AT_STATX_DONT_SYNC will suppress synchronisation with the server in a
     network filesystem.  The resulting values should be considered
     approximate.

mask is a bitmask indicating the fields in struct statx that are of
interest to the caller.  The user should set this to STATX_BASIC_STATS to
get the basic set returned by stat().  It should be noted that asking for
more information may entail extra I/O operations.

buffer points to the destination for the data.  This must be 256 bytes in
size.

======================
MAIN ATTRIBUTES RECORD
======================

The following structures are defined in which to return the main attribute
set:

	struct statx_timestamp {
		__s64	tv_sec;
		__s32	tv_nsec;
		__s32	__reserved;
	};

	struct statx {
		__u32	stx_mask;
		__u32	stx_blksize;
		__u64	stx_attributes;
		__u32	stx_nlink;
		__u32	stx_uid;
		__u32	stx_gid;
		__u16	stx_mode;
		__u16	__spare0[1];
		__u64	stx_ino;
		__u64	stx_size;
		__u64	stx_blocks;
		__u64	__spare1[1];
		struct statx_timestamp	stx_atime;
		struct statx_timestamp	stx_btime;
		struct statx_timestamp	stx_ctime;
		struct statx_timestamp	stx_mtime;
		__u32	stx_rdev_major;
		__u32	stx_rdev_minor;
		__u32	stx_dev_major;
		__u32	stx_dev_minor;
		__u64	__spare2[14];
	};

The defined bits in request_mask and stx_mask are:

	STATX_TYPE		Want/got stx_mode & S_IFMT
	STATX_MODE		Want/got stx_mode & ~S_IFMT
	STATX_NLINK		Want/got stx_nlink
	STATX_UID		Want/got stx_uid
	STATX_GID		Want/got stx_gid
	STATX_ATIME		Want/got stx_atime{,_ns}
	STATX_MTIME		Want/got stx_mtime{,_ns}
	STATX_CTIME		Want/got stx_ctime{,_ns}
	STATX_INO		Want/got stx_ino
	STATX_SIZE		Want/got stx_size
	STATX_BLOCKS		Want/got stx_blocks
	STATX_BASIC_STATS	[The stuff in the normal stat struct]
	STATX_BTIME		Want/got stx_btime{,_ns}
	STATX_ALL		[All currently available stuff]

stx_btime is the file creation time, stx_mask is a bitmask indicating the
data provided and __spares*[] are where as-yet undefined fields can be
placed.

Time fields are structures with separate seconds and nanoseconds fields
plus a reserved field in case we want to add even finer resolution.  Note
that times will be negative if before 1970; in such a case, the nanosecond
fields will also be negative if not zero.

The bits defined in the stx_attributes field convey information about a
file, how it is accessed, where it is and what it does.  The following
attributes map to FS_*_FL flags and are the same numerical value:

	STATX_ATTR_COMPRESSED		File is compressed by the fs
	STATX_ATTR_IMMUTABLE		File is marked immutable
	STATX_ATTR_APPEND		File is append-only
	STATX_ATTR_NODUMP		File is not to be dumped
	STATX_ATTR_ENCRYPTED		File requires key to decrypt in fs

Within the kernel, the supported flags are listed by:

	KSTAT_ATTR_FS_IOC_FLAGS

[Are any other IOC flags of sufficient general interest to be exposed
through this interface?]

New flags include:

	STATX_ATTR_AUTOMOUNT		Object is an automount trigger

These are for the use of GUI tools that might want to mark files specially,
depending on what they are.

Fields in struct statx come in a number of classes:

 (0) stx_dev_*, stx_blksize.

     These are local system information and are always available.

 (1) stx_mode, stx_nlinks, stx_uid, stx_gid, stx_[amc]time, stx_ino,
     stx_size, stx_blocks.

     These will be returned whether the caller asks for them or not.  The
     corresponding bits in stx_mask will be set to indicate whether they
     actually have valid values.

     If the caller didn't ask for them, then they may be approximated.  For
     example, NFS won't waste any time updating them from the server,
     unless as a byproduct of updating something requested.

     If the values don't actually exist for the underlying object (such as
     UID or GID on a DOS file), then the bit won't be set in the stx_mask,
     even if the caller asked for the value.  In such a case, the returned
     value will be a fabrication.

     Note that there are instances where the type might not be valid, for
     instance Windows reparse points.

 (2) stx_rdev_*.

     This will be set only if stx_mode indicates we're looking at a
     blockdev or a chardev, otherwise will be 0.

 (3) stx_btime.

     Similar to (1), except this will be set to 0 if it doesn't exist.

=======
TESTING
=======

The following test program can be used to test the statx system call:

	samples/statx/test-statx.c

Just compile and run, passing it paths to the files you want to examine.
The file is built automatically if CONFIG_SAMPLES is enabled.

Here's some example output.  Firstly, an NFS directory that crosses to
another FSID.  Note that the AUTOMOUNT attribute is set because transiting
this directory will cause d_automount to be invoked by the VFS.

	[root@andromeda ~]# /tmp/test-statx -A /warthog/data
	statx(/warthog/data) = 0
	results=7ff
	  Size: 4096            Blocks: 8          IO Block: 1048576  directory
	Device: 00:26           Inode: 1703937     Links: 125
	Access: (3777/drwxrwxrwx)  Uid:     0   Gid:  4041
	Access: 2016-11-24 09:02:12.219699527+0000
	Modify: 2016-11-17 10:44:36.225653653+0000
	Change: 2016-11-17 10:44:36.225653653+0000
	Attributes: 0000000000001000 (-------- -------- -------- -------- -------- -------- ---m---- --------)

Secondly, the result of automounting on that directory.

	[root@andromeda ~]# /tmp/test-statx /warthog/data
	statx(/warthog/data) = 0
	results=7ff
	  Size: 4096            Blocks: 8          IO Block: 1048576  directory
	Device: 00:27           Inode: 2           Links: 125
	Access: (3777/drwxrwxrwx)  Uid:     0   Gid:  4041
	Access: 2016-11-24 09:02:12.219699527+0000
	Modify: 2016-11-17 10:44:36.225653653+0000
	Change: 2016-11-17 10:44:36.225653653+0000

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2017-03-02 20:51:15 -05:00
Arnd Bergmann
b4db2b35fc afs: Use core kernel UUID generation
AFS uses a time based UUID to identify the host itself.  This requires
getting a timestamp which is currently done through the getnstimeofday()
interface that we want to eventually get rid of.

Instead of replacing it with a ktime-based interface, simply remove the
entire function and use generate_random_uuid() instead, which has a v4
("completely random") UUID instead of the time-based one.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David Howells <dhowells@redhat.com>
2017-02-10 16:34:17 +00:00
David Howells
ff54877310 afs: Move UUID struct to linux/uuid.h
Move the afs_uuid struct to linux/uuid.h, rename it to uuid_v1 and change
the u16/u32 fields to __be16/__be32 instead so that the structure can be
cast to a 16-octet network-order buffer.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de
2017-02-10 16:34:17 +00:00
David Howells
341f741f04 afs: Refcount the afs_call struct
A static checker warning occurs in the AFS filesystem:

	fs/afs/cmservice.c:155 SRXAFSCB_CallBack()
	error: dereferencing freed memory 'call'

due to the reply being sent before we access the server it points to.  The
act of sending the reply causes the call to be freed if an error occurs
(but not if it doesn't).

On top of this, the lifetime handling of afs_call structs is fragile
because they get passed around through workqueues without any sort of
refcounting.

Deal with the issues by:

 (1) Fix the maybe/maybe not nature of the reply sending functions with
     regards to whether they release the call struct.

 (2) Refcount the afs_call struct and sort out places that need to get/put
     references.

 (3) Pass a ref through the work queue and release (or pass on) that ref in
     the work function.  Care has to be taken because a work queue may
     already own a ref to the call.

 (4) Do the cleaning up in the put function only.

 (5) Simplify module cleanup by always incrementing afs_outstanding_calls
     whenever a call is allocated.

 (6) Set the backlog to 0 with kernel_listen() at the beginning of the
     process of closing the socket to prevent new incoming calls from
     occurring and to remove the contribution of preallocated calls from
     afs_outstanding_calls before we wait on it.

A tracepoint is also added to monitor the afs_call refcount and lifetime.

Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-09 11:10:02 +00:00
David Howells
56ff9c8377 afs: Kill afs_wait_mode
The afs_wait_mode struct isn't really necessary.  Client calls only use one
of a choice of two (synchronous or the asynchronous) and incoming calls
don't use the wait at all.  Replace with a boolean parameter.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-01-09 11:10:02 +00:00
David Howells
8e8d7f13b6 afs: Add some tracepoints
Add three tracepoints to the AFS filesystem:

 (1) The afs_recv_data tracepoint logs data segments that are extracted
     from the data received from the peer through afs_extract_data().

 (2) The afs_notify_call tracepoint logs notification from AF_RXRPC of data
     coming in to an asynchronous call.

 (3) The afs_cb_call tracepoint logs incoming calls that have had their
     operation ID extracted and mapped into a supported cache manager
     service call.

To make (3) work, the name strings in the afs_call_type struct objects have
to be annotated with __tracepoint_string.  This is done with the CM_NAME()
macro.

Further, the AFS call state enum needs a name so that it can be used to
declare parameter types.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-01-09 09:18:13 +00:00
David Howells
196ee9cd2d afs: Make afs_fs_fetch_data() take a list of pages
Make afs_fs_fetch_data() take a list of pages for bulk data transfer.  This
will allow afs_readpages() to be made more efficient.

Signed-off-by: David Howells <dhowells@redhat.com>
2017-01-06 16:54:41 +00:00
David Howells
50a2c95381 afs: call->operation_ID sometimes used as __be32 sometimes as u32
call->operation_ID is sometimes being used as __be32 sometimes is being
used as u32.  Be consistent and settle on using as u32.

Signed-off-by: David Howells <dhowells@redhat.com.
2016-10-13 17:03:52 +01:00
David Howells
d001648ec7 rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.

This makes the following possibilities more achievable:

 (1) Call refcounting can be made simpler if skbs don't hold refs to calls.

 (2) skbs referring to non-data events will be able to be freed much sooner
     rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
     will be able to consult the call state.

 (3) We can shortcut the receive phase when a call is remotely aborted
     because we don't have to go through all the packets to get to the one
     cancelling the operation.

 (4) It makes it easier to do encryption/decryption directly between AFS's
     buffers and sk_buffs.

 (5) Encryption/decryption can more easily be done in the AFS's thread
     contexts - usually that of the userspace process that issued a syscall
     - rather than in one of rxrpc's background threads on a workqueue.

 (6) AFS will be able to wait synchronously on a call inside AF_RXRPC.

To make this work, the following interface function has been added:

     int rxrpc_kernel_recv_data(
		struct socket *sock, struct rxrpc_call *call,
		void *buffer, size_t bufsize, size_t *_offset,
		bool want_more, u32 *_abort_code);

This is the recvmsg equivalent.  It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.

afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them.  They don't wait synchronously yet because the socket
lock needs to be dealt with.

Five interface functions have been removed:

	rxrpc_kernel_is_data_last()
    	rxrpc_kernel_get_abort_code()
    	rxrpc_kernel_get_error_number()
    	rxrpc_kernel_free_skb()
    	rxrpc_kernel_data_consumed()

As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user.  To process the queue internally, a temporary function,
temp_deliver_data() has been added.  This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-01 16:43:27 -07:00
David Howells
8324f0bcfb rxrpc: Provide a way for AFS to ask for the peer address of a call
Provide a function so that kernel users, such as AFS, can ask for the peer
address of a call:

   void rxrpc_kernel_get_peer(struct rxrpc_call *call,
			      struct sockaddr_rxrpc *_srx);

In the future the kernel service won't get sk_buffs to look inside.
Further, this allows us to hide any canonicalisation inside AF_RXRPC for
when IPv6 support is added.

Also propagate this through to afs_find_server() and issue a warning if we
can't handle the address family yet.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-08-30 16:07:53 +01:00
David Howells
372ee16386 rxrpc: Fix races between skb free, ACK generation and replying
Inside the kafs filesystem it is possible to occasionally have a call
processed and terminated before we've had a chance to check whether we need
to clean up the rx queue for that call because afs_send_simple_reply() ends
the call when it is done, but this is done in a workqueue item that might
happen to run to completion before afs_deliver_to_call() completes.

Further, it is possible for rxrpc_kernel_send_data() to be called to send a
reply before the last request-phase data skb is released.  The rxrpc skb
destructor is where the ACK processing is done and the call state is
advanced upon release of the last skb.  ACK generation is also deferred to
a work item because it's possible that the skb destructor is not called in
a context where kernel_sendmsg() can be invoked.

To this end, the following changes are made:

 (1) kernel_rxrpc_data_consumed() is added.  This should be called whenever
     an skb is emptied so as to crank the ACK and call states.  This does
     not release the skb, however.  kernel_rxrpc_free_skb() must now be
     called to achieve that.  These together replace
     rxrpc_kernel_data_delivered().

 (2) kernel_rxrpc_data_consumed() is wrapped by afs_data_consumed().

     This makes afs_deliver_to_call() easier to work as the skb can simply
     be discarded unconditionally here without trying to work out what the
     return value of the ->deliver() function means.

     The ->deliver() functions can, via afs_data_complete(),
     afs_transfer_reply() and afs_extract_data() mark that an skb has been
     consumed (thereby cranking the state) without the need to
     conditionally free the skb to make sure the state is correct on an
     incoming call for when the call processor tries to send the reply.

 (3) rxrpc_recvmsg() now has to call kernel_rxrpc_data_consumed() when it
     has finished with a packet and MSG_PEEK isn't set.

 (4) rxrpc_packet_destructor() no longer calls rxrpc_hard_ACK_data().

     Because of this, we no longer need to clear the destructor and put the
     call before we free the skb in cases where we don't want the ACK/call
     state to be cranked.

 (5) The ->deliver() call-type callbacks are made to return -EAGAIN rather
     than 0 if they expect more data (afs_extract_data() returns -EAGAIN to
     the delivery function already), and the caller is now responsible for
     producing an abort if that was the last packet.

 (6) There are many bits of unmarshalling code where:

 		ret = afs_extract_data(call, skb, last, ...);
		switch (ret) {
		case 0:		break;
		case -EAGAIN:	return 0;
		default:	return ret;
		}

     is to be found.  As -EAGAIN can now be passed back to the caller, we
     now just return if ret < 0:

 		ret = afs_extract_data(call, skb, last, ...);
		if (ret < 0)
			return ret;

 (7) Checks for trailing data and empty final data packets has been
     consolidated as afs_data_complete().  So:

		if (skb->len > 0)
			return -EBADMSG;
		if (!last)
			return 0;

     becomes:

		ret = afs_data_complete(call, skb, last);
		if (ret < 0)
			return ret;

 (8) afs_transfer_reply() now checks the amount of data it has against the
     amount of data desired and the amount of data in the skb and returns
     an error to induce an abort if we don't get exactly what we want.

Without these changes, the following oops can occasionally be observed,
particularly if some printks are inserted into the delivery path:

general protection fault: 0000 [#1] SMP
Modules linked in: kafs(E) af_rxrpc(E) [last unloaded: af_rxrpc]
CPU: 0 PID: 1305 Comm: kworker/u8:3 Tainted: G            E   4.7.0-fsdevel+ #1303
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Workqueue: kafsd afs_async_workfn [kafs]
task: ffff88040be041c0 ti: ffff88040c070000 task.ti: ffff88040c070000
RIP: 0010:[<ffffffff8108fd3c>]  [<ffffffff8108fd3c>] __lock_acquire+0xcf/0x15a1
RSP: 0018:ffff88040c073bc0  EFLAGS: 00010002
RAX: 6b6b6b6b6b6b6b6b RBX: 0000000000000000 RCX: ffff88040d29a710
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88040d29a710
RBP: ffff88040c073c70 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: ffff88040be041c0 R15: ffffffff814c928f
FS:  0000000000000000(0000) GS:ffff88041fa00000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa4595f4750 CR3: 0000000001c14000 CR4: 00000000001406f0
Stack:
 0000000000000006 000000000be04930 0000000000000000 ffff880400000000
 ffff880400000000 ffffffff8108f847 ffff88040be041c0 ffffffff81050446
 ffff8803fc08a920 ffff8803fc08a958 ffff88040be041c0 ffff88040c073c38
Call Trace:
 [<ffffffff8108f847>] ? mark_held_locks+0x5e/0x74
 [<ffffffff81050446>] ? __local_bh_enable_ip+0x9b/0xa1
 [<ffffffff8108f9ca>] ? trace_hardirqs_on_caller+0x16d/0x189
 [<ffffffff810915f4>] lock_acquire+0x122/0x1b6
 [<ffffffff810915f4>] ? lock_acquire+0x122/0x1b6
 [<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
 [<ffffffff81609dbf>] _raw_spin_lock_irqsave+0x35/0x49
 [<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
 [<ffffffff814c928f>] skb_dequeue+0x18/0x61
 [<ffffffffa009aa92>] afs_deliver_to_call+0x344/0x39d [kafs]
 [<ffffffffa009ab37>] afs_process_async_call+0x4c/0xd5 [kafs]
 [<ffffffffa0099e9c>] afs_async_workfn+0xe/0x10 [kafs]
 [<ffffffff81063a3a>] process_one_work+0x29d/0x57c
 [<ffffffff81064ac2>] worker_thread+0x24a/0x385
 [<ffffffff81064878>] ? rescuer_thread+0x2d0/0x2d0
 [<ffffffff810696f5>] kthread+0xf3/0xfb
 [<ffffffff8160a6ff>] ret_from_fork+0x1f/0x40
 [<ffffffff81069602>] ? kthread_create_on_node+0x1cf/0x1cf

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-06 00:08:40 -04:00
Al Viro
9c1d5284c7 Merge commit '9f12600fe425bc28f0ccba034a77783c09c15af4' into for-linus
Backmerge of dcache.c changes from mainline.  It's that, or complete
rebase...

Conflicts:
	fs/splice.c

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2014-06-12 00:28:09 -04:00
David Howells
656f88ddf1 AFS: Pass an afs_call* to call->async_workfn() instead of a work_struct*
call->async_workfn() can take an afs_call* arg rather than a work_struct* as
the functions assigned there are now called from afs_async_workfn() which has
to call container_of() anyway.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Nathaniel Wesley Filardo <nwf@cs.jhu.edu>
Reviewed-by: Tejun Heo <tj@kernel.org>
2014-05-23 13:05:22 +01:00
Al Viro
50b5551d17 afs: switch to ->write_iter()
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2014-05-06 17:39:39 -04:00
Tejun Heo
059499453a afs: don't use PREPARE_WORK
PREPARE_[DELAYED_]WORK() are being phased out.  They have few users
and a nasty surprise in terms of reentrancy guarantee as workqueue
considers work items to be different if they don't have the same work
function.

afs_call->async_work is multiplexed with multiple work functions.
Introduce afs_async_workfn() which invokes afs_call->async_workfn and
always use it as the work function and update the users to set the
->async_workfn field instead of overriding the work function using
PREPARE_WORK().

It would probably be best to route this with other related updates
through the workqueue tree.

Compile tested.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Cc: linux-afs@lists.infradead.org
2014-03-07 10:24:50 -05:00
Al Viro
b42d570c9f afs: get rid of junk in fs/afs/proc.c
kill pointless method instances and don't bother with ->owner - it's
ignored for procfs files anyway, make use of remove_proc_subtree() for
removal, get rid of cell->proc_dir.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2014-01-25 03:14:06 -05:00
Anton Blanchard
2c724fb927 afs: Read of file returns EBADMSG
A read of a large file on an afs mount failed:

# cat junk.file > /dev/null
cat: junk.file: Bad message

Looking at the trace, call->offset wrapped since it is only an
unsigned short. In afs_extract_data:

        _enter("{%u},{%zu},%d,,%zu", call->offset, len, last, count);
...

        if (call->offset < count) {
                if (last) {
                        _leave(" = -EBADMSG [%d < %zu]", call->offset, count);
                        return -EBADMSG;
                }

Which matches the trace:

[cat   ] ==> afs_extract_data({65132},{524},1,,65536)
[cat   ] <== afs_extract_data() = -EBADMSG [0 < 65536]

call->offset went from 65132 to 0. Fix this by making call->offset an
unsigned int.

Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: <stable@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-16 17:01:41 -07:00
Josef Bacik
02c24a8218 fs: push i_mutex and filemap_write_and_wait down into ->fsync() handlers
Btrfs needs to be able to control how filemap_write_and_wait_range() is called
in fsync to make it less of a painful operation, so push down taking i_mutex and
the calling of filemap_write_and_wait() down into the ->fsync() handlers.  Some
file systems can drop taking the i_mutex altogether it seems, like ext3 and
ocfs2.  For correctness sake I just pushed everything down in all cases to make
sure that we keep the current behavior the same for everybody, and then each
individual fs maintainer can make up their mind about what to do from there.
Thanks,

Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2011-07-20 20:47:59 -04:00
Al Viro
10556cb21a ->permission() sanitizing: don't pass flags to ->permission()
not used by the instances anymore.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2011-07-20 01:43:24 -04:00
David Howells
d18610b0ce AFS: Use d_automount() rather than abusing follow_link()
Make AFS use the new d_automount() dentry operation rather than abusing
follow_link() on directories.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2011-01-15 20:07:33 -05:00
Tejun Heo
0ad53eeefc afs: add afs_wq and use it instead of the system workqueue
flush_scheduled_work() is going away.  afs needs to make sure all the
works it has queued have finished before being unloaded and there can
be arbitrary number of pending works.  Add afs_wq and use it as the
flush domain instead of the system workqueue.

Also, convert cancel_delayed_work() + flush_scheduled_work() to
cancel_delayed_work_sync() in afs_mntpt_kill_timer().

Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: linux-afs@lists.infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 09:25:11 -08:00
Al Viro
d61dcce297 switch afs
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2011-01-12 20:04:20 -05:00