IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Select CONFIG_HAVE_LD_DEAD_CODE_DATA_ELIMINATION for RISC-V, allowing
the user to enable dead code elimination. In order for this to work,
ensure that we keep the alternative table by annotating them with KEEP.
This boots well on qemu with both rv32_defconfig & rv64 defconfig, but
it only shrinks their builds by ~1%, a smaller config is thereforce
customized to test this feature:
| rv32 | rv64
--------|------------------------|---------------------
No DCE | 4460684 | 4893488
DCE | 3986716 | 4376400
Shrink | 473968 (~10.6%) | 517088 (~10.5%)
The config used above only reserves necessary options to boot on qemu
with serial console, more like the size-critical embedded scenes:
- rv64 config: https://pastebin.com/crz82T0s
- rv32 config: rv64 config + 32-bit.config
Here is Jisheng's original commit-msg:
When trying to run linux with various opensource riscv core on
resource limited FPGA platforms, for example, those FPGAs with less
than 16MB SDRAM, I want to save mem as much as possible. One of the
major technologies is kernel size optimizations, I found that riscv
does not currently support HAVE_LD_DEAD_CODE_DATA_ELIMINATION, which
passes -fdata-sections, -ffunction-sections to CFLAGS and passes the
--gc-sections flag to the linker.
This not only benefits my case on FPGA but also benefits defconfigs.
Here are some notable improvements from enabling this with defconfigs:
nommu_k210_defconfig:
text data bss dec hex
1112009 410288 59837 1582134 182436 before
962838 376656 51285 1390779 1538bb after
rv32_defconfig:
text data bss dec hex
8804455 2816544 290577 11911576 b5c198 before
8692295 2779872 288977 11761144 b375f8 after
defconfig:
text data bss dec hex
9438267 3391332 485333 13314932 cb2b74 before
9285914 3350052 483349 13119315 c82f53 after
Signed-off-by: Zhangjin Wu <falcon@tinylab.org>
Co-developed-by: Jisheng Zhang <jszhang@kernel.org>
Signed-off-by: Jisheng Zhang <jszhang@kernel.org>
Reviewed-by: Guo Ren <guoren@kernel.org>
Tested-by: Bin Meng <bmeng@tinylab.org>
Reviewed-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Tested-by: Nick Desaulniers <ndesaulniers@google.com> # build
Link: https://lore.kernel.org/r/20230523165502.2592-5-jszhang@kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
kernel/pi gives rise to a lot of new sections that end up orphans: the
first attempt to fix that tried to enumerate them all in the linker
script, but kernel test robot with a random config keeps finding more of
them.
So prefix all those sections with .init.pi instead of only .init in
order to be able to easily catch them all in the linker script.
Reported-by: kernel test robot <lkp@intel.com>
Link: https://lore.kernel.org/oe-kbuild-all/202304301606.Cgp113Ha-lkp@intel.com/
Fixes: 26e7aacb83df ("riscv: Allow to downgrade paging mode from the command line")
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/20230504120759.18730-1-alexghiti@rivosinc.com
Cc: stable@vger.kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
The recent introduction of relocatable kernels prepared the move of
.rela.dyn to the init section, but actually forgot to do so, so do it
here.
Before this patch: "Freeing unused kernel image (initmem) memory: 2592K"
After this patch: "Freeing unused kernel image (initmem) memory: 6288K"
The difference corresponds to the size of the .rela.dyn section:
"[42] .rela.dyn RELA ffffffff8197e798 0127f798
000000000039c660 0000000000000018 A 47 0 8"
Fixes: 559d1e45a16d ("riscv: Use --emit-relocs in order to move .rela.dyn in init")
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/20230428120932.22735-1-alexghiti@rivosinc.com
Cc: stable@vger.kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Add 2 early command line parameters that allow to downgrade satp mode
(using the same naming as x86):
- "no5lvl": use a 4-level page table (down from sv57 to sv48)
- "no4lvl": use a 3-level page table (down from sv57/sv48 to sv39)
Note that going through the device tree to get the kernel command line
works with ACPI too since the efi stub creates a device tree anyway with
the command line.
In KASAN kernels, we can't use the libfdt that early in the boot process
since we are not ready to execute instrumented functions. So instead of
using the "generic" libfdt, we compile our own versions of those functions
that are not instrumented and that are prefixed so that they do not
conflict with the generic ones. We also need the non-instrumented versions
of the string functions and the prefixed versions of memcpy/memmove.
This is largely inspired by commit aacd149b6238 ("arm64: head: avoid
relocating the kernel twice for KASLR") from which I removed compilation
flags that were not relevant to RISC-V at the moment (LTO, SCS). Also
note that we have to link with -z norelro to avoid ld.lld to throw a
warning with the new .got sections, like in commit 311bea3cb9ee ("arm64:
link with -z norelro for LLD or aarch64-elf").
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Tested-by: Björn Töpel <bjorn@rivosinc.com>
Reviewed-by: Björn Töpel <bjorn@rivosinc.com>
Link: https://lore.kernel.org/r/20230424092313.178699-2-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
This config allows to compile 64b kernel as PIE and to relocate it at
any virtual address at runtime: this paves the way to KASLR.
Runtime relocation is possible since relocation metadata are embedded into
the kernel.
Note that relocating at runtime introduces an overhead even if the
kernel is loaded at the same address it was linked at and that the compiler
options are those used in arm64 which uses the same RELA relocation
format.
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/20230329045329.64565-4-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
There's a bunch of fixes/cleanups throughout the tree as usual, but we
also have a handful of new features.
* Various improvements to the extension detection and alternative
patching infrastructure.
* Zbb-optimized string routines.
* Support for cpu-capacity in the RISC-V DT bindings.
* Zicbom no longer depends on toolchain support.
* Some performance and code size improvements to ftrace.
* Support for ARCH_WANT_LD_ORPHAN_WARN.
* Oops now contain the faulting instruction.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEEKzw3R0RoQ7JKlDp6LhMZ81+7GIkFAmP49coTHHBhbG1lckBk
YWJiZWx0LmNvbQAKCRAuExnzX7sYiTFnEACuQtGJWSwzH+ORswVyItKzqHcBMU3t
rWHTFxQ7MdWgQO8nrWUtSypGY4n0DFTCe9w4H3tQFRDaTXbI+ycFjidEDt3eJCMb
n6WiGuZpdKVS81CQ0Es4dTWQ1i/28fe1851CGK/PkybXdrPPofdCJ9k3Wepxflb/
2UYxRDyjKt3KbJ2OmN2oF8Ek1rrsGhIC/Dhbdb2JsGZhYF10ZYjquaOLs31WbHMG
O+n/N/JfZRAif1MDQ71ygAm9KV0kGqe/wcRtsJGETwJ8U3I/cjn2mAGd8BRdy4iL
9GFmTmi8q27ntUbakikNz3b4aE9xVnLDvRIyOciI3l8rQjrFAsfnQbuRwlaq6BVJ
BF3e6nAjkcLj23FhbROTlfncEOzrklbNZ+uQIuvyffAUjDoePw9x7o0r+qj7FnOY
WMfNecJMeE5OGVBqHSVFEcAMlN6uYu6wqbEipEpc+8sTg+w1LM0bUVNhV86/BrnL
bh+4+7MPYtg45vy2Y8AuPUBFqR2uCekDpbxciCEGsaIzUYRas2zrt9UkWGjKs1VV
q0qeLSNNA1wBq+q6FprTceipFQIqD5KnmI2GMucF6v4YFg5AzeSOpRc6aeqcs7Z2
+ApShSOFPjjntZbcpTgkvhrPExr0Jel0xY7YSazUUqY0xOHUwGNBEh/E4rzsRLxr
qvUpFAIZT60dfQ==
=XgYl
-----END PGP SIGNATURE-----
Merge tag 'riscv-for-linus-6.3-mw1' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux
Pull RISC-V updates from Palmer Dabbelt:
"There's a bunch of fixes/cleanups throughout the tree as usual, but we
also have a handful of new features:
- Various improvements to the extension detection and alternative
patching infrastructure
- Zbb-optimized string routines
- Support for cpu-capacity in the RISC-V DT bindings
- Zicbom no longer depends on toolchain support
- Some performance and code size improvements to ftrace
- Support for ARCH_WANT_LD_ORPHAN_WARN
- Oops now contain the faulting instruction"
* tag 'riscv-for-linus-6.3-mw1' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux: (67 commits)
RISC-V: add a spin_shadow_stack declaration
riscv: mm: hugetlb: Enable ARCH_WANT_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
riscv: Add header include guards to insn.h
riscv: alternative: proceed one more instruction for auipc/jalr pair
riscv: Avoid enabling interrupts in die()
riscv, mm: Perform BPF exhandler fixup on page fault
RISC-V: take text_mutex during alternative patching
riscv: hwcap: Don't alphabetize ISA extension IDs
RISC-V: fix ordering of Zbb extension
riscv: jump_label: Fixup unaligned arch_static_branch function
RISC-V: Only provide the single-letter extensions in HWCAP
riscv: mm: fix regression due to update_mmu_cache change
scripts/decodecode: Add support for RISC-V
riscv: Add instruction dump to RISC-V splats
riscv: select ARCH_WANT_LD_ORPHAN_WARN for !XIP_KERNEL
riscv: vmlinux.lds.S: explicitly catch .init.bss sections from EFI stub
riscv: vmlinux.lds.S: explicitly catch .riscv.attributes sections
riscv: vmlinux.lds.S: explicitly catch .rela.dyn symbols
riscv: lds: define RUNTIME_DISCARD_EXIT
RISC-V: move some stray __RISCV_INSN_FUNCS definitions from kprobes
...
When enabling linker orphan section warning, I got warnings similar as
below:
ld.lld: warning:
./drivers/firmware/efi/libstub/lib.a(efi-stub-helper.stub.o):(.init.bss)
is being placed in '.init.bss'
Catch the sections so that we can enable linker orphan section warning.
Signed-off-by: Jisheng Zhang <jszhang@kernel.org>
Link: https://lore.kernel.org/r/20230119155417.2600-5-jszhang@kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
When enabling linker orphan section warning, I got warnings similar as
below:
riscv64-linux-gnu-ld: warning: orphan section `.riscv.attributes' from
`init/main.o' being placed in section `.riscv.attributes'
While I don't see any usage of .riscv.attributes sections' in kernel
now, just catch the sections so that we can enable linker orphan
section warning.
Signed-off-by: Jisheng Zhang <jszhang@kernel.org>
Link: https://lore.kernel.org/r/20230119155417.2600-4-jszhang@kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
When enabling linker orphan section warning, I got warnings similar as
below:
riscv64-linux-gnu-ld: warning: orphan section `.rela.text' from
`init/main.o' being placed in section `.rela.dyn'
Use the approach similar as ARM64 does and declare it in vmlinux.lds.S
Signed-off-by: Jisheng Zhang <jszhang@kernel.org>
Link: https://lore.kernel.org/r/20230119155417.2600-3-jszhang@kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
riscv discards .exit.* sections at run-time but doesn't define
RUNTIME_DISCARD_EXIT. However, the .exit.* sections are still allocated
and kept even if the generic DISCARDS would discard the sections due
to missing RUNTIME_DISCARD_EXIT, because the DISCARD sits at the end of
the linker script. Add the missing RUNTIME_DISCARD_EXIT define so that
it still works if we move DISCARD up or even at the beginning of the
linker script.
Signed-off-by: Jisheng Zhang <jszhang@kernel.org>
Suggested-by: Masahiro Yamada <masahiroy@kernel.org>
Reviewed-by: Conor Dooley <conor.dooley@microchip.com>
Link: https://lore.kernel.org/r/20230119155417.2600-2-jszhang@kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Idle code is very like entry code in that RCU isn't available. As
such, add a little validation.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Tony Lindgren <tony@atomide.com>
Tested-by: Ulf Hansson <ulf.hansson@linaro.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20230112195540.373461409@infradead.org
These are no longer necessary now that we have a more standard extable
mechanism.
Signed-off-by: Jisheng Zhang <jszhang@kernel.org>
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
This is a riscv port of commit d6e2cc564775 ("arm64: extable: add `type`
and `data` fields").
Signed-off-by: Jisheng Zhang <jszhang@kernel.org>
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
_ex_table section is read-only, so move it to RO_DATA.
Signed-off-by: Jisheng Zhang <jszhang@kernel.org>
Signed-off-by: Palmer Dabbelt <palmerdabbelt@google.com>
Introduce XIP (eXecute In Place) support for RISC-V platforms.
It allows code to be executed directly from non-volatile storage
directly addressable by the CPU, such as QSPI NOR flash which can
be found on many RISC-V platforms. This makes way for significant
optimization of RAM footprint. The XIP kernel is not compressed
since it has to run directly from flash, so it will occupy more
space on the non-volatile storage. The physical flash address used
to link the kernel object files and for storing it has to be known
at compile time and is represented by a Kconfig option.
XIP on RISC-V will for the time being only work on MMU-enabled
kernels.
Signed-off-by: Vitaly Wool <vitaly.wool@konsulko.com>
[Alex: Rebase on top of "Move kernel mapping outside the linear mapping" ]
Signed-off-by: Alexandre Ghiti <alex@ghiti.fr>
[Palmer: disable XIP for allyesconfig]
Signed-off-by: Palmer Dabbelt <palmerdabbelt@google.com>
This is a preparatory patch for relocatable kernel and sv48 support.
The kernel used to be linked at PAGE_OFFSET address therefore we could use
the linear mapping for the kernel mapping. But the relocated kernel base
address will be different from PAGE_OFFSET and since in the linear mapping,
two different virtual addresses cannot point to the same physical address,
the kernel mapping needs to lie outside the linear mapping so that we don't
have to copy it at the same physical offset.
The kernel mapping is moved to the last 2GB of the address space, BPF
is now always after the kernel and modules use the 2GB memory range right
before the kernel, so BPF and modules regions do not overlap. KASLR
implementation will simply have to move the kernel in the last 2GB range
and just take care of leaving enough space for BPF.
In addition, by moving the kernel to the end of the address space, both
sv39 and sv48 kernels will be exactly the same without needing to be
relocated at runtime.
Suggested-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Alexandre Ghiti <alex@ghiti.fr>
[Palmer: Squash the STRICT_RWX fix, and a !MMU fix]
Signed-off-by: Palmer Dabbelt <palmerdabbelt@google.com>
Introduce the "alternative" mechanism from ARM64 and x86 to apply the CPU
vendors' errata solution at runtime. The main purpose of this patch is
to provide a framework. Therefore, the implementation is quite basic for
now so that some scenarios could not use this schemei, such as patching
code to a module, relocating the patching code and heterogeneous CPU
topology.
Users could use the macro ALTERNATIVE to apply an errata to the existing
code flow. In the macro ALTERNATIVE, users need to specify the manufacturer
information(vendorid, archid, and impid) for this errata. Therefore, kernel
will know this errata is suitable for which CPU core. During the booting
procedure, kernel will select the errata required by the CPU core and then
patch it. It means that the kernel only applies the errata to the specified
CPU core. In this case, the vendor's errata does not affect each other at
runtime. The above patching procedure only occurs during the booting phase,
so we only take the overhead of the "alternative" mechanism once.
This "alternative" mechanism is enabled by default to ensure that all
required errata will be applied. However, users can disable this feature by
the Kconfig "CONFIG_RISCV_ERRATA_ALTERNATIVE".
Signed-off-by: Vincent Chen <vincent.chen@sifive.com>
Reviewed-by: Anup Patel <anup@brainfault.org>
Signed-off-by: Palmer Dabbelt <palmerdabbelt@google.com>
Dynamic relocation section are only required during boot. Those sections
can be freed after init. Thus, it can be moved to __init section.
Signed-off-by: Atish Patra <atish.patra@wdc.com>
Tested-by: Greentime Hu <greentime.hu@sifive.com>
Signed-off-by: Palmer Dabbelt <palmerdabbelt@google.com>
Currently, .init.text & .init.data are intermixed which makes it impossible
apply different permissions to them. .init.data shouldn't need exec
permissions while .init.text shouldn't have write permission. Moreover,
the strict permission are only enforced /init starts. This leaves the
kernel vulnerable from possible buggy built-in modules.
Keep .init.text & .data in separate sections so that different permissions
are applied to each section. Apply permissions to individual sections as
early as possible. This improves the kernel protection under
CONFIG_STRICT_KERNEL_RWX. We also need to restore the permissions for the
entire _init section after it is freed so that those pages can be used
for other purpose.
Signed-off-by: Atish Patra <atish.patra@wdc.com>
Tested-by: Greentime Hu <greentime.hu@sifive.com>
Signed-off-by: Palmer Dabbelt <palmerdabbelt@google.com>
In order to improve kernel text protection, we need separate .init.text/
.init.data/.text in separate sections. However, RISC-V linker relaxation
code is not aware of any alignment between sections. As a result, it may
relax any RISCV_CALL relocations between sections to JAL without realizing
that an inter section alignment may move the address farther. That may
lead to a relocation truncated fit error. However, linker relaxation code
is aware of the individual section alignments.
The detailed discussion on this issue can be found here.
https://github.com/riscv/riscv-gnu-toolchain/issues/738
Keep the .init.text section aligned so that linker relaxation will take
that as a hint while relaxing inter section calls.
Here are the code size changes for each section because of this change.
section change in size (in bytes)
.head.text +4
.text +40
.init.text +6530
.exit.text +84
The only significant increase in size happened for .init.text because
all intra relocations also use 2MB alignment.
Suggested-by: Jim Wilson <jimw@sifive.com>
Signed-off-by: Atish Patra <atish.patra@wdc.com>
Tested-by: Greentime Hu <greentime.hu@sifive.com>
Signed-off-by: Palmer Dabbelt <palmerdabbelt@google.com>
This contains a handful of cleanups and new features, including:
* A handful of cleanups for our page fault handling.
* Improvements to how we fill out cacheinfo.
* Support for EFI-based systems.
---
This contains a merge from the EFI tree that was necessary as some of the EFI
support landed over there. It's my first time doing something like this,
I haven't included the set_fs stuff because the base branch it depends on
hasn't been merged yet. I'll probably have another merge window PR, as
there's more in flight (most notably the fix for new binutils I just sent out),
but I figured there was no reason to delay this any longer.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEKzw3R0RoQ7JKlDp6LhMZ81+7GIkFAl+KQ6gTHHBhbG1lckBk
YWJiZWx0LmNvbQAKCRAuExnzX7sYibmwD/4qWfOW7R/kUWi08ethcaAhNEWLvqIh
2/KjGLORw+NTZ1F4pEFyQG5LRd3yWDT/UXh/k8gXINqmdclNV01Z3T+O7WuRlISs
07i26W1qRpNeJ7lDVhr9foKpeOU/AXvidgoF330nGlyO4HZkYKhK2yB3t8uGWywr
Zt/EpMJeBIRKzWiLhOgLAdYJthhZ9AlnouNnr9myHnO5Ksel+AZ/BKYvn7ZbHMns
6vFUxp6392/LERRRIfDqPsTuxPIYMHjuEsGSESLsjAIyq/shgN1knG/C+zwU5DcK
zUDBt1DEP7Tb45w7VBASSjn1M+cUolz9/c2dBhlVcdBlk1GKF+KILSTmWUBpQ8oP
ETVAuQK5HTcjy9bVcJMj0Oa3mFshVAAByOH+Wyrdo+qSLkb7y3spPvsL4dyjrKjL
+pe6C7WvavaEFoQXVWO2sTUBGYt7qDLRdrDgOGBIHylTXhTxf2wYzAF4ZmDROECT
Qfc7Ac3aIWYvWDmxE+x8OniuclfZ0DndKLKQj6FJWUTIxFZzTxsHK75d47D1ID0S
ZwAmUd0eYjjwMTO/6AM/Aqu3o8IP4GOXjJf4ijxH9+LjpUhm/ibmHDAUY69sU1WX
kdX51gQzoEuW7XMVz1HoTSvaGGKtyFDuRxs8RG/tSFaRtznRz0Sro6BpLCeG968n
k/d5WL/vZZ/NDA==
=FYs/
-----END PGP SIGNATURE-----
Merge tag 'riscv-for-linus-5.10-mw0' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux
Pull RISC-V updates from Palmer Dabbelt:
"A handful of cleanups and new features:
- A handful of cleanups for our page fault handling
- Improvements to how we fill out cacheinfo
- Support for EFI-based systems"
* tag 'riscv-for-linus-5.10-mw0' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux: (22 commits)
RISC-V: Add page table dump support for uefi
RISC-V: Add EFI runtime services
RISC-V: Add EFI stub support.
RISC-V: Add PE/COFF header for EFI stub
RISC-V: Implement late mapping page table allocation functions
RISC-V: Add early ioremap support
RISC-V: Move DT mapping outof fixmap
RISC-V: Fix duplicate included thread_info.h
riscv/mm/fault: Set FAULT_FLAG_INSTRUCTION flag in do_page_fault()
riscv/mm/fault: Fix inline placement in vmalloc_fault() declaration
riscv: Add cache information in AUX vector
riscv: Define AT_VECTOR_SIZE_ARCH for ARCH_DLINFO
riscv: Set more data to cacheinfo
riscv/mm/fault: Move access error check to function
riscv/mm/fault: Move FAULT_FLAG_WRITE handling in do_page_fault()
riscv/mm/fault: Simplify mm_fault_error()
riscv/mm/fault: Move fault error handling to mm_fault_error()
riscv/mm/fault: Simplify fault error handling
riscv/mm/fault: Move vmalloc fault handling to vmalloc_fault()
riscv/mm/fault: Move bad area handling to bad_area()
...
because the heuristics that various linkers & compilers use to handle them
(include these bits into the output image vs discarding them silently)
are both highly idiosyncratic and also version dependent.
Instead of this historically problematic mess, this tree by Kees Cook (et al)
adds build time asserts and build time warnings if there's any orphan section
in the kernel or if a section is not sized as expected.
And because we relied on so many silent assumptions in this area, fix a metric
ton of dependencies and some outright bugs related to this, before we can
finally enable the checks on the x86, ARM and ARM64 platforms.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl+Edv4RHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1hiKBAApdJEOaK7hMc3013DYNctklIxEPJL2mFJ
11YJRIh4pUJTF0TE+EHT/D+rSIuRsyuoSmOQBQ61/wVSnyG067GjjVJRqh/eYaJ1
fDhJi2FuHOjXl+CiN0KxzBjjp+V4NhF7jHT59tpQSvfZeg7FjteoxfztxaCp5ek3
S3wHB3CC4c4jE3lfjHem1E9/PwT4kwPYx1c3gAUdEqJdjkihjX9fWusfjLeqW6/d
Y5VkApi6bL9XiZUZj5l0dEIweLJJ86+PkKJqpo3spxxEak1LSn1MEix+lcJ8e1Kg
sb/bEEivDcmFlFWOJnn0QLquCR0Cx5bz1pwsL0tuf0yAd4+sXX5IMuGUysZlEdKM
BHL9h5HbevGF4BScwZwZH7lyEg7q67s5KnRu4hxy0Swfcj7y0oT/9lXqpbpZ2DqO
Hd+bRRQKIbqnTMp0hcit9LfpLp93vj0dBlaV5ocAJJlu62u9VnwGG5HQuZ5giLUr
kA1SLw63Y1wopFRxgFyER8les7eLsu0zxHeK44rRVlVnfI99OMTOgVNicmDFy3Fm
AfcnfJG0BqBEJGQz5es34uQQKKBwFPtC9NztopI62KiwOspYYZyrO1BNxdOc6DlS
mIHrmO89HMXuid5eolvLaFqUWirHoWO8TlycgZxUWVHc2txVPjAEU/axouU/dSSU
w/6GpzAa+7g=
=fXAw
-----END PGP SIGNATURE-----
Merge tag 'core-build-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull orphan section checking from Ingo Molnar:
"Orphan link sections were a long-standing source of obscure bugs,
because the heuristics that various linkers & compilers use to handle
them (include these bits into the output image vs discarding them
silently) are both highly idiosyncratic and also version dependent.
Instead of this historically problematic mess, this tree by Kees Cook
(et al) adds build time asserts and build time warnings if there's any
orphan section in the kernel or if a section is not sized as expected.
And because we relied on so many silent assumptions in this area, fix
a metric ton of dependencies and some outright bugs related to this,
before we can finally enable the checks on the x86, ARM and ARM64
platforms"
* tag 'core-build-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
x86/boot/compressed: Warn on orphan section placement
x86/build: Warn on orphan section placement
arm/boot: Warn on orphan section placement
arm/build: Warn on orphan section placement
arm64/build: Warn on orphan section placement
x86/boot/compressed: Add missing debugging sections to output
x86/boot/compressed: Remove, discard, or assert for unwanted sections
x86/boot/compressed: Reorganize zero-size section asserts
x86/build: Add asserts for unwanted sections
x86/build: Enforce an empty .got.plt section
x86/asm: Avoid generating unused kprobe sections
arm/boot: Handle all sections explicitly
arm/build: Assert for unwanted sections
arm/build: Add missing sections
arm/build: Explicitly keep .ARM.attributes sections
arm/build: Refactor linker script headers
arm64/build: Assert for unwanted sections
arm64/build: Add missing DWARF sections
arm64/build: Use common DISCARDS in linker script
arm64/build: Remove .eh_frame* sections due to unwind tables
...
6184358da000 ("riscv: Fixup static_obj() fail") attempted to elide a lockdep
failure by rearranging our kernel image to place all initdata within [_stext,
_end], thus triggering lockdep to treat these as static objects. These objects
are released and eventually reallocated, causing check_kernel_text_object() to
trigger a BUG().
This backs out the change to make [_stext, _end] all-encompassing, instead just
moving initdata. This results in initdata being outside of [__init_begin,
__init_end], which means initdata can't be freed.
Link: https://lore.kernel.org/linux-riscv/1593266228-61125-1-git-send-email-guoren@kernel.org/T/#t
Signed-off-by: Guo Ren <guoren@linux.alibaba.com>
Reported-by: Aurelien Jarno <aurelien@aurel32.net>
Tested-by: Aurelien Jarno <aurelien@aurel32.net>
[Palmer: Clean up commit text]
Signed-off-by: Palmer Dabbelt <palmerdabbelt@google.com>
Linux kernel Image can appear as an EFI application With appropriate
PE/COFF header fields in the beginning of the Image header. An EFI
application loader can directly load a Linux kernel Image and an EFI
stub residing in kernel can boot Linux kernel directly.
Add the necessary PE/COFF header.
Signed-off-by: Atish Patra <atish.patra@wdc.com>
Link: https://lore.kernel.org/r/20200421033336.9663-3-atish.patra@wdc.com
[ardb: - use C prefix for c.li to ensure the expected opcode is emitted
- align all image sections according to PE/COFF section alignment ]
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Anup Patel <anup@brainfault.org>
Signed-off-by: Palmer Dabbelt <palmerdabbelt@google.com>
The .comment section doesn't belong in STABS_DEBUG. Split it out into a
new macro named ELF_DETAILS. This will gain other non-debug sections
that need to be accounted for when linking with --orphan-handling=warn.
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: linux-arch@vger.kernel.org
Link: https://lore.kernel.org/r/20200821194310.3089815-5-keescook@chromium.org
Some systems don't provide a useful device tree to the kernel on boot.
Chasing around bootloaders for these systems is a headache, so instead
le't's just keep a device tree table in the kernel, keyed by the SOC's
unique identifier, that contains the relevant DTB.
This is only implemented for M mode right now. While we could implement
this via the SBI calls that allow access to these identifiers, we don't
have any systems that need this right now.
Signed-off-by: Palmer Dabbelt <palmerdabbelt@google.com>
Add a mechanism for early SoC initialization for platforms that need
additional hardware initialization not possible through the regular
device tree and drivers mechanism. With this, a SoC specific
initialization function can be called very early, before DTB parsing
is done by parse_dtb() in Linux RISC-V kernel setup code.
This can be very useful for early hardware initialization for No-MMU
kernels booted directly in M-mode because it is quite likely that no
other booting stage exist prior to the No-MMU kernel.
Example use of a SoC early initialization is as follows:
static void vendor_abc_early_init(const void *fdt)
{
/*
* some early init code here that can use simple matches
* against the flat device tree file.
*/
}
SOC_EARLY_INIT_DECLARE("vendor,abc", abc_early_init);
This early initialization function is executed only if the flat device
tree for the board has a 'compatible = "vendor,abc"' entry;
Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com>
Signed-off-by: Anup Patel <anup.patel@wdc.com>
Signed-off-by: Palmer Dabbelt <palmerdabbelt@google.com>
The secondary hart booting and relocation code are under .init section.
As a result, it will be freed once kernel booting is done. However,
ordered booting protocol and CPU hotplug always requires these functions
to be present to bringup harts after initial kernel boot.
Move the required functions to a different section and make sure that
they are in memory within first 2MB offset as trampoline page directory
only maps first 2MB.
Signed-off-by: Atish Patra <atish.patra@wdc.com>
Reviewed-by: Anup Patel <anup@brainfault.org>
Signed-off-by: Palmer Dabbelt <palmerdabbelt@google.com>
The kernel mapping will tried to optimize its mapping by using bigger
size. In rv64, it tries to use PMD_SIZE, and tryies to use PGDIR_SIZE in
rv32. To ensure that the start address of these sections could fit the
mapping entry size, make them align to the biggest alignment.
Define a macro SECTION_ALIGN because the HPAGE_SIZE or PMD_SIZE, etc.,
are invisible in linker script.
This patch is prepared for STRICT_KERNEL_RWX support.
Signed-off-by: Zong Li <zong.li@sifive.com>
Signed-off-by: Palmer Dabbelt <palmerdabbelt@google.com>
Move EXCEPTION_TABLE immediately after RO_DATA. Make it easy to set the
attribution of the sections which should be read-only at a time.
Add _data to specify the start of data section with write permission.
This patch is prepared for STRICT_KERNEL_RWX support.
Signed-off-by: Zong Li <zong.li@sifive.com>
Signed-off-by: Palmer Dabbelt <palmerdabbelt@google.com>
I don't know why we were doing this, as it's been there since the beginning.
After d841f729e655 ("riscv: force hart_lottery to put in .sdata section") my
guess would be that it made the kernel boot and we forgot to fix it more
cleanly.
The default .bss segment already contains the .sbss section, so we don't need
to do anything additional to ensure the symbols in .sbss continue to work.
Tested-by: Zong Li <zong.li@sifive.com>
Signed-off-by: Palmer Dabbelt <palmerdabbelt@google.com>
This patch ports the feature Kernel Address SANitizer (KASAN).
Note: The start address of shadow memory is at the beginning of kernel
space, which is 2^64 - (2^39 / 2) in SV39. The size of the kernel space is
2^38 bytes so the size of shadow memory should be 2^38 / 8. Thus, the
shadow memory would not overlap with the fixmap area.
There are currently two limitations in this port,
1. RV64 only: KASAN need large address space for extra shadow memory
region.
2. KASAN can't debug the modules since the modules are allocated in VMALLOC
area. We mapped the shadow memory, which corresponding to VMALLOC area, to
the kasan_early_shadow_page because we don't have enough physical space for
all the shadow memory corresponding to VMALLOC area.
Signed-off-by: Nick Hu <nickhu@andestech.com>
Reported-by: Greentime Hu <green.hu@gmail.com>
Signed-off-by: Palmer Dabbelt <palmerdabbelt@google.com>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation version 2 this program is distributed
in the hope that it will be useful but without any warranty without
even the implied warranty of merchantability or fitness for a
particular purpose see the gnu general public license for more
details
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 97 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190529141901.025053186@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
At least BBL relies on the flat binaries containing all the bytes in the
actual image to exist in the file. Before this revert the flat images
dropped the trailing zeros, which caused BBL to put its copy of the
device tree where Linux thought the BSS was, which wreaks all sorts of
havoc. Manifesting the bug is a bit subtle because BBL aligns
everything to 2MiB page boundaries, but with large enough kernels you're
almost certain to get bitten by the bug.
While moving the sections around isn't a great long-term fix, it will at
least avoid producing broken images.
This reverts commit 22e6a2e14cb8ebcae059488cf24e778e4058c2bf.
Signed-off-by: Palmer Dabbelt <palmer@sifive.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
The objcopy only emits loadable sections when creating flat kernel
Image. To have minimal possible size of flat kernel Image, we should
have all non-loadable sections after loadable sections.
Currently, execption table section (loadable section) is after BSS
section (non-loadable section) in the RISC-V vmlinux.lds.S. This
is not optimal for having minimal flat kernel Image size hence this
patch makes BSS section as the last section in RISC-V vmlinux.lds.S.
In addition, we make BSS section aligned to 16byte instead of PAGE
aligned which further reduces flat kernel Image size by few KBs.
The flat kernel Image size of Linux-4.20-rc4 using GCC 8.2.0 is
8819980 bytes with current RISC-V vmlinux.lds.S and it reduces to
7991740 bytes with this patch applied. In summary, this patch reduces
Linux-4.20-rc4 flat kernel Image size by 809 KB.
Signed-off-by: Anup Patel <anup@brainfault.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
Signed-off-by: Palmer Dabbelt <palmer@sifive.com>
This patch extends Linux RISC-V build system to build and install:
Image - Flat uncompressed kernel image
Image.gz - Flat and GZip compressed kernel image
Quiet a few bootloaders (such as Uboot, UEFI, etc) are capable of
booting flat and compressed kernel images. In case of Uboot, booting
Image or Image.gz is achieved using bootm command.
The flat and uncompressed kernel image (i.e. Image) is very useful
in pre-silicon developent and testing because we can create back-door
HEX files for RAM on FPGAs from Image.
Signed-off-by: Anup Patel <anup@brainfault.org>
Signed-off-by: Palmer Dabbelt <palmer@sifive.com>
This patch contains all the build infrastructure that actually enables
the RISC-V port. This includes Makefiles, linker scripts, and Kconfig
files. It also contains the only top-level change, which adds RISC-V to
the list of architectures that need a sed run to produce the ARCH
variable when building locally.
Signed-off-by: Palmer Dabbelt <palmer@dabbelt.com>