IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
In __sock_recv_timestamp() the additional SCM_TIMESTAMP[NS] is used. This
has the same value as SO_TIMESTAMP[NS], so this is a purely cosmetic change.
Signed-off-by: Patrick Ohly <patrick.ohly@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch is by far the most complex in the series. It adds a new syscall
paccept. This syscall differs from accept in that it adds (at the userlevel)
two additional parameters:
- a signal mask
- a flags value
The flags parameter can be used to set flag like SOCK_CLOEXEC. This is
imlpemented here as well. Some people argued that this is a property which
should be inherited from the file desriptor for the server but this is against
POSIX. Additionally, we really want the signal mask parameter as well
(similar to pselect, ppoll, etc). So an interface change in inevitable.
The flag value is the same as for socket and socketpair. I think diverging
here will only create confusion. Similar to the filesystem interfaces where
the use of the O_* constants differs, it is acceptable here.
The signal mask is handled as for pselect etc. The mask is temporarily
installed for the thread and removed before the call returns. I modeled the
code after pselect. If there is a problem it's likely also in pselect.
For architectures which use socketcall I maintained this interface instead of
adding a system call. The symmetry shouldn't be broken.
The following test must be adjusted for architectures other than x86 and
x86-64 and in case the syscall numbers changed.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#include <errno.h>
#include <fcntl.h>
#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include <unistd.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <sys/syscall.h>
#ifndef __NR_paccept
# ifdef __x86_64__
# define __NR_paccept 288
# elif defined __i386__
# define SYS_PACCEPT 18
# define USE_SOCKETCALL 1
# else
# error "need __NR_paccept"
# endif
#endif
#ifdef USE_SOCKETCALL
# define paccept(fd, addr, addrlen, mask, flags) \
({ long args[6] = { \
(long) fd, (long) addr, (long) addrlen, (long) mask, 8, (long) flags }; \
syscall (__NR_socketcall, SYS_PACCEPT, args); })
#else
# define paccept(fd, addr, addrlen, mask, flags) \
syscall (__NR_paccept, fd, addr, addrlen, mask, 8, flags)
#endif
#define PORT 57392
#define SOCK_CLOEXEC O_CLOEXEC
static pthread_barrier_t b;
static void *
tf (void *arg)
{
pthread_barrier_wait (&b);
int s = socket (AF_INET, SOCK_STREAM, 0);
struct sockaddr_in sin;
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = htonl (INADDR_LOOPBACK);
sin.sin_port = htons (PORT);
connect (s, (const struct sockaddr *) &sin, sizeof (sin));
close (s);
pthread_barrier_wait (&b);
s = socket (AF_INET, SOCK_STREAM, 0);
sin.sin_port = htons (PORT);
connect (s, (const struct sockaddr *) &sin, sizeof (sin));
close (s);
pthread_barrier_wait (&b);
pthread_barrier_wait (&b);
sleep (2);
pthread_kill ((pthread_t) arg, SIGUSR1);
return NULL;
}
static void
handler (int s)
{
}
int
main (void)
{
pthread_barrier_init (&b, NULL, 2);
struct sockaddr_in sin;
pthread_t th;
if (pthread_create (&th, NULL, tf, (void *) pthread_self ()) != 0)
{
puts ("pthread_create failed");
return 1;
}
int s = socket (AF_INET, SOCK_STREAM, 0);
int reuse = 1;
setsockopt (s, SOL_SOCKET, SO_REUSEADDR, &reuse, sizeof (reuse));
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = htonl (INADDR_LOOPBACK);
sin.sin_port = htons (PORT);
bind (s, (struct sockaddr *) &sin, sizeof (sin));
listen (s, SOMAXCONN);
pthread_barrier_wait (&b);
int s2 = paccept (s, NULL, 0, NULL, 0);
if (s2 < 0)
{
puts ("paccept(0) failed");
return 1;
}
int coe = fcntl (s2, F_GETFD);
if (coe & FD_CLOEXEC)
{
puts ("paccept(0) set close-on-exec-flag");
return 1;
}
close (s2);
pthread_barrier_wait (&b);
s2 = paccept (s, NULL, 0, NULL, SOCK_CLOEXEC);
if (s2 < 0)
{
puts ("paccept(SOCK_CLOEXEC) failed");
return 1;
}
coe = fcntl (s2, F_GETFD);
if ((coe & FD_CLOEXEC) == 0)
{
puts ("paccept(SOCK_CLOEXEC) does not set close-on-exec flag");
return 1;
}
close (s2);
pthread_barrier_wait (&b);
struct sigaction sa;
sa.sa_handler = handler;
sa.sa_flags = 0;
sigemptyset (&sa.sa_mask);
sigaction (SIGUSR1, &sa, NULL);
sigset_t ss;
pthread_sigmask (SIG_SETMASK, NULL, &ss);
sigaddset (&ss, SIGUSR1);
pthread_sigmask (SIG_SETMASK, &ss, NULL);
sigdelset (&ss, SIGUSR1);
alarm (4);
pthread_barrier_wait (&b);
errno = 0 ;
s2 = paccept (s, NULL, 0, &ss, 0);
if (s2 != -1 || errno != EINTR)
{
puts ("paccept did not fail with EINTR");
return 1;
}
close (s);
puts ("OK");
return 0;
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[akpm@linux-foundation.org: make it compile]
[akpm@linux-foundation.org: add sys_ni stub]
Signed-off-by: Ulrich Drepper <drepper@redhat.com>
Acked-by: Davide Libenzi <davidel@xmailserver.org>
Cc: Michael Kerrisk <mtk.manpages@googlemail.com>
Cc: <linux-arch@vger.kernel.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Roland McGrath <roland@redhat.com>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use sockaddr_storage{} for generic socket address storage
and ensures proper alignment.
Use sockaddr{} for pointers to omit several casts.
Signed-off-by: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch adds support for getsockopt for MCAST_MSFILTER for
both IPv4 and IPv6. It depends on the previous setsockopt patch,
and uses the same method.
Signed-off-by: David L Stevens <dlstevens@us.ibm.com>
Signed-off-by: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
1) added missing "__user" for kgsr and kgf pointers
2) verify read for only GROUP_FILTER_SIZE(0). The group_filter
structure definition (via RFC) includes space for one source
in the source list array, but that source need not be present.
So, sizeof(group_filter) > GROUP_FILTER_SIZE(0). Fixed
the user read-check for minimum length to use the smaller size.
3) remove unneeded "&" for gf_slist addresses
Signed-off-by: David L Stevens <dlstevens@us.ibm.com>
Signed-off-by: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add support on 64-bit kernels for seting 32-bit compatible MCAST*
socket options.
Signed-off-by: David L Stevens <dlstevens@us.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The IPv4 and IPv6 hook values are identical, yet some code tries to figure
out the "correct" value by looking at the address family. Introduce NF_INET_*
values for both IPv4 and IPv6. The old values are kept in a #ifndef __KERNEL__
section for userspace compatibility.
Signed-off-by: Patrick McHardy <kaber@trash.net>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
When used function put_cmsg() to copy kernel information to user
application memory, if the memory length given by user application is
not enough, by the bad length calculate of msg.msg_controllen,
put_cmsg() function may cause the msg.msg_controllen to be a large
value, such as 0xFFFFFFF0, so the following put_cmsg() can also write
data to usr application memory even usr has no valid memory to store
this. This may cause usr application memory overflow.
int put_cmsg(struct msghdr * msg, int level, int type, int len, void *data)
{
struct cmsghdr __user *cm
= (__force struct cmsghdr __user *)msg->msg_control;
struct cmsghdr cmhdr;
int cmlen = CMSG_LEN(len);
~~~~~~~~~~~~~~~~~~~~~
int err;
if (MSG_CMSG_COMPAT & msg->msg_flags)
return put_cmsg_compat(msg, level, type, len, data);
if (cm==NULL || msg->msg_controllen < sizeof(*cm)) {
msg->msg_flags |= MSG_CTRUNC;
return 0; /* XXX: return error? check spec. */
}
if (msg->msg_controllen < cmlen) {
~~~~~~~~~~~~~~~~~~~~~~~~
msg->msg_flags |= MSG_CTRUNC;
cmlen = msg->msg_controllen;
}
cmhdr.cmsg_level = level;
cmhdr.cmsg_type = type;
cmhdr.cmsg_len = cmlen;
err = -EFAULT;
if (copy_to_user(cm, &cmhdr, sizeof cmhdr))
goto out;
if (copy_to_user(CMSG_DATA(cm), data, cmlen - sizeof(struct cmsghdr)))
goto out;
cmlen = CMSG_SPACE(len);
~~~~~~~~~~~~~~~~~~~~~~~~~~~
If MSG_CTRUNC flags is set, msg->msg_controllen is less than
CMSG_SPACE(len), "msg->msg_controllen -= cmlen" will cause unsinged int
type msg->msg_controllen to be a large value.
~~~~~~~~~~~~~~~~~~~~~~~~~~~
msg->msg_control += cmlen;
msg->msg_controllen -= cmlen;
~~~~~~~~~~~~~~~~~~~~~
err = 0;
out:
return err;
}
The same promble exists in put_cmsg_compat(). This patch can fix this
problem.
Signed-off-by: Wei Yongjun <yjwei@cn.fujitsu.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Part two in the O_CLOEXEC saga: adding support for file descriptors received
through Unix domain sockets.
The patch is once again pretty minimal, it introduces a new flag for recvmsg
and passes it just like the existing MSG_CMSG_COMPAT flag. I think this bit
is not used otherwise but the networking people will know better.
This new flag is not recognized by recvfrom and recv. These functions cannot
be used for that purpose and the asymmetry this introduces is not worse than
the already existing MSG_CMSG_COMPAT situations.
The patch must be applied on the patch which introduced O_CLOEXEC. It has to
remove static from the new get_unused_fd_flags function but since scm.c cannot
live in a module the function still hasn't to be exported.
Here's a test program to make sure the code works. It's so much longer than
the actual patch...
#include <errno.h>
#include <error.h>
#include <fcntl.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/socket.h>
#include <sys/un.h>
#ifndef O_CLOEXEC
# define O_CLOEXEC 02000000
#endif
#ifndef MSG_CMSG_CLOEXEC
# define MSG_CMSG_CLOEXEC 0x40000000
#endif
int
main (int argc, char *argv[])
{
if (argc > 1)
{
int fd = atol (argv[1]);
printf ("child: fd = %d\n", fd);
if (fcntl (fd, F_GETFD) == 0 || errno != EBADF)
{
puts ("file descriptor valid in child");
return 1;
}
return 0;
}
struct sockaddr_un sun;
strcpy (sun.sun_path, "./testsocket");
sun.sun_family = AF_UNIX;
char databuf[] = "hello";
struct iovec iov[1];
iov[0].iov_base = databuf;
iov[0].iov_len = sizeof (databuf);
union
{
struct cmsghdr hdr;
char bytes[CMSG_SPACE (sizeof (int))];
} buf;
struct msghdr msg = { .msg_iov = iov, .msg_iovlen = 1,
.msg_control = buf.bytes,
.msg_controllen = sizeof (buf) };
struct cmsghdr *cmsg = CMSG_FIRSTHDR (&msg);
cmsg->cmsg_level = SOL_SOCKET;
cmsg->cmsg_type = SCM_RIGHTS;
cmsg->cmsg_len = CMSG_LEN (sizeof (int));
msg.msg_controllen = cmsg->cmsg_len;
pid_t child = fork ();
if (child == -1)
error (1, errno, "fork");
if (child == 0)
{
int sock = socket (PF_UNIX, SOCK_STREAM, 0);
if (sock < 0)
error (1, errno, "socket");
if (bind (sock, (struct sockaddr *) &sun, sizeof (sun)) < 0)
error (1, errno, "bind");
if (listen (sock, SOMAXCONN) < 0)
error (1, errno, "listen");
int conn = accept (sock, NULL, NULL);
if (conn == -1)
error (1, errno, "accept");
*(int *) CMSG_DATA (cmsg) = sock;
if (sendmsg (conn, &msg, MSG_NOSIGNAL) < 0)
error (1, errno, "sendmsg");
return 0;
}
/* For a test suite this should be more robust like a
barrier in shared memory. */
sleep (1);
int sock = socket (PF_UNIX, SOCK_STREAM, 0);
if (sock < 0)
error (1, errno, "socket");
if (connect (sock, (struct sockaddr *) &sun, sizeof (sun)) < 0)
error (1, errno, "connect");
unlink (sun.sun_path);
*(int *) CMSG_DATA (cmsg) = -1;
if (recvmsg (sock, &msg, MSG_CMSG_CLOEXEC) < 0)
error (1, errno, "recvmsg");
int fd = *(int *) CMSG_DATA (cmsg);
if (fd == -1)
error (1, 0, "no descriptor received");
char fdname[20];
snprintf (fdname, sizeof (fdname), "%d", fd);
execl ("/proc/self/exe", argv[0], fdname, NULL);
puts ("execl failed");
return 1;
}
[akpm@linux-foundation.org: Fix fastcall inconsistency noted by Michael Buesch]
[akpm@linux-foundation.org: build fix]
Signed-off-by: Ulrich Drepper <drepper@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Michael Buesch <mb@bu3sch.de>
Cc: Michael Kerrisk <mtk-manpages@gmx.net>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that network timestamps use ktime_t infrastructure, we can add a new
SOL_SOCKET sockopt SO_TIMESTAMPNS.
This command is similar to SO_TIMESTAMP, but permits transmission of
a 'timespec struct' instead of a 'timeval struct' control message.
(nanosecond resolution instead of microsecond)
Control message is labelled SCM_TIMESTAMPNS instead of SCM_TIMESTAMP
A socket cannot mix SO_TIMESTAMP and SO_TIMESTAMPNS : the two modes are
mutually exclusive.
sock_recv_timestamp() became too big to be fully inlined so I added a
__sock_recv_timestamp() helper function.
Signed-off-by: Eric Dumazet <dada1@cosmosbay.com>
CC: linux-arch@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
Fix whitespace around keywords. Fix indentation especially of switch
statements.
Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Now network timestamps use ktime_t infrastructure, we can add a new
ioctl() SIOCGSTAMPNS command to get timestamps in 'struct timespec'.
User programs can thus access to nanosecond resolution.
Signed-off-by: Eric Dumazet <dada1@cosmosbay.com>
CC: Stephen Hemminger <shemminger@linux-foundation.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
We currently use a special structure (struct skb_timeval) and plain
'struct timeval' to store packet timestamps in sk_buffs and struct
sock.
This has some drawbacks :
- Fixed resolution of micro second.
- Waste of space on 64bit platforms where sizeof(struct timeval)=16
I suggest using ktime_t that is a nice abstraction of high resolution
time services, currently capable of nanosecond resolution.
As sizeof(ktime_t) is 8 bytes, using ktime_t in 'struct sock' permits
a 8 byte shrink of this structure on 64bit architectures. Some other
structures also benefit from this size reduction (struct ipq in
ipv4/ip_fragment.c, struct frag_queue in ipv6/reassembly.c, ...)
Once this ktime infrastructure adopted, we can more easily provide
nanosecond resolution on top of it. (ioctl SIOCGSTAMPNS and/or
SO_TIMESTAMPNS/SCM_TIMESTAMPNS)
Note : this patch includes a bug correction in
compat_sock_get_timestamp() where a "err = 0;" was missing (so this
syscall returned -ENOENT instead of 0)
Signed-off-by: Eric Dumazet <dada1@cosmosbay.com>
CC: Stephen Hemminger <shemminger@linux-foundation.org>
CC: John find <linux.kernel@free.fr>
Signed-off-by: David S. Miller <davem@davemloft.net>
After Al Viro (finally) succeeded in removing the sched.h #include in module.h
recently, it makes sense again to remove other superfluous sched.h includes.
There are quite a lot of files which include it but don't actually need
anything defined in there. Presumably these includes were once needed for
macros that used to live in sched.h, but moved to other header files in the
course of cleaning it up.
To ease the pain, this time I did not fiddle with any header files and only
removed #includes from .c-files, which tend to cause less trouble.
Compile tested against 2.6.20-rc2 and 2.6.20-rc2-mm2 (with offsets) on alpha,
arm, i386, ia64, mips, powerpc, and x86_64 with allnoconfig, defconfig,
allmodconfig, and allyesconfig as well as a few randconfigs on x86_64 and all
configs in arch/arm/configs on arm. I also checked that no new warnings were
introduced by the patch (actually, some warnings are removed that were emitted
by unnecessarily included header files).
Signed-off-by: Tim Schmielau <tim@physik3.uni-rostock.de>
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If more than one file descriptor was sent with an SCM_RIGHTS message,
and on the receiving end, after installing a nonzero (but not all)
file descritpors the process runs out of fds, then the already
installed fds will be lost (userspace will have no way of knowing
about them).
The following patch makes sure, that at least the already installed
fds are sent to userspace. It doesn't solve the issue of losing file
descriptors in case of an EFAULT on the userspace buffer.
Signed-off-by: Miklos Szeredi <miklos@szeredi.hu>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch extends current iptables compatibility layer in order to get
32bit iptables to work on 64bit kernel. Current layer is insufficient due
to alignment checks both in kernel and user space tools.
Patch is for current net-2.6.17 with addition of move of ipt_entry_{match|
target} definitions to xt_entry_{match|target}.
Signed-off-by: Dmitry Mishin <dim@openvz.org>
Acked-off-by: Kirill Korotaev <dev@openvz.org>
Signed-off-by: Patrick McHardy <kaber@trash.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Get socket timestamp handler function that does not use the
ioctl32_hash_table.
Signed-off-by: Shaun Pereira <spereira@tusc.com.au>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch extends {get|set}sockopt compatibility layer in order to
move protocol specific parts to their place and avoid huge universal
net/compat.c file in the future.
Signed-off-by: Dmitry Mishin <dim@openvz.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
When we copy 32bit ->msg_control contents to kernel, we walk the same
userland data twice without sanity checks on the second pass.
Second version of this patch: the original broke with 64-bit arches
running 32-bit-compat-mode executables doing sendmsg() syscalls with
unaligned CMSG data areas
Another thing is that we use kmalloc() to allocate and sock_kfree_s()
to free afterwards; less serious, but also needs fixing.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
Signed-off-by: Chris Wright <chrisw@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
From: Dave Johnson <djohnson+linux-kernel@sw.starentnetworks.com>
sendmsg()/recvmsg() syscalls from o32/n32 apps to a 64bit kernel will
cause a kernel memory leak if iov_len > UIO_FASTIOV for each syscall!
This is because both sys_sendmsg() and verify_compat_iovec() kmalloc a
new iovec structure. Only the one from sys_sendmsg() is free'ed.
I wrote a simple test program to confirm this after identifying the
problem:
http://davej.org/programs/testsendmsg.c
Note that the below fix will break solaris_sendmsg()/solaris_recvmsg() as
it also calls verify_compat_iovec() but expects it to malloc internally.
[ I fixed that. -DaveM ]
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!