IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Also used ovl_create_temp() in ovl_create_index() instead of calling
ovl_do_mkdir() directly, so now all callers of ovl_do_mkdir() are routed
through ovl_create_real(), which paves the way for Al's fix for non-hashed
result from vfs_mkdir().
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Al Viro suggested to simplify callers of ovl_create_real() by
returning the created dentry (or ERR_PTR) from ovl_create_real().
Suggested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Rename ovl_encode_fh() to ovl_encode_real_fh() to differentiate from the
exportfs function ovl_encode_inode_fh() and change the latter to
ovl_encode_fh() to match the exportfs method name.
Rename ovl_decode_fh() to ovl_decode_real_fh() for consistency.
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
With NFS export, some operations on decoded file handles (e.g. open,
link, setattr, xattr_set) may call copy up with a disconnected non-dir.
In this case, we will copy up lower inode to index dir without
linking it to upper dir.
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
With the NFS export feature enabled, all dirs are indexed on copy up.
Non-dir files are copied up directly to indexdir and then hardlinked
to upper dir.
Directories are copied up to indexdir, then an index entry is created
in indexdir with 'upper' xattr pointing to the copied up dir and then
the copied up dir is moved to upper dir.
Directory index is also used for consistency verification, like
detecting multiple redirected dirs to the same lower dir on lookup.
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
The helper determines which lower file needs to be indexed
on copy up and before nlink changes.
For index=on, the helper evaluates to true for lower hardlinks.
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Remove the "origin" language from the functions that handle set, get
and verify of "origin" xattr and pass the xattr name as an argument.
The same helpers are going to be used for NFS export to get, get and
verify the "upper" xattr for directory index entries.
ovl_verify_origin() is now a helper used only to verify non upper
file handle stored in "origin" xattr of upper inode.
The upper root dir file handle is still stored in "origin" xattr on
the index dir for backward compatibility. This is going to be changed
by the patch that adds directory index entries support.
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
For a merge dir that was copied up before v4.12 or that was hand crafted
offline (e.g. mkdir {upper/lower}/dir), upper dir does not contain the
'trusted.overlay.origin' xattr. In that case, stat(2) on the merge dir
returns the lower dir st_ino, but getdents(2) returns the upper dir d_ino.
After this change, on merge dir lookup, missing origin xattr on upper
dir will be fixed and 'impure' xattr will be fixed on parent of the legacy
merge dir.
Suggested-by: zhangyi (F) <yi.zhang@huawei.com>
Reviewed-by: zhangyi (F) <yi.zhang@huawei.com>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Most overlayfs c files already explicitly include ovl_entry.h
to use overlay entry struct definitions and upcoming changes
are going to require even more c files to include this header.
All overlayfs c files include overlayfs.h and overlayfs.h itself
refers to some structs defined in ovl_entry.h, so it seems more
logic to include ovl_entry.h from overlayfs.h than from c files.
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
If a non-merge dir in an overlay mount has an overlay.origin xattr, it
means it was once an upper merge dir, which may contain whiteouts and
then the lower dir was removed under it.
Do not iterate real dir directly in this case to avoid exposing whiteouts.
[SzM] Set OVL_WHITEOUT for all merge directories as well.
[amir] A directory that was just copied up does not have the OVL_WHITEOUTS
flag. We need to set it to fix merge dir iteration.
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Use the ovl_lock_rename_workdir() helper which requires
unlock_rename() only on lock success.
Fixes: ("fd210b7d67ee ovl: move copy up lock out")
Cc: <stable@vger.kernel.org> # v4.13
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
GFP_TEMPORARY was introduced by commit e12ba74d8ff3 ("Group short-lived
and reclaimable kernel allocations") along with __GFP_RECLAIMABLE. It's
primary motivation was to allow users to tell that an allocation is
short lived and so the allocator can try to place such allocations close
together and prevent long term fragmentation. As much as this sounds
like a reasonable semantic it becomes much less clear when to use the
highlevel GFP_TEMPORARY allocation flag. How long is temporary? Can the
context holding that memory sleep? Can it take locks? It seems there is
no good answer for those questions.
The current implementation of GFP_TEMPORARY is basically GFP_KERNEL |
__GFP_RECLAIMABLE which in itself is tricky because basically none of
the existing caller provide a way to reclaim the allocated memory. So
this is rather misleading and hard to evaluate for any benefits.
I have checked some random users and none of them has added the flag
with a specific justification. I suspect most of them just copied from
other existing users and others just thought it might be a good idea to
use without any measuring. This suggests that GFP_TEMPORARY just
motivates for cargo cult usage without any reasoning.
I believe that our gfp flags are quite complex already and especially
those with highlevel semantic should be clearly defined to prevent from
confusion and abuse. Therefore I propose dropping GFP_TEMPORARY and
replace all existing users to simply use GFP_KERNEL. Please note that
SLAB users with shrinkers will still get __GFP_RECLAIMABLE heuristic and
so they will be placed properly for memory fragmentation prevention.
I can see reasons we might want some gfp flag to reflect shorterm
allocations but I propose starting from a clear semantic definition and
only then add users with proper justification.
This was been brought up before LSF this year by Matthew [1] and it
turned out that GFP_TEMPORARY really doesn't have a clear semantic. It
seems to be a heuristic without any measured advantage for most (if not
all) its current users. The follow up discussion has revealed that
opinions on what might be temporary allocation differ a lot between
developers. So rather than trying to tweak existing users into a
semantic which they haven't expected I propose to simply remove the flag
and start from scratch if we really need a semantic for short term
allocations.
[1] http://lkml.kernel.org/r/20170118054945.GD18349@bombadil.infradead.org
[akpm@linux-foundation.org: fix typo]
[akpm@linux-foundation.org: coding-style fixes]
[sfr@canb.auug.org.au: drm/i915: fix up]
Link: http://lkml.kernel.org/r/20170816144703.378d4f4d@canb.auug.org.au
Link: http://lkml.kernel.org/r/20170728091904.14627-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Neil Brown <neilb@suse.de>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With inodes index enabled, an overlay inode nlink counts the union of upper
and non-covered lower hardlinks. During the lifetime of a non-pure upper
inode, the following nlink modifying operations can happen:
1. Lower hardlink copy up
2. Upper hardlink created, unlinked or renamed over
3. Lower hardlink whiteout or renamed over
For the first, copy up case, the union nlink does not change, whether the
operation succeeds or fails, but the upper inode nlink may change.
Therefore, before copy up, we store the union nlink value relative to the
lower inode nlink in the index inode xattr trusted.overlay.nlink.
For the second, upper hardlink case, the union nlink should be incremented
or decremented IFF the operation succeeds, aligned with nlink change of the
upper inode. Therefore, before link/unlink/rename, we store the union nlink
value relative to the upper inode nlink in the index inode.
For the last, lower cover up case, we simplify things by preceding the
whiteout or cover up with copy up. This makes sure that there is an index
upper inode where the nlink xattr can be stored before the copied up upper
entry is unlink.
Return the overlay inode nlinks for indexed upper inodes on stat(2).
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Implement a copy up method for non-dir objects using index dir to
prevent breaking lower hardlinks on copy up.
This method requires that the inodes index dir feature was enabled and
that all underlying fs support file handle encoding/decoding.
On the first lower hardlink copy up, upper file is created in index dir,
named after the hex representation of the lower origin inode file handle.
On the second lower hardlink copy up, upper file is found in index dir,
by the same lower handle key.
On either case, the upper indexed inode is then linked to the copy up
upper path.
The index entry remains linked for future lower hardlink copy up and for
lower to upper inode map, that is needed for exporting overlayfs to NFS.
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Move ovl_copy_up_start()/ovl_copy_up_end() out so that it's used for both
tempfile and workdir copy ups.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
For rename, we need to ensure that an upper alias exists for hard links
before attempting the operation. Introduce a flag in ovl_entry to track
the state of the upper alias.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Factor out helper for copying lower inode data and metadata to temp
upper inode, that is common to copy up using O_TMPFILE and workdir.
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
On copy up of regular file using an O_TMPFILE, lock upper dir only
before linking the tempfile in place.
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
An index dir contains persistent hardlinks to files in upper dir.
Therefore, we must never mount an existing index dir with a differnt
upper dir.
Store the upper root dir file handle in index dir inode when index
dir is created and verify the file handle before using an existing
index dir on mount.
Add an 'is_upper' flag to the overlay file handle encoding and set it
when encoding the upper root file handle. This is not critical for index
dir verification, but it is good practice towards a standard overlayfs
file handle format for NFS export.
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
When inodes index feature is enabled, verify that the file handle stored
in upper root dir matches the lower root dir or fail to mount.
If upper root dir has no stored file handle, encode and store the lower
root dir file handle in overlay.origin xattr.
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Create the index dir on mount. The index dir will contain hardlinks to
upper inodes, named after the hex representation of their origin lower
inodes.
The index dir is going to be used to prevent breaking lower hardlinks
on copy up and to implement overlayfs NFS export.
Because the feature is not fully backward compat, enabling the feature
is opt-in by config/module/mount option.
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
- introduce the new uuid_t/guid_t types that are going to replace
the somewhat confusing uuid_be/uuid_le types and make the terminology
fit the various specs, as well as the userspace libuuid library.
(me, based on a previous version from Amir)
- consolidated generic uuid/guid helper functions lifted from XFS
and libnvdimm (Amir and me)
- conversions to the new types and helpers (Amir, Andy and me)
-----BEGIN PGP SIGNATURE-----
iQI/BAABCAApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAllZfmILHGhjaEBsc3Qu
ZGUACgkQD55TZVIEUYMvyg/9EvWHOOsSdeDykCK3KdH2uIqnxwpl+m7ljccaGJIc
MmaH0KnsP9p/Cuw5hESh2tYlmCYN7pmYziNXpf/LRS65/HpEYbs4oMqo8UQsN0UM
2IXHfXY0HnCoG5OixH8RNbFTkxuGphsTY8meaiDr6aAmqChDQI2yGgQLo3WM2/Qe
R9N1KoBWH/bqY6dHv+urlFwtsREm2fBH+8ovVma3TO73uZCzJGLJBWy3anmZN+08
uYfdbLSyRN0T8rqemVdzsZ2SrpHYkIsYGUZV43F581vp8e/3OKMoMxpWRRd9fEsa
MXmoaHcLJoBsyVSFR9lcx3axKrhAgBPZljASbbA0h49JneWXrzghnKBQZG2SnEdA
ktHQ2sE4Yb5TZSvvWEKMQa3kXhEfIbTwgvbHpcDr5BUZX8WvEw2Zq8e7+Mi4+KJw
QkvFC1S96tRYO2bxdJX638uSesGUhSidb+hJ/edaOCB/GK+sLhUdDTJgwDpUGmyA
xVXTF51ramRS2vhlbzN79x9g33igIoNnG4/PV0FPvpCTSqxkHmPc5mK6Vals1lqt
cW6XfUjSQECq5nmTBtYDTbA/T+8HhBgSQnrrvmferjJzZUFGr/7MXl+Evz2x4CjX
OBQoAMu241w6Vp3zoXqxzv+muZ/NLar52M/zbi9TUjE0GvvRNkHvgCC4NmpIlWYJ
Sxg=
=J/4P
-----END PGP SIGNATURE-----
Merge tag 'uuid-for-4.13' of git://git.infradead.org/users/hch/uuid into overlayfs-next
UUID/GUID updates:
- introduce the new uuid_t/guid_t types that are going to replace
the somewhat confusing uuid_be/uuid_le types and make the terminology
fit the various specs, as well as the userspace libuuid library.
(me, based on a previous version from Amir)
- consolidated generic uuid/guid helper functions lifted from XFS
and libnvdimm (Amir and me)
- conversions to the new types and helpers (Amir, Andy and me)
When copying up a file that has multiple hard links we need to break any
association with the origin file. This makes copy-up be essentially an
atomic replace.
The new file has nothing to do with the old one (except having the same
data and metadata initially), so don't set the overlay.origin attribute.
We can relax this in the future when we are able to index upper object by
origin.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Fixes: 3a1e819b4e80 ("ovl: store file handle of lower inode on copy up")
Nothing prevents mischief on upper layer while we are busy copying up the
data.
Move the lookup right before the looked up dentry is actually used.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Fixes: 01ad3eb8a073 ("ovl: concurrent copy up of regular files")
Cc: <stable@vger.kernel.org> # v4.11
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
For some file systems we still memcpy into it, but in various places this
already allows us to use the proper uuid helpers. More to come..
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Acked-by: Mimi Zohar <zohar@linux.vnet.ibm.com> (Changes to IMA/EVM)
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
An upper dir is marked "impure" to let ovl_iterate() know that this
directory may contain non pure upper entries whose d_ino may need to be
read from the origin inode.
We already mark a non-merge dir "impure" when moving a non-pure child
entry inside it, to let ovl_iterate() know not to iterate the non-merge
dir directly.
Mark also a merge dir "impure" when moving a non-pure child entry inside
it and when copying up a child entry inside it.
This can be used to optimize ovl_iterate() to perform a "pure merge" of
upper and lower directories, merging the content of the directories,
without having to read d_ino from origin inodes.
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Sometimes it is interesting to know if an upper file is pure upper or a
copy up target, and if it is a copy up target, it may be interesting to
find the copy up origin.
This will be used to preserve lower inode numbers across copy up.
Store the lower inode file handle in upper inode extended attribute
overlay.origin on copy up to use it later for these cases. Store the lower
filesystem uuid along side the file handle, so we can validate that we are
looking for the origin file in the original fs.
If lower fs does not support NFS export ops store a zero sized xattr so we
can always use the overlay.origin xattr to distinguish between a copy up
and a pure upper inode.
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Pull overlayfs updates from Miklos Szeredi:
"Because copy up can take a long time, serialized copy ups could be a
big performance bottleneck. This update allows concurrent copy up of
regular files eliminating this potential problem.
There are also minor fixes"
* 'overlayfs-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs:
ovl: drop CAP_SYS_RESOURCE from saved mounter's credentials
ovl: properly implement sync_filesystem()
ovl: concurrent copy up of regular files
ovl: introduce copy up waitqueue
ovl: copy up regular file using O_TMPFILE
ovl: rearrange code in ovl_copy_up_locked()
ovl: check if upperdir fs supports O_TMPFILE
Pull vfs 'statx()' update from Al Viro.
This adds the new extended stat() interface that internally subsumes our
previous stat interfaces, and allows user mode to specify in more detail
what kind of information it wants.
It also allows for some explicit synchronization information to be
passed to the filesystem, which can be relevant for network filesystems:
is the cached value ok, or do you need open/close consistency, or what?
From David Howells.
Andreas Dilger points out that the first version of the extended statx
interface was posted June 29, 2010:
https://www.spinics.net/lists/linux-fsdevel/msg33831.html
* 'rebased-statx' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
statx: Add a system call to make enhanced file info available
Add a system call to make extended file information available, including
file creation and some attribute flags where available through the
underlying filesystem.
The getattr inode operation is altered to take two additional arguments: a
u32 request_mask and an unsigned int flags that indicate the
synchronisation mode. This change is propagated to the vfs_getattr*()
function.
Functions like vfs_stat() are now inline wrappers around new functions
vfs_statx() and vfs_statx_fd() to reduce stack usage.
========
OVERVIEW
========
The idea was initially proposed as a set of xattrs that could be retrieved
with getxattr(), but the general preference proved to be for a new syscall
with an extended stat structure.
A number of requests were gathered for features to be included. The
following have been included:
(1) Make the fields a consistent size on all arches and make them large.
(2) Spare space, request flags and information flags are provided for
future expansion.
(3) Better support for the y2038 problem [Arnd Bergmann] (tv_sec is an
__s64).
(4) Creation time: The SMB protocol carries the creation time, which could
be exported by Samba, which will in turn help CIFS make use of
FS-Cache as that can be used for coherency data (stx_btime).
This is also specified in NFSv4 as a recommended attribute and could
be exported by NFSD [Steve French].
(5) Lightweight stat: Ask for just those details of interest, and allow a
netfs (such as NFS) to approximate anything not of interest, possibly
without going to the server [Trond Myklebust, Ulrich Drepper, Andreas
Dilger] (AT_STATX_DONT_SYNC).
(6) Heavyweight stat: Force a netfs to go to the server, even if it thinks
its cached attributes are up to date [Trond Myklebust]
(AT_STATX_FORCE_SYNC).
And the following have been left out for future extension:
(7) Data version number: Could be used by userspace NFS servers [Aneesh
Kumar].
Can also be used to modify fill_post_wcc() in NFSD which retrieves
i_version directly, but has just called vfs_getattr(). It could get
it from the kstat struct if it used vfs_xgetattr() instead.
(There's disagreement on the exact semantics of a single field, since
not all filesystems do this the same way).
(8) BSD stat compatibility: Including more fields from the BSD stat such
as creation time (st_btime) and inode generation number (st_gen)
[Jeremy Allison, Bernd Schubert].
(9) Inode generation number: Useful for FUSE and userspace NFS servers
[Bernd Schubert].
(This was asked for but later deemed unnecessary with the
open-by-handle capability available and caused disagreement as to
whether it's a security hole or not).
(10) Extra coherency data may be useful in making backups [Andreas Dilger].
(No particular data were offered, but things like last backup
timestamp, the data version number and the DOS archive bit would come
into this category).
(11) Allow the filesystem to indicate what it can/cannot provide: A
filesystem can now say it doesn't support a standard stat feature if
that isn't available, so if, for instance, inode numbers or UIDs don't
exist or are fabricated locally...
(This requires a separate system call - I have an fsinfo() call idea
for this).
(12) Store a 16-byte volume ID in the superblock that can be returned in
struct xstat [Steve French].
(Deferred to fsinfo).
(13) Include granularity fields in the time data to indicate the
granularity of each of the times (NFSv4 time_delta) [Steve French].
(Deferred to fsinfo).
(14) FS_IOC_GETFLAGS value. These could be translated to BSD's st_flags.
Note that the Linux IOC flags are a mess and filesystems such as Ext4
define flags that aren't in linux/fs.h, so translation in the kernel
may be a necessity (or, possibly, we provide the filesystem type too).
(Some attributes are made available in stx_attributes, but the general
feeling was that the IOC flags were to ext[234]-specific and shouldn't
be exposed through statx this way).
(15) Mask of features available on file (eg: ACLs, seclabel) [Brad Boyer,
Michael Kerrisk].
(Deferred, probably to fsinfo. Finding out if there's an ACL or
seclabal might require extra filesystem operations).
(16) Femtosecond-resolution timestamps [Dave Chinner].
(A __reserved field has been left in the statx_timestamp struct for
this - if there proves to be a need).
(17) A set multiple attributes syscall to go with this.
===============
NEW SYSTEM CALL
===============
The new system call is:
int ret = statx(int dfd,
const char *filename,
unsigned int flags,
unsigned int mask,
struct statx *buffer);
The dfd, filename and flags parameters indicate the file to query, in a
similar way to fstatat(). There is no equivalent of lstat() as that can be
emulated with statx() by passing AT_SYMLINK_NOFOLLOW in flags. There is
also no equivalent of fstat() as that can be emulated by passing a NULL
filename to statx() with the fd of interest in dfd.
Whether or not statx() synchronises the attributes with the backing store
can be controlled by OR'ing a value into the flags argument (this typically
only affects network filesystems):
(1) AT_STATX_SYNC_AS_STAT tells statx() to behave as stat() does in this
respect.
(2) AT_STATX_FORCE_SYNC will require a network filesystem to synchronise
its attributes with the server - which might require data writeback to
occur to get the timestamps correct.
(3) AT_STATX_DONT_SYNC will suppress synchronisation with the server in a
network filesystem. The resulting values should be considered
approximate.
mask is a bitmask indicating the fields in struct statx that are of
interest to the caller. The user should set this to STATX_BASIC_STATS to
get the basic set returned by stat(). It should be noted that asking for
more information may entail extra I/O operations.
buffer points to the destination for the data. This must be 256 bytes in
size.
======================
MAIN ATTRIBUTES RECORD
======================
The following structures are defined in which to return the main attribute
set:
struct statx_timestamp {
__s64 tv_sec;
__s32 tv_nsec;
__s32 __reserved;
};
struct statx {
__u32 stx_mask;
__u32 stx_blksize;
__u64 stx_attributes;
__u32 stx_nlink;
__u32 stx_uid;
__u32 stx_gid;
__u16 stx_mode;
__u16 __spare0[1];
__u64 stx_ino;
__u64 stx_size;
__u64 stx_blocks;
__u64 __spare1[1];
struct statx_timestamp stx_atime;
struct statx_timestamp stx_btime;
struct statx_timestamp stx_ctime;
struct statx_timestamp stx_mtime;
__u32 stx_rdev_major;
__u32 stx_rdev_minor;
__u32 stx_dev_major;
__u32 stx_dev_minor;
__u64 __spare2[14];
};
The defined bits in request_mask and stx_mask are:
STATX_TYPE Want/got stx_mode & S_IFMT
STATX_MODE Want/got stx_mode & ~S_IFMT
STATX_NLINK Want/got stx_nlink
STATX_UID Want/got stx_uid
STATX_GID Want/got stx_gid
STATX_ATIME Want/got stx_atime{,_ns}
STATX_MTIME Want/got stx_mtime{,_ns}
STATX_CTIME Want/got stx_ctime{,_ns}
STATX_INO Want/got stx_ino
STATX_SIZE Want/got stx_size
STATX_BLOCKS Want/got stx_blocks
STATX_BASIC_STATS [The stuff in the normal stat struct]
STATX_BTIME Want/got stx_btime{,_ns}
STATX_ALL [All currently available stuff]
stx_btime is the file creation time, stx_mask is a bitmask indicating the
data provided and __spares*[] are where as-yet undefined fields can be
placed.
Time fields are structures with separate seconds and nanoseconds fields
plus a reserved field in case we want to add even finer resolution. Note
that times will be negative if before 1970; in such a case, the nanosecond
fields will also be negative if not zero.
The bits defined in the stx_attributes field convey information about a
file, how it is accessed, where it is and what it does. The following
attributes map to FS_*_FL flags and are the same numerical value:
STATX_ATTR_COMPRESSED File is compressed by the fs
STATX_ATTR_IMMUTABLE File is marked immutable
STATX_ATTR_APPEND File is append-only
STATX_ATTR_NODUMP File is not to be dumped
STATX_ATTR_ENCRYPTED File requires key to decrypt in fs
Within the kernel, the supported flags are listed by:
KSTAT_ATTR_FS_IOC_FLAGS
[Are any other IOC flags of sufficient general interest to be exposed
through this interface?]
New flags include:
STATX_ATTR_AUTOMOUNT Object is an automount trigger
These are for the use of GUI tools that might want to mark files specially,
depending on what they are.
Fields in struct statx come in a number of classes:
(0) stx_dev_*, stx_blksize.
These are local system information and are always available.
(1) stx_mode, stx_nlinks, stx_uid, stx_gid, stx_[amc]time, stx_ino,
stx_size, stx_blocks.
These will be returned whether the caller asks for them or not. The
corresponding bits in stx_mask will be set to indicate whether they
actually have valid values.
If the caller didn't ask for them, then they may be approximated. For
example, NFS won't waste any time updating them from the server,
unless as a byproduct of updating something requested.
If the values don't actually exist for the underlying object (such as
UID or GID on a DOS file), then the bit won't be set in the stx_mask,
even if the caller asked for the value. In such a case, the returned
value will be a fabrication.
Note that there are instances where the type might not be valid, for
instance Windows reparse points.
(2) stx_rdev_*.
This will be set only if stx_mode indicates we're looking at a
blockdev or a chardev, otherwise will be 0.
(3) stx_btime.
Similar to (1), except this will be set to 0 if it doesn't exist.
=======
TESTING
=======
The following test program can be used to test the statx system call:
samples/statx/test-statx.c
Just compile and run, passing it paths to the files you want to examine.
The file is built automatically if CONFIG_SAMPLES is enabled.
Here's some example output. Firstly, an NFS directory that crosses to
another FSID. Note that the AUTOMOUNT attribute is set because transiting
this directory will cause d_automount to be invoked by the VFS.
[root@andromeda ~]# /tmp/test-statx -A /warthog/data
statx(/warthog/data) = 0
results=7ff
Size: 4096 Blocks: 8 IO Block: 1048576 directory
Device: 00:26 Inode: 1703937 Links: 125
Access: (3777/drwxrwxrwx) Uid: 0 Gid: 4041
Access: 2016-11-24 09:02:12.219699527+0000
Modify: 2016-11-17 10:44:36.225653653+0000
Change: 2016-11-17 10:44:36.225653653+0000
Attributes: 0000000000001000 (-------- -------- -------- -------- -------- -------- ---m---- --------)
Secondly, the result of automounting on that directory.
[root@andromeda ~]# /tmp/test-statx /warthog/data
statx(/warthog/data) = 0
results=7ff
Size: 4096 Blocks: 8 IO Block: 1048576 directory
Device: 00:27 Inode: 2 Links: 125
Access: (3777/drwxrwxrwx) Uid: 0 Gid: 4041
Access: 2016-11-24 09:02:12.219699527+0000
Modify: 2016-11-17 10:44:36.225653653+0000
Change: 2016-11-17 10:44:36.225653653+0000
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Fix up affected files that include this signal functionality via sched.h.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add #include <linux/cred.h> dependencies to all .c files rely on sched.h
doing that for them.
Note that even if the count where we need to add extra headers seems high,
it's still a net win, because <linux/sched.h> is included in over
2,200 files ...
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that copy up of regular file is done using O_TMPFILE,
we don't need to hold rename_lock throughout copy up.
Use the copy up waitqueue to synchronize concurrent copy up
of the same file. Different regular files can be copied up
concurrently.
The upper dir inode_lock is taken instead of rename_lock,
because it is needed for lookup and later for linking the
temp file, but it is released while copying up data.
Suggested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
In preparation for concurrent copy up, implement copy up
of regular file as O_TMPFILE that is linked to upperdir
instead of a file in workdir that is moved to upperdir.
Suggested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
As preparation to implementing copy up with O_TMPFILE,
name the variable for dentry before final rename 'temp' and
assign it to 'newdentry' only after rename.
Also lookup upper dentry before looking up temp dentry and
move ovl_set_timestamps() into ovl_copy_up_locked(), because
that is going to be more convenient for upcoming change.
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Pull overlayfs updates from Miklos Szeredi:
"This update contains:
- try to clone on copy-up
- allow renaming a directory
- split source into managable chunks
- misc cleanups and fixes
It does not contain the read-only fd data inconsistency fix, which Al
didn't like. I'll leave that to the next year..."
* 'overlayfs-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs: (36 commits)
ovl: fix reStructuredText syntax errors in documentation
ovl: fix return value of ovl_fill_super
ovl: clean up kstat usage
ovl: fold ovl_copy_up_truncate() into ovl_copy_up()
ovl: create directories inside merged parent opaque
ovl: opaque cleanup
ovl: show redirect_dir mount option
ovl: allow setting max size of redirect
ovl: allow redirect_dir to default to "on"
ovl: check for emptiness of redirect dir
ovl: redirect on rename-dir
ovl: lookup redirects
ovl: consolidate lookup for underlying layers
ovl: fix nested overlayfs mount
ovl: check namelen
ovl: split super.c
ovl: use d_is_dir()
ovl: simplify lookup
ovl: check lower existence of rename target
ovl: rename: simplify handling of lower/merged directory
...
FWIW, there's a bit of abuse of struct kstat in overlayfs object
creation paths - for one thing, it ends up with a very small subset
of struct kstat (mode + rdev), for another it also needs link in
case of symlinks and ends up passing it separately.
IMO it would be better to introduce a separate object for that.
In principle, we might even lift that thing into general API and switch
->mkdir()/->mknod()/->symlink() to identical calling conventions. Hell
knows, perhaps ->create() as well...
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>