Commit Graph

2368 Commits

Author SHA1 Message Date
Vincent Guittot
bb3485c8ac sched/fair: Fix load_balance redo for !imbalance
It can happen that load_balance() finds a busiest group and then a
busiest rq but the calculated imbalance is in fact 0.

In such situation, detach_tasks() returns immediately and lets the
flag LBF_ALL_PINNED set. The busiest CPU is then wrongly assumed to
have pinned tasks and removed from the load balance mask. then, we
redo a load balance without the busiest CPU. This creates wrong load
balance situation and generates wrong task migration.

If the calculated imbalance is 0, it's useless to try to find a
busiest rq as no task will be migrated and we can return immediately.

This situation can happen with heterogeneous system or smp system when
RT tasks are decreasing the capacity of some CPUs.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: jhugo@codeaurora.org
Link: http://lkml.kernel.org/r/1536306664-29827-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-09-10 10:13:49 +02:00
Vincent Guittot
287cdaac57 sched/fair: Fix scale_rt_capacity() for SMT
Since commit:

  523e979d31 ("sched/core: Use PELT for scale_rt_capacity()")

scale_rt_capacity() returns the remaining capacity and not a scale factor
to apply on cpu_capacity_orig. arch_scale_cpu() is directly called by
scale_rt_capacity() so we must take the sched_domain argument.

Reported-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 523e979d31 ("sched/core: Use PELT for scale_rt_capacity()")
Link: http://lkml.kernel.org/r/20180904093626.GA23936@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-09-10 10:13:47 +02:00
Steve Muckle
d0cdb3ce88 sched/fair: Fix vruntime_normalized() for remote non-migration wakeup
When a task which previously ran on a given CPU is remotely queued to
wake up on that same CPU, there is a period where the task's state is
TASK_WAKING and its vruntime is not normalized. This is not accounted
for in vruntime_normalized() which will cause an error in the task's
vruntime if it is switched from the fair class during this time.

For example if it is boosted to RT priority via rt_mutex_setprio(),
rq->min_vruntime will not be subtracted from the task's vruntime but
it will be added again when the task returns to the fair class. The
task's vruntime will have been erroneously doubled and the effective
priority of the task will be reduced.

Note this will also lead to inflation of all vruntimes since the doubled
vruntime value will become the rq's min_vruntime when other tasks leave
the rq. This leads to repeated doubling of the vruntime and priority
penalty.

Fix this by recognizing a WAKING task's vruntime as normalized only if
sched_remote_wakeup is true. This indicates a migration, in which case
the vruntime would have been normalized in migrate_task_rq_fair().

Based on a similar patch from John Dias <joaodias@google.com>.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Steve Muckle <smuckle@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Redpath <Chris.Redpath@arm.com>
Cc: John Dias <joaodias@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Miguel de Dios <migueldedios@google.com>
Cc: Morten Rasmussen <Morten.Rasmussen@arm.com>
Cc: Patrick Bellasi <Patrick.Bellasi@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: kernel-team@android.com
Fixes: b5179ac70d ("sched/fair: Prepare to fix fairness problems on migration")
Link: http://lkml.kernel.org/r/20180831224217.169476-1-smuckle@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-09-10 10:13:47 +02:00
Vincent Guittot
12b04875d6 sched/pelt: Fix update_blocked_averages() for RT and DL classes
update_blocked_averages() is called to periodiccally decay the stalled load
of idle CPUs and to sync all loads before running load balance.

When cfs rq is idle, it trigs a load balance during pick_next_task_fair()
in order to potentially pull tasks and to use this newly idle CPU. This
load balance happens whereas prev task from another class has not been put
and its utilization updated yet. This may lead to wrongly account running
time as idle time for RT or DL classes.

Test that no RT or DL task is running when updating their utilization in
update_blocked_averages().

We still update RT and DL utilization instead of simply skipping them to
make sure that all metrics are synced when used during load balance.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 371bf42732 ("sched/rt: Add rt_rq utilization tracking")
Fixes: 3727e0e163 ("sched/dl: Add dl_rq utilization tracking")
Link: http://lkml.kernel.org/r/1535728975-22799-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-09-10 10:13:46 +02:00
Srikar Dronamraju
e5e96fafd9 sched/topology: Set correct NUMA topology type
With the following commit:

  051f3ca02e ("sched/topology: Introduce NUMA identity node sched domain")

the scheduler introduced a new NUMA level. However this leads to the NUMA topology
on 2 node systems to not be marked as NUMA_DIRECT anymore.

After this commit, it gets reported as NUMA_BACKPLANE, because
sched_domains_numa_level is now 2 on 2 node systems.

Fix this by allowing setting systems that have up to 2 NUMA levels as
NUMA_DIRECT.

While here remove code that assumes that level can be 0.

Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andre Wild <wild@linux.vnet.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linuxppc-dev <linuxppc-dev@lists.ozlabs.org>
Fixes: 051f3ca02e "Introduce NUMA identity node sched domain"
Link: http://lkml.kernel.org/r/1533920419-17410-1-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-09-10 10:13:45 +02:00
Jiada Wang
e73e81975f sched/debug: Fix potential deadlock when writing to sched_features
The following lockdep report can be triggered by writing to /sys/kernel/debug/sched_features:

  ======================================================
  WARNING: possible circular locking dependency detected
  4.18.0-rc6-00152-gcd3f77d74ac3-dirty #18 Not tainted
  ------------------------------------------------------
  sh/3358 is trying to acquire lock:
  000000004ad3989d (cpu_hotplug_lock.rw_sem){++++}, at: static_key_enable+0x14/0x30
  but task is already holding lock:
  00000000c1b31a88 (&sb->s_type->i_mutex_key#3){+.+.}, at: sched_feat_write+0x160/0x428
  which lock already depends on the new lock.
  the existing dependency chain (in reverse order) is:
  -> #3 (&sb->s_type->i_mutex_key#3){+.+.}:
         lock_acquire+0xb8/0x148
         down_write+0xac/0x140
         start_creating+0x5c/0x168
         debugfs_create_dir+0x18/0x220
         opp_debug_register+0x8c/0x120
         _add_opp_dev+0x104/0x1f8
         dev_pm_opp_get_opp_table+0x174/0x340
         _of_add_opp_table_v2+0x110/0x760
         dev_pm_opp_of_add_table+0x5c/0x240
         dev_pm_opp_of_cpumask_add_table+0x5c/0x100
         cpufreq_init+0x160/0x430
         cpufreq_online+0x1cc/0xe30
         cpufreq_add_dev+0x78/0x198
         subsys_interface_register+0x168/0x270
         cpufreq_register_driver+0x1c8/0x278
         dt_cpufreq_probe+0xdc/0x1b8
         platform_drv_probe+0xb4/0x168
         driver_probe_device+0x318/0x4b0
         __device_attach_driver+0xfc/0x1f0
         bus_for_each_drv+0xf8/0x180
         __device_attach+0x164/0x200
         device_initial_probe+0x10/0x18
         bus_probe_device+0x110/0x178
         device_add+0x6d8/0x908
         platform_device_add+0x138/0x3d8
         platform_device_register_full+0x1cc/0x1f8
         cpufreq_dt_platdev_init+0x174/0x1bc
         do_one_initcall+0xb8/0x310
         kernel_init_freeable+0x4b8/0x56c
         kernel_init+0x10/0x138
         ret_from_fork+0x10/0x18
  -> #2 (opp_table_lock){+.+.}:
         lock_acquire+0xb8/0x148
         __mutex_lock+0x104/0xf50
         mutex_lock_nested+0x1c/0x28
         _of_add_opp_table_v2+0xb4/0x760
         dev_pm_opp_of_add_table+0x5c/0x240
         dev_pm_opp_of_cpumask_add_table+0x5c/0x100
         cpufreq_init+0x160/0x430
         cpufreq_online+0x1cc/0xe30
         cpufreq_add_dev+0x78/0x198
         subsys_interface_register+0x168/0x270
         cpufreq_register_driver+0x1c8/0x278
         dt_cpufreq_probe+0xdc/0x1b8
         platform_drv_probe+0xb4/0x168
         driver_probe_device+0x318/0x4b0
         __device_attach_driver+0xfc/0x1f0
         bus_for_each_drv+0xf8/0x180
         __device_attach+0x164/0x200
         device_initial_probe+0x10/0x18
         bus_probe_device+0x110/0x178
         device_add+0x6d8/0x908
         platform_device_add+0x138/0x3d8
         platform_device_register_full+0x1cc/0x1f8
         cpufreq_dt_platdev_init+0x174/0x1bc
         do_one_initcall+0xb8/0x310
         kernel_init_freeable+0x4b8/0x56c
         kernel_init+0x10/0x138
         ret_from_fork+0x10/0x18
  -> #1 (subsys mutex#6){+.+.}:
         lock_acquire+0xb8/0x148
         __mutex_lock+0x104/0xf50
         mutex_lock_nested+0x1c/0x28
         subsys_interface_register+0xd8/0x270
         cpufreq_register_driver+0x1c8/0x278
         dt_cpufreq_probe+0xdc/0x1b8
         platform_drv_probe+0xb4/0x168
         driver_probe_device+0x318/0x4b0
         __device_attach_driver+0xfc/0x1f0
         bus_for_each_drv+0xf8/0x180
         __device_attach+0x164/0x200
         device_initial_probe+0x10/0x18
         bus_probe_device+0x110/0x178
         device_add+0x6d8/0x908
         platform_device_add+0x138/0x3d8
         platform_device_register_full+0x1cc/0x1f8
         cpufreq_dt_platdev_init+0x174/0x1bc
         do_one_initcall+0xb8/0x310
         kernel_init_freeable+0x4b8/0x56c
         kernel_init+0x10/0x138
         ret_from_fork+0x10/0x18
  -> #0 (cpu_hotplug_lock.rw_sem){++++}:
         __lock_acquire+0x203c/0x21d0
         lock_acquire+0xb8/0x148
         cpus_read_lock+0x58/0x1c8
         static_key_enable+0x14/0x30
         sched_feat_write+0x314/0x428
         full_proxy_write+0xa0/0x138
         __vfs_write+0xd8/0x388
         vfs_write+0xdc/0x318
         ksys_write+0xb4/0x138
         sys_write+0xc/0x18
         __sys_trace_return+0x0/0x4
  other info that might help us debug this:
  Chain exists of:
    cpu_hotplug_lock.rw_sem --> opp_table_lock --> &sb->s_type->i_mutex_key#3
   Possible unsafe locking scenario:
         CPU0                    CPU1
         ----                    ----
    lock(&sb->s_type->i_mutex_key#3);
                                 lock(opp_table_lock);
                                 lock(&sb->s_type->i_mutex_key#3);
    lock(cpu_hotplug_lock.rw_sem);
   *** DEADLOCK ***
  2 locks held by sh/3358:
   #0: 00000000a8c4b363 (sb_writers#10){.+.+}, at: vfs_write+0x238/0x318
   #1: 00000000c1b31a88 (&sb->s_type->i_mutex_key#3){+.+.}, at: sched_feat_write+0x160/0x428
  stack backtrace:
  CPU: 5 PID: 3358 Comm: sh Not tainted 4.18.0-rc6-00152-gcd3f77d74ac3-dirty #18
  Hardware name: Renesas H3ULCB Kingfisher board based on r8a7795 ES2.0+ (DT)
  Call trace:
   dump_backtrace+0x0/0x288
   show_stack+0x14/0x20
   dump_stack+0x13c/0x1ac
   print_circular_bug.isra.10+0x270/0x438
   check_prev_add.constprop.16+0x4dc/0xb98
   __lock_acquire+0x203c/0x21d0
   lock_acquire+0xb8/0x148
   cpus_read_lock+0x58/0x1c8
   static_key_enable+0x14/0x30
   sched_feat_write+0x314/0x428
   full_proxy_write+0xa0/0x138
   __vfs_write+0xd8/0x388
   vfs_write+0xdc/0x318
   ksys_write+0xb4/0x138
   sys_write+0xc/0x18
   __sys_trace_return+0x0/0x4

This is because when loading the cpufreq_dt module we first acquire
cpu_hotplug_lock.rw_sem lock, then in cpufreq_init(), we are taking
the &sb->s_type->i_mutex_key lock.

But when writing to /sys/kernel/debug/sched_features, the
cpu_hotplug_lock.rw_sem lock depends on the &sb->s_type->i_mutex_key lock.

To fix this bug, reverse the lock acquisition order when writing to
sched_features, this way cpu_hotplug_lock.rw_sem no longer depends on
&sb->s_type->i_mutex_key.

Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Jiada Wang <jiada_wang@mentor.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Eugeniu Rosca <erosca@de.adit-jv.com>
Cc: George G. Davis <george_davis@mentor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180731121222.26195-1-jiada_wang@mentor.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-09-10 10:13:45 +02:00
Arnd Bergmann
474b9c777b y2038: sched: Change sched_rr_get_interval to use __kernel_timespec
This is a preparation patch for converting sys_sched_rr_get_interval to
work with 64-bit time_t on 32-bit architectures. The 'interval' argument
is changed to struct __kernel_timespec, which will be redefined using
64-bit time_t in the future. The compat version of the system call in
turn is enabled for compilation with CONFIG_COMPAT_32BIT_TIME so
the individual 32-bit architectures can share the handling of the
traditional argument with 64-bit architectures providing it for their
compat mode.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2018-08-29 15:42:24 +02:00
Arnd Bergmann
9afc5eee65 y2038: globally rename compat_time to old_time32
Christoph Hellwig suggested a slightly different path for handling
backwards compatibility with the 32-bit time_t based system calls:

Rather than simply reusing the compat_sys_* entry points on 32-bit
architectures unchanged, we get rid of those entry points and the
compat_time types by renaming them to something that makes more sense
on 32-bit architectures (which don't have a compat mode otherwise),
and then share the entry points under the new name with the 64-bit
architectures that use them for implementing the compatibility.

The following types and interfaces are renamed here, and moved
from linux/compat_time.h to linux/time32.h:

old				new
---				---
compat_time_t			old_time32_t
struct compat_timeval		struct old_timeval32
struct compat_timespec		struct old_timespec32
struct compat_itimerspec	struct old_itimerspec32
ns_to_compat_timeval()		ns_to_old_timeval32()
get_compat_itimerspec64()	get_old_itimerspec32()
put_compat_itimerspec64()	put_old_itimerspec32()
compat_get_timespec64()		get_old_timespec32()
compat_put_timespec64()		put_old_timespec32()

As we already have aliases in place, this patch addresses only the
instances that are relevant to the system call interface in particular,
not those that occur in device drivers and other modules. Those
will get handled separately, while providing the 64-bit version
of the respective interfaces.

I'm not renaming the timex, rusage and itimerval structures, as we are
still debating what the new interface will look like, and whether we
will need a replacement at all.

This also doesn't change the names of the syscall entry points, which can
be done more easily when we actually switch over the 32-bit architectures
to use them, at that point we need to change COMPAT_SYSCALL_DEFINEx to
SYSCALL_DEFINEx with a new name, e.g. with a _time32 suffix.

Suggested-by: Christoph Hellwig <hch@infradead.org>
Link: https://lore.kernel.org/lkml/20180705222110.GA5698@infradead.org/
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2018-08-27 14:48:48 +02:00
Linus Torvalds
cd9b44f907 Merge branch 'akpm' (patches from Andrew)
Merge more updates from Andrew Morton:

 - the rest of MM

 - procfs updates

 - various misc things

 - more y2038 fixes

 - get_maintainer updates

 - lib/ updates

 - checkpatch updates

 - various epoll updates

 - autofs updates

 - hfsplus

 - some reiserfs work

 - fatfs updates

 - signal.c cleanups

 - ipc/ updates

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (166 commits)
  ipc/util.c: update return value of ipc_getref from int to bool
  ipc/util.c: further variable name cleanups
  ipc: simplify ipc initialization
  ipc: get rid of ids->tables_initialized hack
  lib/rhashtable: guarantee initial hashtable allocation
  lib/rhashtable: simplify bucket_table_alloc()
  ipc: drop ipc_lock()
  ipc/util.c: correct comment in ipc_obtain_object_check
  ipc: rename ipcctl_pre_down_nolock()
  ipc/util.c: use ipc_rcu_putref() for failues in ipc_addid()
  ipc: reorganize initialization of kern_ipc_perm.seq
  ipc: compute kern_ipc_perm.id under the ipc lock
  init/Kconfig: remove EXPERT from CHECKPOINT_RESTORE
  fs/sysv/inode.c: use ktime_get_real_seconds() for superblock stamp
  adfs: use timespec64 for time conversion
  kernel/sysctl.c: fix typos in comments
  drivers/rapidio/devices/rio_mport_cdev.c: remove redundant pointer md
  fork: don't copy inconsistent signal handler state to child
  signal: make get_signal() return bool
  signal: make sigkill_pending() return bool
  ...
2018-08-22 12:34:08 -07:00
Christoph Hellwig
e05a8e4d88 sched/wait: assert the wait_queue_head lock is held in __wake_up_common
Better ensure we actually hold the lock using lockdep than just commenting
on it.  Due to the various exported _locked interfaces it is far too easy
to get the locking wrong.

Link: http://lkml.kernel.org/r/20171214152344.6880-4-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jason Baron <jbaron@akamai.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 10:52:47 -07:00
Linus Torvalds
dfec4a8478 More power management updates for 4.19-rc1
- Make the idle loop handle stopped scheduler tick correctly (Rafael
    Wysocki).
 
  - Prevent the menu cpuidle governor from letting CPUs spend too much
    time in shallow idle states when it is invoked with scheduler tick
    stopped and clean it up somewhat (Rafael Wysocki).
 
  - Avoid invoking the platform firmware to make the platform enter
    the ACPI S3 sleep state with suspended PCIe root ports which may
    confuse the firmware and cause it to crash (Rafael Wysocki).
 
  - Fix sysfs-related race in the ondemand and conservative cpufreq
    governors which may cause the system to crash if the governor
    module is removed during an update of CPU frequency limits (Henry
    Willard).
 
  - Select SRCU when building the system wakeup framework to avoid a
    build issue in it (zhangyi).
 
  - Make the descriptions of ACPI C-states vendor-neutral to avoid
    confusion (Prarit Bhargava).
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2
 
 iQIcBAABCAAGBQJbfSnVAAoJEILEb/54YlRxBn4QAKQ8PqkSYkBby+1hb90ET4dk
 VaLkbCYXuzLK5rIDvnbYOALhVKo4B29Ex5GdCLN7cWkZMkrVKe7oX8QQTnp3/7lF
 URjTKgTNec5uJG652PrE3ESAa3X/kYggj6aeQOxDR4iYKzcpJEQ92ekFW+SoJTNp
 Jc2kZh3qkC2On64GB3ibsZaKnmHfPvLg0t4agwzuYq/Gff8NRJFk7kMwAPzqGzZo
 b2UVRcYFWIRkJjgmU9iInoeHIY8mBdT3IiKwTemZP1dOhb5T1AHOXwGTk6/cS+RH
 A9qx4eg7I3R00KmnYvO8WytYJeOu2qb83GIUx4fIJGOqfvevm5xkxB9F+nfE+ouj
 ROBqO4+X4XfQGPw8slayg0rJjI9JSkXLnLdl0Qw2WRlbc4/fVWntra1C57EeKFBR
 EG9UAF9+7nUUx0bOCLsfFF3+r9R3SDUjk7b4thyhYncyQRsYC+FL7ztlxnMzVtzW
 M5SF2sPrpcQzqmcszdUdbESI10n5X8m/crJW4rsbTxBpAM+coO+uLcvHWOY4MpkW
 BgBsR6bMDAlG/VlTFgeeP/tkCRd5zNlJi7yBFItXuOoVKXpnHCJuxq2WkZ1Rb74M
 Gk1d3TduekHJm8VsLEdCJR/tEk1cMc0zVUD/a1yzI4Z21QxvXUCqMDdws4/Ey184
 qmKgNR9R94vSC5xIPRhM
 =9GrU
 -----END PGP SIGNATURE-----

Merge tag 'pm-4.19-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull more power management updates from Rafael Wysocki:
 "These fix the main idle loop and the menu cpuidle governor, clean up
  the latter, fix a mistake in the PCI bus type's support for system
  suspend and resume, fix the ondemand and conservative cpufreq
  governors, address a build issue in the system wakeup framework and
  make the ACPI C-states desciptions less confusing.

  Specifics:

   - Make the idle loop handle stopped scheduler tick correctly (Rafael
     Wysocki).

   - Prevent the menu cpuidle governor from letting CPUs spend too much
     time in shallow idle states when it is invoked with scheduler tick
     stopped and clean it up somewhat (Rafael Wysocki).

   - Avoid invoking the platform firmware to make the platform enter the
     ACPI S3 sleep state with suspended PCIe root ports which may
     confuse the firmware and cause it to crash (Rafael Wysocki).

   - Fix sysfs-related race in the ondemand and conservative cpufreq
     governors which may cause the system to crash if the governor
     module is removed during an update of CPU frequency limits (Henry
     Willard).

   - Select SRCU when building the system wakeup framework to avoid a
     build issue in it (zhangyi).

   - Make the descriptions of ACPI C-states vendor-neutral to avoid
     confusion (Prarit Bhargava)"

* tag 'pm-4.19-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
  cpuidle: menu: Handle stopped tick more aggressively
  sched: idle: Avoid retaining the tick when it has been stopped
  PCI / ACPI / PM: Resume all bridges on suspend-to-RAM
  cpuidle: menu: Update stale polling override comment
  cpufreq: governor: Avoid accessing invalid governor_data
  x86/ACPI/cstate: Make APCI C1 FFH MWAIT C-state description vendor-neutral
  cpuidle: menu: Fix white space
  PM / sleep: wakeup: Fix build error caused by missing SRCU support
2018-08-22 07:42:36 -07:00
Linus Torvalds
0214f46b3a Merge branch 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull core signal handling updates from Eric Biederman:
 "It was observed that a periodic timer in combination with a
  sufficiently expensive fork could prevent fork from every completing.
  This contains the changes to remove the need for that restart.

  This set of changes is split into several parts:

   - The first part makes PIDTYPE_TGID a proper pid type instead
     something only for very special cases. The part starts using
     PIDTYPE_TGID enough so that in __send_signal where signals are
     actually delivered we know if the signal is being sent to a a group
     of processes or just a single process.

   - With that prep work out of the way the logic in fork is modified so
     that fork logically makes signals received while it is running
     appear to be received after the fork completes"

* 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (22 commits)
  signal: Don't send signals to tasks that don't exist
  signal: Don't restart fork when signals come in.
  fork: Have new threads join on-going signal group stops
  fork: Skip setting TIF_SIGPENDING in ptrace_init_task
  signal: Add calculate_sigpending()
  fork: Unconditionally exit if a fatal signal is pending
  fork: Move and describe why the code examines PIDNS_ADDING
  signal: Push pid type down into complete_signal.
  signal: Push pid type down into __send_signal
  signal: Push pid type down into send_signal
  signal: Pass pid type into do_send_sig_info
  signal: Pass pid type into send_sigio_to_task & send_sigurg_to_task
  signal: Pass pid type into group_send_sig_info
  signal: Pass pid and pid type into send_sigqueue
  posix-timers: Noralize good_sigevent
  signal: Use PIDTYPE_TGID to clearly store where file signals will be sent
  pid: Implement PIDTYPE_TGID
  pids: Move the pgrp and session pid pointers from task_struct to signal_struct
  kvm: Don't open code task_pid in kvm_vcpu_ioctl
  pids: Compute task_tgid using signal->leader_pid
  ...
2018-08-21 13:47:29 -07:00
Linus Torvalds
7140ad3898 Updates for v4.19:
- Restructure of lockdep and latency tracers
 
    This is the biggest change. Joel Fernandes restructured the hooks
    from irqs and preemption disabling and enabling. He got rid of
    a lot of the preprocessor #ifdef mess that they caused.
 
    He turned both lockdep and the latency tracers to use trace events
    inserted in the preempt/irqs disabling paths. But unfortunately,
    these started to cause issues in corner cases. Thus, parts of the
    code was reverted back to where lockde and the latency tracers
    just get called directly (without using the trace events).
    But because the original change cleaned up the code very nicely
    we kept that, as well as the trace events for preempt and irqs
    disabling, but they are limited to not being called in NMIs.
 
  - Have trace events use SRCU for "rcu idle" calls. This was required
    for the preempt/irqs off trace events. But it also had to not
    allow them to be called in NMI context. Waiting till Paul makes
    an NMI safe SRCU API.
 
  - New notrace SRCU API to allow trace events to use SRCU.
 
  - Addition of mcount-nop option support
 
  - SPDX headers replacing GPL templates.
 
  - Various other fixes and clean ups.
 
  - Some fixes are marked for stable, but were not fully tested
    before the merge window opened.
 -----BEGIN PGP SIGNATURE-----
 
 iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCW3ruhRQccm9zdGVkdEBn
 b29kbWlzLm9yZwAKCRAp5XQQmuv6qiM7AP47NhYdSnCFCRUJfrt6PovXmQtuCHt3
 c3QMoGGdvzh9YAEAqcSXwh7uLhpHUp1LjMAPkXdZVwNddf4zJQ1zyxQ+EAU=
 =vgEr
 -----END PGP SIGNATURE-----

Merge tag 'trace-v4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace

Pull tracing updates from Steven Rostedt:

 - Restructure of lockdep and latency tracers

   This is the biggest change. Joel Fernandes restructured the hooks
   from irqs and preemption disabling and enabling. He got rid of a lot
   of the preprocessor #ifdef mess that they caused.

   He turned both lockdep and the latency tracers to use trace events
   inserted in the preempt/irqs disabling paths. But unfortunately,
   these started to cause issues in corner cases. Thus, parts of the
   code was reverted back to where lockdep and the latency tracers just
   get called directly (without using the trace events). But because the
   original change cleaned up the code very nicely we kept that, as well
   as the trace events for preempt and irqs disabling, but they are
   limited to not being called in NMIs.

 - Have trace events use SRCU for "rcu idle" calls. This was required
   for the preempt/irqs off trace events. But it also had to not allow
   them to be called in NMI context. Waiting till Paul makes an NMI safe
   SRCU API.

 - New notrace SRCU API to allow trace events to use SRCU.

 - Addition of mcount-nop option support

 - SPDX headers replacing GPL templates.

 - Various other fixes and clean ups.

 - Some fixes are marked for stable, but were not fully tested before
   the merge window opened.

* tag 'trace-v4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (44 commits)
  tracing: Fix SPDX format headers to use C++ style comments
  tracing: Add SPDX License format tags to tracing files
  tracing: Add SPDX License format to bpf_trace.c
  blktrace: Add SPDX License format header
  s390/ftrace: Add -mfentry and -mnop-mcount support
  tracing: Add -mcount-nop option support
  tracing: Avoid calling cc-option -mrecord-mcount for every Makefile
  tracing: Handle CC_FLAGS_FTRACE more accurately
  Uprobe: Additional argument arch_uprobe to uprobe_write_opcode()
  Uprobes: Simplify uprobe_register() body
  tracepoints: Free early tracepoints after RCU is initialized
  uprobes: Use synchronize_rcu() not synchronize_sched()
  tracing: Fix synchronizing to event changes with tracepoint_synchronize_unregister()
  ftrace: Remove unused pointer ftrace_swapper_pid
  tracing: More reverting of "tracing: Centralize preemptirq tracepoints and unify their usage"
  tracing/irqsoff: Handle preempt_count for different configs
  tracing: Partial revert of "tracing: Centralize preemptirq tracepoints and unify their usage"
  tracing: irqsoff: Account for additional preempt_disable
  trace: Use rcu_dereference_raw for hooks from trace-event subsystem
  tracing/kprobes: Fix within_notrace_func() to check only notrace functions
  ...
2018-08-20 18:32:00 -07:00
Rafael J. Wysocki
7059b36636 sched: idle: Avoid retaining the tick when it has been stopped
If the tick has been stopped already, but the governor has not asked to
stop it (which it can do sometimes), the idle loop should invoke
tick_nohz_idle_stop_tick(), to let tick_nohz_stop_tick() take care
of this case properly.

Fixes: 554c8aa8ec (sched: idle: Select idle state before stopping the tick)
Cc: 4.17+ <stable@vger.kernel.org> # 4.17+
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2018-08-20 11:25:55 +02:00
Linus Torvalds
958f338e96 Merge branch 'l1tf-final' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Merge L1 Terminal Fault fixes from Thomas Gleixner:
 "L1TF, aka L1 Terminal Fault, is yet another speculative hardware
  engineering trainwreck. It's a hardware vulnerability which allows
  unprivileged speculative access to data which is available in the
  Level 1 Data Cache when the page table entry controlling the virtual
  address, which is used for the access, has the Present bit cleared or
  other reserved bits set.

  If an instruction accesses a virtual address for which the relevant
  page table entry (PTE) has the Present bit cleared or other reserved
  bits set, then speculative execution ignores the invalid PTE and loads
  the referenced data if it is present in the Level 1 Data Cache, as if
  the page referenced by the address bits in the PTE was still present
  and accessible.

  While this is a purely speculative mechanism and the instruction will
  raise a page fault when it is retired eventually, the pure act of
  loading the data and making it available to other speculative
  instructions opens up the opportunity for side channel attacks to
  unprivileged malicious code, similar to the Meltdown attack.

  While Meltdown breaks the user space to kernel space protection, L1TF
  allows to attack any physical memory address in the system and the
  attack works across all protection domains. It allows an attack of SGX
  and also works from inside virtual machines because the speculation
  bypasses the extended page table (EPT) protection mechanism.

  The assoicated CVEs are: CVE-2018-3615, CVE-2018-3620, CVE-2018-3646

  The mitigations provided by this pull request include:

   - Host side protection by inverting the upper address bits of a non
     present page table entry so the entry points to uncacheable memory.

   - Hypervisor protection by flushing L1 Data Cache on VMENTER.

   - SMT (HyperThreading) control knobs, which allow to 'turn off' SMT
     by offlining the sibling CPU threads. The knobs are available on
     the kernel command line and at runtime via sysfs

   - Control knobs for the hypervisor mitigation, related to L1D flush
     and SMT control. The knobs are available on the kernel command line
     and at runtime via sysfs

   - Extensive documentation about L1TF including various degrees of
     mitigations.

  Thanks to all people who have contributed to this in various ways -
  patches, review, testing, backporting - and the fruitful, sometimes
  heated, but at the end constructive discussions.

  There is work in progress to provide other forms of mitigations, which
  might be less horrible performance wise for a particular kind of
  workloads, but this is not yet ready for consumption due to their
  complexity and limitations"

* 'l1tf-final' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (75 commits)
  x86/microcode: Allow late microcode loading with SMT disabled
  tools headers: Synchronise x86 cpufeatures.h for L1TF additions
  x86/mm/kmmio: Make the tracer robust against L1TF
  x86/mm/pat: Make set_memory_np() L1TF safe
  x86/speculation/l1tf: Make pmd/pud_mknotpresent() invert
  x86/speculation/l1tf: Invert all not present mappings
  cpu/hotplug: Fix SMT supported evaluation
  KVM: VMX: Tell the nested hypervisor to skip L1D flush on vmentry
  x86/speculation: Use ARCH_CAPABILITIES to skip L1D flush on vmentry
  x86/speculation: Simplify sysfs report of VMX L1TF vulnerability
  Documentation/l1tf: Remove Yonah processors from not vulnerable list
  x86/KVM/VMX: Don't set l1tf_flush_l1d from vmx_handle_external_intr()
  x86/irq: Let interrupt handlers set kvm_cpu_l1tf_flush_l1d
  x86: Don't include linux/irq.h from asm/hardirq.h
  x86/KVM/VMX: Introduce per-host-cpu analogue of l1tf_flush_l1d
  x86/irq: Demote irq_cpustat_t::__softirq_pending to u16
  x86/KVM/VMX: Move the l1tf_flush_l1d test to vmx_l1d_flush()
  x86/KVM/VMX: Replace 'vmx_l1d_flush_always' with 'vmx_l1d_flush_cond'
  x86/KVM/VMX: Don't set l1tf_flush_l1d to true from vmx_l1d_flush()
  cpu/hotplug: detect SMT disabled by BIOS
  ...
2018-08-14 09:46:06 -07:00
Linus Torvalds
13e091b6dd Merge branch 'x86-timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 timer updates from Thomas Gleixner:
 "Early TSC based time stamping to allow better boot time analysis.

  This comes with a general cleanup of the TSC calibration code which
  grew warts and duct taping over the years and removes 250 lines of
  code. Initiated and mostly implemented by Pavel with help from various
  folks"

* 'x86-timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (37 commits)
  x86/kvmclock: Mark kvm_get_preset_lpj() as __init
  x86/tsc: Consolidate init code
  sched/clock: Disable interrupts when calling generic_sched_clock_init()
  timekeeping: Prevent false warning when persistent clock is not available
  sched/clock: Close a hole in sched_clock_init()
  x86/tsc: Make use of tsc_calibrate_cpu_early()
  x86/tsc: Split native_calibrate_cpu() into early and late parts
  sched/clock: Use static key for sched_clock_running
  sched/clock: Enable sched clock early
  sched/clock: Move sched clock initialization and merge with generic clock
  x86/tsc: Use TSC as sched clock early
  x86/tsc: Initialize cyc2ns when tsc frequency is determined
  x86/tsc: Calibrate tsc only once
  ARM/time: Remove read_boot_clock64()
  s390/time: Remove read_boot_clock64()
  timekeeping: Default boot time offset to local_clock()
  timekeeping: Replace read_boot_clock64() with read_persistent_wall_and_boot_offset()
  s390/time: Add read_persistent_wall_and_boot_offset()
  x86/xen/time: Output xen sched_clock time from 0
  x86/xen/time: Initialize pv xen time in init_hypervisor_platform()
  ...
2018-08-13 18:28:19 -07:00
Linus Torvalds
de5d1b39ea Merge branch 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking/atomics update from Thomas Gleixner:
 "The locking, atomics and memory model brains delivered:

   - A larger update to the atomics code which reworks the ordering
     barriers, consolidates the atomic primitives, provides the new
     atomic64_fetch_add_unless() primitive and cleans up the include
     hell.

   - Simplify cmpxchg() instrumentation and add instrumentation for
     xchg() and cmpxchg_double().

   - Updates to the memory model and documentation"

* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (48 commits)
  locking/atomics: Rework ordering barriers
  locking/atomics: Instrument cmpxchg_double*()
  locking/atomics: Instrument xchg()
  locking/atomics: Simplify cmpxchg() instrumentation
  locking/atomics/x86: Reduce arch_cmpxchg64*() instrumentation
  tools/memory-model: Rename litmus tests to comply to norm7
  tools/memory-model/Documentation: Fix typo, smb->smp
  sched/Documentation: Update wake_up() & co. memory-barrier guarantees
  locking/spinlock, sched/core: Clarify requirements for smp_mb__after_spinlock()
  sched/core: Use smp_mb() in wake_woken_function()
  tools/memory-model: Add informal LKMM documentation to MAINTAINERS
  locking/atomics/Documentation: Describe atomic_set() as a write operation
  tools/memory-model: Make scripts executable
  tools/memory-model: Remove ACCESS_ONCE() from model
  tools/memory-model: Remove ACCESS_ONCE() from recipes
  locking/memory-barriers.txt/kokr: Update Korean translation to fix broken DMA vs. MMIO ordering example
  MAINTAINERS: Add Daniel Lustig as an LKMM reviewer
  tools/memory-model: Fix ISA2+pooncelock+pooncelock+pombonce name
  tools/memory-model: Add litmus test for full multicopy atomicity
  locking/refcount: Always allow checked forms
  ...
2018-08-13 12:23:39 -07:00
Thomas Gleixner
f2701b77bb Merge 4.18-rc7 into master to pick up the KVM dependcy
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2018-08-05 16:39:29 +02:00
Eric W. Biederman
088fe47ce9 signal: Add calculate_sigpending()
Add a function calculate_sigpending to test to see if any signals are
pending for a new task immediately following fork.  Signals have to
happen either before or after fork.  Today our practice is to push
all of the signals to before the fork, but that has the downside that
frequent or periodic signals can make fork take much much longer than
normal or prevent fork from completing entirely.

So we need move signals that we can after the fork to prevent that.

This updates the code to set TIF_SIGPENDING on a new task if there
are signals or other activities that have moved so that they appear
to happen after the fork.

As the code today restarts if it sees any such activity this won't
immediately have an effect, as there will be no reason for it
to set TIF_SIGPENDING immediately after the fork.

Adding calculate_sigpending means the code in fork can safely be
changed to not always restart if a signal is pending.

The new calculate_sigpending function sets sigpending if there
are pending bits in jobctl, pending signals, the freezer needs
to freeze the new task or the live kernel patching framework
need the new thread to take the slow path to userspace.

I have verified that setting TIF_SIGPENDING does make a new process
take the slow path to userspace before it executes it's first userspace
instruction.

I have looked at the callers of signal_wake_up and the code paths
setting TIF_SIGPENDING and I don't see anything else that needs to be
handled.  The code probably doesn't need to set TIF_SIGPENDING for the
kernel live patching as it uses a separate thread flag as well.  But
at this point it seems safer reuse the recalc_sigpending logic and get
the kernel live patching folks to sort out their story later.

V2: I have moved the test into schedule_tail where siglock can
    be grabbed and recalc_sigpending can be reused directly.
    Further as the last action of setting up a new task this
    guarantees that TIF_SIGPENDING will be properly set in the
    new process.

    The helper calculate_sigpending takes the siglock and
    uncontitionally sets TIF_SIGPENDING and let's recalc_sigpending
    clear TIF_SIGPENDING if it is unnecessary.  This allows reusing
    the existing code and keeps maintenance of the conditions simple.

    Oleg Nesterov <oleg@redhat.com>  suggested the movement
    and pointed out the need to take siglock if this code
    was going to be called while the new task is discoverable.

Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2018-08-03 20:10:31 -05:00
Joel Fernandes (Google)
c3bc8fd637 tracing: Centralize preemptirq tracepoints and unify their usage
This patch detaches the preemptirq tracepoints from the tracers and
keeps it separate.

Advantages:
* Lockdep and irqsoff event can now run in parallel since they no longer
have their own calls.

* This unifies the usecase of adding hooks to an irqsoff and irqson
event, and a preemptoff and preempton event.
  3 users of the events exist:
  - Lockdep
  - irqsoff and preemptoff tracers
  - irqs and preempt trace events

The unification cleans up several ifdefs and makes the code in preempt
tracer and irqsoff tracers simpler. It gets rid of all the horrific
ifdeferry around PROVE_LOCKING and makes configuration of the different
users of the tracepoints more easy and understandable. It also gets rid
of the time_* function calls from the lockdep hooks used to call into
the preemptirq tracer which is not needed anymore. The negative delta in
lines of code in this patch is quite large too.

In the patch we introduce a new CONFIG option PREEMPTIRQ_TRACEPOINTS
as a single point for registering probes onto the tracepoints. With
this,
the web of config options for preempt/irq toggle tracepoints and its
users becomes:

 PREEMPT_TRACER   PREEMPTIRQ_EVENTS  IRQSOFF_TRACER PROVE_LOCKING
       |                 |     \         |           |
       \    (selects)    /      \        \ (selects) /
      TRACE_PREEMPT_TOGGLE       ----> TRACE_IRQFLAGS
                      \                  /
                       \ (depends on)   /
                     PREEMPTIRQ_TRACEPOINTS

Other than the performance tests mentioned in the previous patch, I also
ran the locking API test suite. I verified that all tests cases are
passing.

I also injected issues by not registering lockdep probes onto the
tracepoints and I see failures to confirm that the probes are indeed
working.

This series + lockdep probes not registered (just to inject errors):
[    0.000000]      hard-irqs-on + irq-safe-A/21:  ok  |  ok  |  ok  |
[    0.000000]      soft-irqs-on + irq-safe-A/21:  ok  |  ok  |  ok  |
[    0.000000]        sirq-safe-A => hirqs-on/12:FAILED|FAILED|  ok  |
[    0.000000]        sirq-safe-A => hirqs-on/21:FAILED|FAILED|  ok  |
[    0.000000]          hard-safe-A + irqs-on/12:FAILED|FAILED|  ok  |
[    0.000000]          soft-safe-A + irqs-on/12:FAILED|FAILED|  ok  |
[    0.000000]          hard-safe-A + irqs-on/21:FAILED|FAILED|  ok  |
[    0.000000]          soft-safe-A + irqs-on/21:FAILED|FAILED|  ok  |
[    0.000000]     hard-safe-A + unsafe-B #1/123:  ok  |  ok  |  ok  |
[    0.000000]     soft-safe-A + unsafe-B #1/123:  ok  |  ok  |  ok  |

With this series + lockdep probes registered, all locking tests pass:

[    0.000000]      hard-irqs-on + irq-safe-A/21:  ok  |  ok  |  ok  |
[    0.000000]      soft-irqs-on + irq-safe-A/21:  ok  |  ok  |  ok  |
[    0.000000]        sirq-safe-A => hirqs-on/12:  ok  |  ok  |  ok  |
[    0.000000]        sirq-safe-A => hirqs-on/21:  ok  |  ok  |  ok  |
[    0.000000]          hard-safe-A + irqs-on/12:  ok  |  ok  |  ok  |
[    0.000000]          soft-safe-A + irqs-on/12:  ok  |  ok  |  ok  |
[    0.000000]          hard-safe-A + irqs-on/21:  ok  |  ok  |  ok  |
[    0.000000]          soft-safe-A + irqs-on/21:  ok  |  ok  |  ok  |
[    0.000000]     hard-safe-A + unsafe-B #1/123:  ok  |  ok  |  ok  |
[    0.000000]     soft-safe-A + unsafe-B #1/123:  ok  |  ok  |  ok  |

Link: http://lkml.kernel.org/r/20180730222423.196630-4-joel@joelfernandes.org

Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2018-07-31 11:32:27 -04:00
Pavel Tatashin
bd9f943e5d sched/clock: Disable interrupts when calling generic_sched_clock_init()
sched_clock_init() used be called early during boot when interrupts were
still disabled. After the recent changes to utilize sched clock early the
sched_clock_init() call happens when interrupts are already enabled, which
triggers the following warning:

WARNING: CPU: 0 PID: 0 at kernel/time/sched_clock.c:180 sched_clock_register+0x44/0x278
[<c001a13c>] (warn_slowpath_null) from [<c052367c>] (sched_clock_register+0x44/0x278)
[<c052367c>] (sched_clock_register) from [<c05238d8>] (generic_sched_clock_init+0x28/0x88)
[<c05238d8>] (generic_sched_clock_init) from [<c0521a00>] (sched_clock_init+0x54/0x74)
[<c0521a00>] (sched_clock_init) from [<c0519c18>] (start_kernel+0x310/0x3e4)
[<c0519c18>] (start_kernel) from [<00000000>] (  (null))

Disable IRQs for the duration of generic_sched_clock_init().

Fixes: 857baa87b6 ("sched/clock: Enable sched clock early")
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reported-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: steven.sistare@oracle.com
Cc: daniel.m.jordan@oracle.com
Link: https://lkml.kernel.org/r/20180730135252.24599-1-pasha.tatashin@oracle.com
2018-07-30 19:33:35 +02:00
Srikar Dronamraju
b6a60cf36d sched/numa: Move task_numa_placement() closer to numa_migrate_preferred()
numa_migrate_preferred() is called periodically or when task preferred
node changes. Preferred node evaluations happen once per scan sequence.

If the scan completion happens just after the periodic NUMA migration,
then we try to migrate to the preferred node and the preferred node might
change, needing another node migration.

Avoid this by checking for scan sequence completion only when checking
for periodic migration.

Running SPECjbb2005 on a 4 node machine and comparing bops/JVM
JVMS  LAST_PATCH  WITH_PATCH  %CHANGE
16    25862.6     26158.1     1.14258
1     74357       72725       -2.19482

Running SPECjbb2005 on a 16 node machine and comparing bops/JVM
JVMS  LAST_PATCH  WITH_PATCH  %CHANGE
8     117019      113992      -2.58
1     179095      174947      -2.31

(numbers from v1 based on v4.17-rc5)
Testcase       Time:         Min         Max         Avg      StdDev
numa01.sh      Real:      449.46      770.77      615.22      101.70
numa01.sh       Sys:      132.72      208.17      170.46       24.96
numa01.sh      User:    39185.26    60290.89    50066.76     6807.84
numa02.sh      Real:       60.85       61.79       61.28        0.37
numa02.sh       Sys:       15.34       24.71       21.08        3.61
numa02.sh      User:     5204.41     5249.85     5231.21       17.60
numa03.sh      Real:      785.50      916.97      840.77       44.98
numa03.sh       Sys:      108.08      133.60      119.43        8.82
numa03.sh      User:    61422.86    70919.75    64720.87     3310.61
numa04.sh      Real:      429.57      587.37      480.80       57.40
numa04.sh       Sys:      240.61      321.97      290.84       33.58
numa04.sh      User:    34597.65    40498.99    37079.48     2060.72
numa05.sh      Real:      392.09      431.25      414.65       13.82
numa05.sh       Sys:      229.41      372.48      297.54       53.14
numa05.sh      User:    33390.86    34697.49    34222.43      556.42

Testcase       Time:         Min         Max         Avg      StdDev 	%Change
numa01.sh      Real:      424.63      566.18      498.12       59.26 	 23.50%
numa01.sh       Sys:      160.19      256.53      208.98       37.02 	 -18.4%
numa01.sh      User:    37320.00    46225.58    42001.57     3482.45 	 19.20%
numa02.sh      Real:       60.17       62.47       60.91        0.85 	 0.607%
numa02.sh       Sys:       15.30       22.82       17.04        2.90 	 23.70%
numa02.sh      User:     5202.13     5255.51     5219.08       20.14 	 0.232%
numa03.sh      Real:      823.91      844.89      833.86        8.46 	 0.828%
numa03.sh       Sys:      130.69      148.29      140.47        6.21 	 -14.9%
numa03.sh      User:    62519.15    64262.20    63613.38      620.05 	 1.740%
numa04.sh      Real:      515.30      603.74      548.56       30.93 	 -12.3%
numa04.sh       Sys:      459.73      525.48      489.18       21.63 	 -40.5%
numa04.sh      User:    40561.96    44919.18    42047.87     1526.85 	 -11.8%
numa05.sh      Real:      396.58      454.37      421.13       19.71 	 -1.53%
numa05.sh       Sys:      208.72      422.02      348.90       73.60 	 -14.7%
numa05.sh      User:    33124.08    36109.35    34846.47     1089.74 	 -1.79%

Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1529514181-9842-20-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-25 11:41:08 +02:00
Srikar Dronamraju
f35678b6a1 sched/numa: Use group_weights to identify if migration degrades locality
On NUMA_BACKPLANE and NUMA_GLUELESS_MESH systems, tasks/memory should be
consolidated to the closest group of nodes. In such a case, relying on
group_fault metric may not always help to consolidate. There can always
be a case where a node closer to the preferred node may have lesser
faults than a node further away from the preferred node. In such a case,
moving to node with more faults might avoid numa consolidation.

Using group_weight would help to consolidate task/memory around the
preferred_node.

While here, to be on the conservative side, don't override migrate thread
degrades locality logic for CPU_NEWLY_IDLE load balancing.

Note: Similar problems exist with should_numa_migrate_memory and will be
dealt separately.

Running SPECjbb2005 on a 4 node machine and comparing bops/JVM
JVMS  LAST_PATCH  WITH_PATCH  %CHANGE
16    25645.4     25960       1.22
1     72142       73550       1.95

Running SPECjbb2005 on a 16 node machine and comparing bops/JVM
JVMS  LAST_PATCH  WITH_PATCH  %CHANGE
8     110199      120071      8.958
1     176303      176249      -0.03

(numbers from v1 based on v4.17-rc5)
Testcase       Time:         Min         Max         Avg      StdDev
numa01.sh      Real:      490.04      774.86      596.26       96.46
numa01.sh       Sys:      151.52      242.88      184.82       31.71
numa01.sh      User:    41418.41    60844.59    48776.09     6564.27
numa02.sh      Real:       60.14       62.94       60.98        1.00
numa02.sh       Sys:       16.11       30.77       21.20        5.28
numa02.sh      User:     5184.33     5311.09     5228.50       44.24
numa03.sh      Real:      790.95      856.35      826.41       24.11
numa03.sh       Sys:      114.93      118.85      117.05        1.63
numa03.sh      User:    60990.99    64959.28    63470.43     1415.44
numa04.sh      Real:      434.37      597.92      504.87       59.70
numa04.sh       Sys:      237.63      397.40      289.74       55.98
numa04.sh      User:    34854.87    41121.83    38572.52     2615.84
numa05.sh      Real:      386.77      448.90      417.22       22.79
numa05.sh       Sys:      149.23      379.95      303.04       79.55
numa05.sh      User:    32951.76    35959.58    34562.18     1034.05

Testcase       Time:         Min         Max         Avg      StdDev 	 %Change
numa01.sh      Real:      493.19      672.88      597.51       59.38 	 -0.20%
numa01.sh       Sys:      150.09      245.48      207.76       34.26 	 -11.0%
numa01.sh      User:    41928.51    53779.17    48747.06     3901.39 	 0.059%
numa02.sh      Real:       60.63       62.87       61.22        0.83 	 -0.39%
numa02.sh       Sys:       16.64       27.97       20.25        4.06 	 4.691%
numa02.sh      User:     5222.92     5309.60     5254.03       29.98 	 -0.48%
numa03.sh      Real:      821.52      902.15      863.60       32.41 	 -4.30%
numa03.sh       Sys:      112.04      130.66      118.35        7.08 	 -1.09%
numa03.sh      User:    62245.16    69165.14    66443.04     2450.32 	 -4.47%
numa04.sh      Real:      414.53      519.57      476.25       37.00 	 6.009%
numa04.sh       Sys:      181.84      335.67      280.41       54.07 	 3.327%
numa04.sh      User:    33924.50    39115.39    37343.78     1934.26 	 3.290%
numa05.sh      Real:      408.30      441.45      417.90       12.05 	 -0.16%
numa05.sh       Sys:      233.41      381.60      295.58       57.37 	 2.523%
numa05.sh      User:    33301.31    35972.50    34335.19      938.94 	 0.661%

Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1529514181-9842-16-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-25 11:41:08 +02:00
Srikar Dronamraju
30619c89b1 sched/numa: Update the scan period without holding the numa_group lock
The metrics for updating scan periods are local or task specific.
Currently this update happens under the numa_group lock, which seems
unnecessary. Hence move this update outside the lock.

Running SPECjbb2005 on a 4 node machine and comparing bops/JVM
JVMS  LAST_PATCH  WITH_PATCH  %CHANGE
16    25355.9     25645.4     1.141
1     72812       72142       -0.92

Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Rik van Riel <riel@surriel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1529514181-9842-15-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-25 11:41:08 +02:00
Srikar Dronamraju
2d4056fafa sched/numa: Remove numa_has_capacity()
task_numa_find_cpu() helps to find the CPU to swap/move the task to.
It's guarded by numa_has_capacity(). However node not having capacity
shouldn't deter a task swapping if it helps NUMA placement.

Further load_too_imbalanced(), which evaluates possibilities of move/swap,
provides similar checks as numa_has_capacity.

Hence remove numa_has_capacity() to enhance possibilities of task
swapping even if load is imbalanced.

Running SPECjbb2005 on a 4 node machine and comparing bops/JVM
JVMS  LAST_PATCH  WITH_PATCH  %CHANGE
16    25657.9     25804.1     0.569
1     74435       73413       -1.37

Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rik van Riel <riel@surriel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1529514181-9842-13-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-25 11:41:08 +02:00
Srikar Dronamraju
0ad4e3dfe6 sched/numa: Modify migrate_swap() to accept additional parameters
There are checks in migrate_swap_stop() that check if the task/CPU
combination is as per migrate_swap_arg before migrating.

However atleast one of the two tasks to be swapped by migrate_swap() could
have migrated to a completely different CPU before updating the
migrate_swap_arg. The new CPU where the task is currently running could
be a different node too. If the task has migrated, numa balancer might
end up placing a task in a wrong node.  Instead of achieving node
consolidation, it may end up spreading the load across nodes.

To avoid that pass the CPUs as additional parameters.

While here, place migrate_swap under CONFIG_NUMA_BALANCING.

Running SPECjbb2005 on a 4 node machine and comparing bops/JVM
JVMS  LAST_PATCH  WITH_PATCH  %CHANGE
16    25377.3     25226.6     -0.59
1     72287       73326       1.437

Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Rik van Riel <riel@surriel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1529514181-9842-10-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-25 11:41:07 +02:00
Srikar Dronamraju
10864a9e22 sched/numa: Remove unused task_capacity from 'struct numa_stats'
The task_capacity field in 'struct numa_stats' is redundant.
Also move nr_running for better packing within the struct.

No functional changes.

Running SPECjbb2005 on a 4 node machine and comparing bops/JVM
JVMS  LAST_PATCH  WITH_PATCH  %CHANGE
16    25308.6     25377.3     0.271
1     72964       72287       -0.92

Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Rik van Riel <riel@surriel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1529514181-9842-9-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-25 11:41:07 +02:00
Srikar Dronamraju
0ee7e74dc0 sched/numa: Skip nodes that are at 'hoplimit'
When comparing two nodes at a distance of 'hoplimit', we should consider
nodes only up to 'hoplimit'. Currently we also consider nodes at 'oplimit'
distance too. Hence two nodes at a distance of 'hoplimit' will have same
groupweight. Fix this by skipping nodes at hoplimit.

Running SPECjbb2005 on a 4 node machine and comparing bops/JVM
JVMS  LAST_PATCH  WITH_PATCH  %CHANGE
16    25375.3     25308.6     -0.26
1     72617       72964       0.477

Running SPECjbb2005 on a 16 node machine and comparing bops/JVM
JVMS  LAST_PATCH  WITH_PATCH  %CHANGE
8     113372      108750      -4.07684
1     177403      183115      3.21979

(numbers from v1 based on v4.17-rc5)
Testcase       Time:         Min         Max         Avg      StdDev
numa01.sh      Real:      478.45      565.90      515.11       30.87
numa01.sh       Sys:      207.79      271.04      232.94       21.33
numa01.sh      User:    39763.93    47303.12    43210.73     2644.86
numa02.sh      Real:       60.00       61.46       60.78        0.49
numa02.sh       Sys:       15.71       25.31       20.69        3.42
numa02.sh      User:     5175.92     5265.86     5235.97       32.82
numa03.sh      Real:      776.42      834.85      806.01       23.22
numa03.sh       Sys:      114.43      128.75      121.65        5.49
numa03.sh      User:    60773.93    64855.25    62616.91     1576.39
numa04.sh      Real:      456.93      511.95      482.91       20.88
numa04.sh       Sys:      178.09      460.89      356.86       94.58
numa04.sh      User:    36312.09    42553.24    39623.21     2247.96
numa05.sh      Real:      393.98      493.48      436.61       35.59
numa05.sh       Sys:      164.49      329.15      265.87       61.78
numa05.sh      User:    33182.65    36654.53    35074.51     1187.71

Testcase       Time:         Min         Max         Avg      StdDev 	 %Change
numa01.sh      Real:      414.64      819.20      556.08      147.70 	 -7.36%
numa01.sh       Sys:       77.52      205.04      139.40       52.05 	 67.10%
numa01.sh      User:    37043.24    61757.88    45517.48     9290.38 	 -5.06%
numa02.sh      Real:       60.80       63.32       61.63        0.88 	 -1.37%
numa02.sh       Sys:       17.35       39.37       25.71        7.33 	 -19.5%
numa02.sh      User:     5213.79     5374.73     5268.90       55.09 	 -0.62%
numa03.sh      Real:      780.09      948.64      831.43       63.02 	 -3.05%
numa03.sh       Sys:      104.96      136.92      116.31       11.34 	 4.591%
numa03.sh      User:    60465.42    73339.78    64368.03     4700.14 	 -2.72%
numa04.sh      Real:      412.60      681.92      521.29       96.64 	 -7.36%
numa04.sh       Sys:      210.32      314.10      251.77       37.71 	 41.74%
numa04.sh      User:    34026.38    45581.20    38534.49     4198.53 	 2.825%
numa05.sh      Real:      394.79      439.63      411.35       16.87 	 6.140%
numa05.sh       Sys:      238.32      330.09      292.31       38.32 	 -9.04%
numa05.sh      User:    33456.45    34876.07    34138.62      609.45 	 2.741%

While there is a regression with this change, this change is needed from a
correctness perspective. Also it helps consolidation as seen from perf bench
output.

Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Rik van Riel <riel@surriel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1529514181-9842-8-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-25 11:41:07 +02:00
Srikar Dronamraju
67d9f6c256 sched/debug: Reverse the order of printing faults
Fix the order in which the private and shared numa faults are getting
printed.

No functional changes.

Running SPECjbb2005 on a 4 node machine and comparing bops/JVM
JVMS  LAST_PATCH  WITH_PATCH  %CHANGE
16    25215.7     25375.3     0.63
1     72107       72617       0.70

Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Rik van Riel <riel@surriel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1529514181-9842-7-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-25 11:41:07 +02:00
Srikar Dronamraju
f03bb6760b sched/numa: Use task faults only if numa_group is not yet set up
When numa_group faults are available, task_numa_placement only uses
numa_group faults to evaluate preferred node. However it still accounts
task faults and even evaluates the preferred node just based on task
faults just to discard it in favour of preferred node chosen on the
basis of numa_group.

Instead use task faults only if numa_group is not set.

Running SPECjbb2005 on a 4 node machine and comparing bops/JVM
JVMS  LAST_PATCH  WITH_PATCH  %CHANGE
16    25549.6     25215.7     -1.30
1     73190       72107       -1.47

Running SPECjbb2005 on a 16 node machine and comparing bops/JVM
JVMS  LAST_PATCH  WITH_PATCH  %CHANGE
8     113437      113372      -0.05
1     196130      177403      -9.54

(numbers from v1 based on v4.17-rc5)
Testcase       Time:         Min         Max         Avg      StdDev
numa01.sh      Real:      506.35      794.46      599.06      104.26
numa01.sh       Sys:      150.37      223.56      195.99       24.94
numa01.sh      User:    43450.69    61752.04    49281.50     6635.33
numa02.sh      Real:       60.33       62.40       61.31        0.90
numa02.sh       Sys:       18.12       31.66       24.28        5.89
numa02.sh      User:     5203.91     5325.32     5260.29       49.98
numa03.sh      Real:      696.47      853.62      745.80       57.28
numa03.sh       Sys:       85.68      123.71       97.89       13.48
numa03.sh      User:    55978.45    66418.63    59254.94     3737.97
numa04.sh      Real:      444.05      514.83      497.06       26.85
numa04.sh       Sys:      230.39      375.79      316.23       48.58
numa04.sh      User:    35403.12    41004.10    39720.80     2163.08
numa05.sh      Real:      423.09      460.41      439.57       13.92
numa05.sh       Sys:      287.38      480.15      369.37       68.52
numa05.sh      User:    34732.12    38016.80    36255.85     1070.51

Testcase       Time:         Min         Max         Avg      StdDev 	 %Change
numa01.sh      Real:      478.45      565.90      515.11       30.87 	 16.29%
numa01.sh       Sys:      207.79      271.04      232.94       21.33 	 -15.8%
numa01.sh      User:    39763.93    47303.12    43210.73     2644.86 	 14.04%
numa02.sh      Real:       60.00       61.46       60.78        0.49 	 0.871%
numa02.sh       Sys:       15.71       25.31       20.69        3.42 	 17.35%
numa02.sh      User:     5175.92     5265.86     5235.97       32.82 	 0.464%
numa03.sh      Real:      776.42      834.85      806.01       23.22 	 -7.47%
numa03.sh       Sys:      114.43      128.75      121.65        5.49 	 -19.5%
numa03.sh      User:    60773.93    64855.25    62616.91     1576.39 	 -5.36%
numa04.sh      Real:      456.93      511.95      482.91       20.88 	 2.930%
numa04.sh       Sys:      178.09      460.89      356.86       94.58 	 -11.3%
numa04.sh      User:    36312.09    42553.24    39623.21     2247.96 	 0.246%
numa05.sh      Real:      393.98      493.48      436.61       35.59 	 0.677%
numa05.sh       Sys:      164.49      329.15      265.87       61.78 	 38.92%
numa05.sh      User:    33182.65    36654.53    35074.51     1187.71 	 3.368%

Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1529514181-9842-6-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-25 11:41:06 +02:00
Srikar Dronamraju
8cd45eee43 sched/numa: Set preferred_node based on best_cpu
Currently preferred node is set to dst_nid which is the last node in the
iteration whose group weight or task weight is greater than the current
node. However it doesn't guarantee that dst_nid has the numa capacity
to move. It also doesn't guarantee that dst_nid has the best_cpu which
is the CPU/node ideal for node migration.

Lets consider faults on a 4 node system with group weight numbers
in different nodes being in 0 < 1 < 2 < 3 proportion. Consider the task
is running on 3 and 0 is its preferred node but its capacity is full.
Consider nodes 1, 2 and 3 have capacity. Then the task should be
migrated to node 1. Currently the task gets moved to node 2. env.dst_nid
points to the last node whose faults were greater than current node.

Modify to set the preferred node based of best_cpu. Earlier setting
preferred node was skipped if nr_active_nodes is 1. This could result in
the task being moved out of the preferred node to a random node during
regular load balancing.

Also while modifying task_numa_migrate(), use sched_setnuma to set
preferred node. This ensures out numa accounting is correct.

Running SPECjbb2005 on a 4 node machine and comparing bops/JVM
JVMS  LAST_PATCH  WITH_PATCH  %CHANGE
16    25122.9     25549.6     1.698
1     73850       73190       -0.89

Running SPECjbb2005 on a 16 node machine and comparing bops/JVM
JVMS  LAST_PATCH  WITH_PATCH  %CHANGE
8     105930      113437      7.08676
1     178624      196130      9.80047

(numbers from v1 based on v4.17-rc5)
Testcase       Time:         Min         Max         Avg      StdDev
numa01.sh      Real:      435.78      653.81      534.58       83.20
numa01.sh       Sys:      121.93      187.18      145.90       23.47
numa01.sh      User:    37082.81    51402.80    43647.60     5409.75
numa02.sh      Real:       60.64       61.63       61.19        0.40
numa02.sh       Sys:       14.72       25.68       19.06        4.03
numa02.sh      User:     5210.95     5266.69     5233.30       20.82
numa03.sh      Real:      746.51      808.24      780.36       23.88
numa03.sh       Sys:       97.26      108.48      105.07        4.28
numa03.sh      User:    58956.30    61397.05    60162.95     1050.82
numa04.sh      Real:      465.97      519.27      484.81       19.62
numa04.sh       Sys:      304.43      359.08      334.68       20.64
numa04.sh      User:    37544.16    41186.15    39262.44     1314.91
numa05.sh      Real:      411.57      457.20      433.29       16.58
numa05.sh       Sys:      230.05      435.48      339.95       67.58
numa05.sh      User:    33325.54    36896.31    35637.84     1222.64

Testcase       Time:         Min         Max         Avg      StdDev 	 %Change
numa01.sh      Real:      506.35      794.46      599.06      104.26 	 -10.76%
numa01.sh       Sys:      150.37      223.56      195.99       24.94 	 -25.55%
numa01.sh      User:    43450.69    61752.04    49281.50     6635.33 	 -11.43%
numa02.sh      Real:       60.33       62.40       61.31        0.90 	 -0.195%
numa02.sh       Sys:       18.12       31.66       24.28        5.89 	 -21.49%
numa02.sh      User:     5203.91     5325.32     5260.29       49.98 	 -0.513%
numa03.sh      Real:      696.47      853.62      745.80       57.28 	 4.6339%
numa03.sh       Sys:       85.68      123.71       97.89       13.48 	 7.3347%
numa03.sh      User:    55978.45    66418.63    59254.94     3737.97 	 1.5323%
numa04.sh      Real:      444.05      514.83      497.06       26.85 	 -2.464%
numa04.sh       Sys:      230.39      375.79      316.23       48.58 	 5.8343%
numa04.sh      User:    35403.12    41004.10    39720.80     2163.08 	 -1.153%
numa05.sh      Real:      423.09      460.41      439.57       13.92 	 -1.428%
numa05.sh       Sys:      287.38      480.15      369.37       68.52 	 -7.964%
numa05.sh      User:    34732.12    38016.80    36255.85     1070.51 	 -1.704%

Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1529514181-9842-5-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-25 11:41:06 +02:00
Srikar Dronamraju
5f95ba7a43 sched/numa: Simplify load_too_imbalanced()
Currently load_too_imbalance() cares about the slope of imbalance.
It doesn't care of the direction of the imbalance.

However this may not work if nodes that are being compared have
dissimilar capacities. Few nodes might have more cores than other nodes
in the system. Also unlike traditional load balance at a NUMA sched
domain, multiple requests to migrate from the same source node to same
destination node may run in parallel. This can cause huge load
imbalance. This is specially true on a larger machines with either large
cores per node or more number of nodes in the system. Hence allow
move/swap only if the imbalance is going to reduce.

Running SPECjbb2005 on a 4 node machine and comparing bops/JVM
JVMS  LAST_PATCH  WITH_PATCH  %CHANGE
16    25058.2     25122.9     0.25
1     72950       73850       1.23

(numbers from v1 based on v4.17-rc5)
Testcase       Time:         Min         Max         Avg      StdDev
numa01.sh      Real:      516.14      892.41      739.84      151.32
numa01.sh       Sys:      153.16      192.99      177.70       14.58
numa01.sh      User:    39821.04    69528.92    57193.87    10989.48
numa02.sh      Real:       60.91       62.35       61.58        0.63
numa02.sh       Sys:       16.47       26.16       21.20        3.85
numa02.sh      User:     5227.58     5309.61     5265.17       31.04
numa03.sh      Real:      739.07      917.73      795.75       64.45
numa03.sh       Sys:       94.46      136.08      109.48       14.58
numa03.sh      User:    57478.56    72014.09    61764.48     5343.69
numa04.sh      Real:      442.61      715.43      530.31       96.12
numa04.sh       Sys:      224.90      348.63      285.61       48.83
numa04.sh      User:    35836.84    47522.47    40235.41     3985.26
numa05.sh      Real:      386.13      489.17      434.94       43.59
numa05.sh       Sys:      144.29      438.56      278.80      105.78
numa05.sh      User:    33255.86    36890.82    34879.31     1641.98

Testcase       Time:         Min         Max         Avg      StdDev 	 %Change
numa01.sh      Real:      435.78      653.81      534.58       83.20 	 38.39%
numa01.sh       Sys:      121.93      187.18      145.90       23.47 	 21.79%
numa01.sh      User:    37082.81    51402.80    43647.60     5409.75 	 31.03%
numa02.sh      Real:       60.64       61.63       61.19        0.40 	 0.637%
numa02.sh       Sys:       14.72       25.68       19.06        4.03 	 11.22%
numa02.sh      User:     5210.95     5266.69     5233.30       20.82 	 0.608%
numa03.sh      Real:      746.51      808.24      780.36       23.88 	 1.972%
numa03.sh       Sys:       97.26      108.48      105.07        4.28 	 4.197%
numa03.sh      User:    58956.30    61397.05    60162.95     1050.82 	 2.661%
numa04.sh      Real:      465.97      519.27      484.81       19.62 	 9.385%
numa04.sh       Sys:      304.43      359.08      334.68       20.64 	 -14.6%
numa04.sh      User:    37544.16    41186.15    39262.44     1314.91 	 2.478%
numa05.sh      Real:      411.57      457.20      433.29       16.58 	 0.380%
numa05.sh       Sys:      230.05      435.48      339.95       67.58 	 -17.9%
numa05.sh      User:    33325.54    36896.31    35637.84     1222.64 	 -2.12%

Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Rik van Riel <riel@surriel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1529514181-9842-4-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-25 11:41:06 +02:00
Srikar Dronamraju
305c1fac32 sched/numa: Evaluate move once per node
task_numa_compare() helps choose the best CPU to move or swap the
selected task. To achieve this task_numa_compare() is called for every
CPU in the node. Currently it evaluates if the task can be moved/swapped
for each of the CPUs. However the move evaluation is mostly independent
of the CPU. Evaluating the move logic once per node, provides scope for
simplifying task_numa_compare().

Running SPECjbb2005 on a 4 node machine and comparing bops/JVM
JVMS  LAST_PATCH  WITH_PATCH  %CHANGE
16    25705.2     25058.2     -2.51
1     74433       72950       -1.99

Running SPECjbb2005 on a 16 node machine and comparing bops/JVM
JVMS  LAST_PATCH  WITH_PATCH  %CHANGE
8     96589.6     105930      9.670
1     181830      178624      -1.76

(numbers from v1 based on v4.17-rc5)
Testcase       Time:         Min         Max         Avg      StdDev
numa01.sh      Real:      440.65      941.32      758.98      189.17
numa01.sh       Sys:      183.48      320.07      258.42       50.09
numa01.sh      User:    37384.65    71818.14    60302.51    13798.96
numa02.sh      Real:       61.24       65.35       62.49        1.49
numa02.sh       Sys:       16.83       24.18       21.40        2.60
numa02.sh      User:     5219.59     5356.34     5264.03       49.07
numa03.sh      Real:      822.04      912.40      873.55       37.35
numa03.sh       Sys:      118.80      140.94      132.90        7.60
numa03.sh      User:    62485.19    70025.01    67208.33     2967.10
numa04.sh      Real:      690.66      872.12      778.49       65.44
numa04.sh       Sys:      459.26      563.03      494.03       42.39
numa04.sh      User:    51116.44    70527.20    58849.44     8461.28
numa05.sh      Real:      418.37      562.28      525.77       54.27
numa05.sh       Sys:      299.45      481.00      392.49       64.27
numa05.sh      User:    34115.09    41324.02    39105.30     2627.68

Testcase       Time:         Min         Max         Avg      StdDev 	 %Change
numa01.sh      Real:      516.14      892.41      739.84      151.32 	 2.587%
numa01.sh       Sys:      153.16      192.99      177.70       14.58 	 45.42%
numa01.sh      User:    39821.04    69528.92    57193.87    10989.48 	 5.435%
numa02.sh      Real:       60.91       62.35       61.58        0.63 	 1.477%
numa02.sh       Sys:       16.47       26.16       21.20        3.85 	 0.943%
numa02.sh      User:     5227.58     5309.61     5265.17       31.04 	 -0.02%
numa03.sh      Real:      739.07      917.73      795.75       64.45 	 9.776%
numa03.sh       Sys:       94.46      136.08      109.48       14.58 	 21.39%
numa03.sh      User:    57478.56    72014.09    61764.48     5343.69 	 8.813%
numa04.sh      Real:      442.61      715.43      530.31       96.12 	 46.79%
numa04.sh       Sys:      224.90      348.63      285.61       48.83 	 72.97%
numa04.sh      User:    35836.84    47522.47    40235.41     3985.26 	 46.26%
numa05.sh      Real:      386.13      489.17      434.94       43.59 	 20.88%
numa05.sh       Sys:      144.29      438.56      278.80      105.78 	 40.77%
numa05.sh      User:    33255.86    36890.82    34879.31     1641.98 	 12.11%

Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1529514181-9842-3-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-25 11:41:06 +02:00
Yun Wang
3d6c50c27b sched/debug: Show the sum wait time of a task group
Although we can rely on cpuacct to present the CPU usage of task
groups, it is hard to tell how intense the competition is between
these groups on CPU resources.

Monitoring the wait time or sched_debug of each process could be
very expensive, and there is no good way to accurately represent the
conflict with these info, we need the wait time on group dimension.

Thus we introduce group's wait_sum to represent the resource conflict
between task groups, which is simply the sum of the wait time of
the group's cfs_rq.

The 'cpu.stat' is modified to show the statistic, like:

   nr_periods 0
   nr_throttled 0
   throttled_time 0
   wait_sum 2035098795584

Now we can monitor the changes of wait_sum to tell how much a
a task group is suffering in the fight of CPU resources.

For example:

   (wait_sum - last_wait_sum) * 100 / (nr_cpu * period_ns) == X%

means the task group paid X percentage of period on waiting
for the CPU.

Signed-off-by: Michael Wang <yun.wang@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/ff7dae3b-e5f9-7157-1caa-ff02c6b23dc1@linux.alibaba.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-25 11:41:05 +02:00
Vincent Guittot
2e62c4743a sched/fair: Remove #ifdefs from scale_rt_capacity()
Reuse cpu_util_irq() that has been defined for schedutil and set irq util
to 0 when !CONFIG_IRQ_TIME_ACCOUNTING.

But the compiler is not able to optimize the sequence (at least with
aarch64 GCC 7.2.1):

	free *= (max - irq);
	free /= max;

when irq is fixed to 0

Add a new inline function scale_irq_capacity() that will scale utilization
when irq is accounted. Reuse this funciton in schedutil which applies
similar formula.

Suggested-by: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: rjw@rjwysocki.net
Link: http://lkml.kernel.org/r/1532001606-6689-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-25 11:41:05 +02:00
Ingo Molnar
4765096f4f Merge branch 'sched/urgent' into sched/core, to pick up fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-25 11:29:58 +02:00
Hailong Liu
f3d133ee0a sched/rt: Restore rt_runtime after disabling RT_RUNTIME_SHARE
NO_RT_RUNTIME_SHARE feature is used to prevent a CPU borrow enough
runtime with a spin-rt-task.

However, if RT_RUNTIME_SHARE feature is enabled and rt_rq has borrowd
enough rt_runtime at the beginning, rt_runtime can't be restored to
its initial bandwidth rt_runtime after we disable RT_RUNTIME_SHARE.

E.g. on my PC with 4 cores, procedure to reproduce:
1) Make sure  RT_RUNTIME_SHARE is enabled
 cat /sys/kernel/debug/sched_features
  GENTLE_FAIR_SLEEPERS START_DEBIT NO_NEXT_BUDDY LAST_BUDDY
  CACHE_HOT_BUDDY WAKEUP_PREEMPTION NO_HRTICK NO_DOUBLE_TICK
  LB_BIAS NONTASK_CAPACITY TTWU_QUEUE NO_SIS_AVG_CPU SIS_PROP
  NO_WARN_DOUBLE_CLOCK RT_PUSH_IPI RT_RUNTIME_SHARE NO_LB_MIN
  ATTACH_AGE_LOAD WA_IDLE WA_WEIGHT WA_BIAS
2) Start a spin-rt-task
 ./loop_rr &
3) set affinity to the last cpu
 taskset -p 8 $pid_of_loop_rr
4) Observe that last cpu have borrowed enough runtime.
 cat /proc/sched_debug | grep rt_runtime
  .rt_runtime                    : 950.000000
  .rt_runtime                    : 900.000000
  .rt_runtime                    : 950.000000
  .rt_runtime                    : 1000.000000
5) Disable RT_RUNTIME_SHARE
 echo NO_RT_RUNTIME_SHARE > /sys/kernel/debug/sched_features
6) Observe that rt_runtime can not been restored
 cat /proc/sched_debug | grep rt_runtime
  .rt_runtime                    : 950.000000
  .rt_runtime                    : 900.000000
  .rt_runtime                    : 950.000000
  .rt_runtime                    : 1000.000000

This patch help to restore rt_runtime after we disable
RT_RUNTIME_SHARE.

Signed-off-by: Hailong Liu <liu.hailong6@zte.com.cn>
Signed-off-by: Jiang Biao <jiang.biao2@zte.com.cn>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: zhong.weidong@zte.com.cn
Link: http://lkml.kernel.org/r/1531874815-39357-1-git-send-email-liu.hailong6@zte.com.cn
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-25 11:29:08 +02:00
Daniel Bristot de Oliveira
840d719604 sched/deadline: Update rq_clock of later_rq when pushing a task
Daniel Casini got this warn while running a DL task here at RetisLab:

  [  461.137582] ------------[ cut here ]------------
  [  461.137583] rq->clock_update_flags < RQCF_ACT_SKIP
  [  461.137599] WARNING: CPU: 4 PID: 2354 at kernel/sched/sched.h:967 assert_clock_updated.isra.32.part.33+0x17/0x20
      [a ton of modules]
  [  461.137646] CPU: 4 PID: 2354 Comm: label_image Not tainted 4.18.0-rc4+ #3
  [  461.137647] Hardware name: ASUS All Series/Z87-K, BIOS 0801 09/02/2013
  [  461.137649] RIP: 0010:assert_clock_updated.isra.32.part.33+0x17/0x20
  [  461.137649] Code: ff 48 89 83 08 09 00 00 eb c6 66 0f 1f 84 00 00 00 00 00 55 48 c7 c7 98 7a 6c a5 c6 05 bc 0d 54 01 01 48 89 e5 e8 a9 84 fb ff <0f> 0b 5d c3 0f 1f 44 00 00 0f 1f 44 00 00 83 7e 60 01 74 0a 48 3b
  [  461.137673] RSP: 0018:ffffa77e08cafc68 EFLAGS: 00010082
  [  461.137674] RAX: 0000000000000000 RBX: ffff8b3fc1702d80 RCX: 0000000000000006
  [  461.137674] RDX: 0000000000000007 RSI: 0000000000000096 RDI: ffff8b3fded164b0
  [  461.137675] RBP: ffffa77e08cafc68 R08: 0000000000000026 R09: 0000000000000339
  [  461.137676] R10: ffff8b3fd060d410 R11: 0000000000000026 R12: ffffffffa4e14e20
  [  461.137677] R13: ffff8b3fdec22940 R14: ffff8b3fc1702da0 R15: ffff8b3fdec22940
  [  461.137678] FS:  00007efe43ee5700(0000) GS:ffff8b3fded00000(0000) knlGS:0000000000000000
  [  461.137679] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  [  461.137680] CR2: 00007efe30000010 CR3: 0000000301744003 CR4: 00000000001606e0
  [  461.137680] Call Trace:
  [  461.137684]  push_dl_task.part.46+0x3bc/0x460
  [  461.137686]  task_woken_dl+0x60/0x80
  [  461.137689]  ttwu_do_wakeup+0x4f/0x150
  [  461.137690]  ttwu_do_activate+0x77/0x80
  [  461.137692]  try_to_wake_up+0x1d6/0x4c0
  [  461.137693]  wake_up_q+0x32/0x70
  [  461.137696]  do_futex+0x7e7/0xb50
  [  461.137698]  __x64_sys_futex+0x8b/0x180
  [  461.137701]  do_syscall_64+0x5a/0x110
  [  461.137703]  entry_SYSCALL_64_after_hwframe+0x44/0xa9
  [  461.137705] RIP: 0033:0x7efe4918ca26
  [  461.137705] Code: 00 00 00 74 17 49 8b 48 20 44 8b 59 10 41 83 e3 30 41 83 fb 20 74 1e be 85 00 00 00 41 ba 01 00 00 00 41 b9 01 00 00 04 0f 05 <48> 3d 01 f0 ff ff 73 1f 31 c0 c3 be 8c 00 00 00 49 89 c8 4d 31 d2
  [  461.137738] RSP: 002b:00007efe43ee4928 EFLAGS: 00000283 ORIG_RAX: 00000000000000ca
  [  461.137739] RAX: ffffffffffffffda RBX: 0000000005094df0 RCX: 00007efe4918ca26
  [  461.137740] RDX: 0000000000000001 RSI: 0000000000000085 RDI: 0000000005094e24
  [  461.137741] RBP: 00007efe43ee49c0 R08: 0000000005094e20 R09: 0000000004000001
  [  461.137741] R10: 0000000000000001 R11: 0000000000000283 R12: 0000000000000000
  [  461.137742] R13: 0000000005094df8 R14: 0000000000000001 R15: 0000000000448a10
  [  461.137743] ---[ end trace 187df4cad2bf7649 ]---

This warning happened in the push_dl_task(), because
__add_running_bw()->cpufreq_update_util() is getting the rq_clock of
the later_rq before its update, which takes place at activate_task().
The fix then is to update the rq_clock before calling add_running_bw().

To avoid double rq_clock_update() call, we set ENQUEUE_NOCLOCK flag to
activate_task().

Reported-by: Daniel Casini <daniel.casini@santannapisa.it>
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Cc: Clark Williams <williams@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luca Abeni <luca.abeni@santannapisa.it>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tommaso Cucinotta <tommaso.cucinotta@santannapisa.it>
Fixes: e0367b1267 sched/deadline: Move CPU frequency selection triggering points
Link: http://lkml.kernel.org/r/ca31d073a4788acf0684a8b255f14fea775ccf20.1532077269.git.bristot@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-25 11:29:08 +02:00
Yi Wang
6cd0c583b0 sched/topology: Check variable group before dereferencing it
The 'group' variable in sched_domain_debug_one() is not checked
when firstly used in cpumask_test_cpu(cpu, sched_group_span(group)),
but it might be NULL (it is checked later in the following while loop)
and may cause NULL pointer dereference.

We need to check it before using to avoid NULL dereference.

Signed-off-by: Yi Wang <wang.yi59@zte.com.cn>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Jiang Biao <jiang.biao2@zte.com.cn>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: zhong.weidong@zte.com.cn
Link: http://lkml.kernel.org/r/1532319547-33335-1-git-send-email-wang.yi59@zte.com.cn
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-25 11:25:07 +02:00
Peter Zijlstra
9407f5a7ee sched/clock: Close a hole in sched_clock_init()
All data required for the 'unstable' sched_clock must be set-up _before_
enabling it -- setting sched_clock_running. This includes the
__gtod_offset but also a recent scd stamp.

Make the gtod-offset update also set the csd stamp -- it requires the
same two clock reads _anyway_. This doesn't hurt in the
sched_clock_tick_stable() case and ensures sched_clock_init() gets
everything set-up before use.

Also switch to unconditional IRQ-disable/enable because the static key
stuff already requires this is not ran with IRQs disabled.

Fixes: 857baa87b6 ("sched/clock: Enable sched clock early")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: steven.sistare@oracle.com
Cc: daniel.m.jordan@oracle.com
Cc: linux@armlinux.org.uk
Cc: schwidefsky@de.ibm.com
Cc: heiko.carstens@de.ibm.com
Cc: john.stultz@linaro.org
Cc: sboyd@codeaurora.org
Cc: hpa@zytor.com
Cc: douly.fnst@cn.fujitsu.com
Cc: prarit@redhat.com
Cc: feng.tang@intel.com
Cc: pmladek@suse.com
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: linux-s390@vger.kernel.org
Cc: boris.ostrovsky@oracle.com
Cc: jgross@suse.com
Cc: pbonzini@redhat.com
Link: https://lkml.kernel.org/r/20180720080911.GM2494@hirez.programming.kicks-ass.net
2018-07-20 11:58:00 +02:00
Pavel Tatashin
46457ea464 sched/clock: Use static key for sched_clock_running
sched_clock_running may be read every time sched_clock_cpu() is called.
Yet, this variable is updated only twice during boot, and never changes
again, therefore it is better to make it a static key.

Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: steven.sistare@oracle.com
Cc: daniel.m.jordan@oracle.com
Cc: linux@armlinux.org.uk
Cc: schwidefsky@de.ibm.com
Cc: heiko.carstens@de.ibm.com
Cc: john.stultz@linaro.org
Cc: sboyd@codeaurora.org
Cc: hpa@zytor.com
Cc: douly.fnst@cn.fujitsu.com
Cc: prarit@redhat.com
Cc: feng.tang@intel.com
Cc: pmladek@suse.com
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: linux-s390@vger.kernel.org
Cc: boris.ostrovsky@oracle.com
Cc: jgross@suse.com
Cc: pbonzini@redhat.com
Link: https://lkml.kernel.org/r/20180719205545.16512-25-pasha.tatashin@oracle.com
2018-07-20 00:02:43 +02:00
Pavel Tatashin
857baa87b6 sched/clock: Enable sched clock early
Allow sched_clock() to be used before schec_clock_init() is called.  This
provides a way to get early boot timestamps on machines with unstable
clocks.

Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: steven.sistare@oracle.com
Cc: daniel.m.jordan@oracle.com
Cc: linux@armlinux.org.uk
Cc: schwidefsky@de.ibm.com
Cc: heiko.carstens@de.ibm.com
Cc: john.stultz@linaro.org
Cc: sboyd@codeaurora.org
Cc: hpa@zytor.com
Cc: douly.fnst@cn.fujitsu.com
Cc: peterz@infradead.org
Cc: prarit@redhat.com
Cc: feng.tang@intel.com
Cc: pmladek@suse.com
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: linux-s390@vger.kernel.org
Cc: boris.ostrovsky@oracle.com
Cc: jgross@suse.com
Cc: pbonzini@redhat.com
Link: https://lkml.kernel.org/r/20180719205545.16512-24-pasha.tatashin@oracle.com
2018-07-20 00:02:43 +02:00
Pavel Tatashin
5d2a4e91a5 sched/clock: Move sched clock initialization and merge with generic clock
sched_clock_postinit() initializes a generic clock on systems where no
other clock is provided. This function may be called only after
timekeeping_init().

Rename sched_clock_postinit to generic_clock_inti() and call it from
sched_clock_init(). Move the call for sched_clock_init() until after
time_init().

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: steven.sistare@oracle.com
Cc: daniel.m.jordan@oracle.com
Cc: linux@armlinux.org.uk
Cc: schwidefsky@de.ibm.com
Cc: heiko.carstens@de.ibm.com
Cc: john.stultz@linaro.org
Cc: sboyd@codeaurora.org
Cc: hpa@zytor.com
Cc: douly.fnst@cn.fujitsu.com
Cc: prarit@redhat.com
Cc: feng.tang@intel.com
Cc: pmladek@suse.com
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: linux-s390@vger.kernel.org
Cc: boris.ostrovsky@oracle.com
Cc: jgross@suse.com
Cc: pbonzini@redhat.com
Link: https://lkml.kernel.org/r/20180719205545.16512-23-pasha.tatashin@oracle.com
2018-07-20 00:02:43 +02:00
Andrea Parri
7696f9910a sched/Documentation: Update wake_up() & co. memory-barrier guarantees
Both the implementation and the users' expectation [1] for the various
wakeup primitives have evolved over time, but the documentation has not
kept up with these changes: brings it into 2018.

[1] http://lkml.kernel.org/r/20180424091510.GB4064@hirez.programming.kicks-ass.net

Also applied feedback from Alan Stern.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrea Parri <andrea.parri@amarulasolutions.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Akira Yokosawa <akiyks@gmail.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Daniel Lustig <dlustig@nvidia.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Jade Alglave <j.alglave@ucl.ac.uk>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luc Maranget <luc.maranget@inria.fr>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arch@vger.kernel.org
Cc: parri.andrea@gmail.com
Link: http://lkml.kernel.org/r/20180716180605.16115-12-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-17 09:30:34 +02:00
Andrea Parri
3d85b27037 locking/spinlock, sched/core: Clarify requirements for smp_mb__after_spinlock()
There are 11 interpretations of the requirements described in the header
comment for smp_mb__after_spinlock(): one for each LKMM maintainer, and
one currently encoded in the Cat file. Stick to the latter (until a more
satisfactory solution is available).

This also reworks some snippets related to the barrier to illustrate the
requirements and to link them to the idioms which are relied upon at its
call sites.

Suggested-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Andrea Parri <andrea.parri@amarulasolutions.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: akiyks@gmail.com
Cc: dhowells@redhat.com
Cc: j.alglave@ucl.ac.uk
Cc: linux-arch@vger.kernel.org
Cc: luc.maranget@inria.fr
Cc: npiggin@gmail.com
Cc: parri.andrea@gmail.com
Cc: stern@rowland.harvard.edu
Link: http://lkml.kernel.org/r/20180716180605.16115-11-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-17 09:30:33 +02:00
Andrea Parri
76e079fefc sched/core: Use smp_mb() in wake_woken_function()
wake_woken_function() synchronizes with wait_woken() as follows:

  [wait_woken]                       [wake_woken_function]

  entry->flags &= ~wq_flag_woken;    condition = true;
  smp_mb();                          smp_wmb();
  if (condition)                     wq_entry->flags |= wq_flag_woken;
     break;

This commit replaces the above smp_wmb() with an smp_mb() in order to
guarantee that either wait_woken() sees the wait condition being true
or the store to wq_entry->flags in woken_wake_function() follows the
store in wait_woken() in the coherence order (so that the former can
eventually be observed by wait_woken()).

The commit also fixes a comment associated to set_current_state() in
wait_woken(): the comment pairs the barrier in set_current_state() to
the above smp_wmb(), while the actual pairing involves the barrier in
set_current_state() and the barrier executed by the try_to_wake_up()
in wake_woken_function().

Signed-off-by: Andrea Parri <andrea.parri@amarulasolutions.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: akiyks@gmail.com
Cc: boqun.feng@gmail.com
Cc: dhowells@redhat.com
Cc: j.alglave@ucl.ac.uk
Cc: linux-arch@vger.kernel.org
Cc: luc.maranget@inria.fr
Cc: npiggin@gmail.com
Cc: parri.andrea@gmail.com
Cc: stern@rowland.harvard.edu
Cc: will.deacon@arm.com
Link: http://lkml.kernel.org/r/20180716180605.16115-10-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-17 09:30:33 +02:00
Sebastian Andrzej Siewior
af0fffd930 sched/core: Remove get_cpu() from sched_fork()
get_cpu() disables preemption for the entire sched_fork() function.
This get_cpu() was introduced in commit:

  dd41f596cd ("sched: cfs core code")

... which also invoked sched_balance_self() and this function
required preemption do be off.

Today, sched_balance_self() seems to be moved to ->task_fork callback
which is invoked while the ->pi_lock is held.

set_load_weight() could invoke reweight_task() which then via $callchain
might end up in smp_processor_id() but since `update_load' is false
this won't happen.

I didn't find any this_cpu*() or similar usage during the initialisation
of the task_struct.

The `cpu' value (from get_cpu()) is only used later in __set_task_cpu()
while the ->pi_lock lock is held.

Based on this it is possible to remove get_cpu() and use
smp_processor_id() for the `cpu' variable without breaking anything.

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180706130615.g2ex2kmfu5kcvlq6@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-16 00:16:29 +02:00
Peter Zijlstra
45f5519ec5 sched/cpufreq: Clarify sugov_get_util()
Add a few comments to (hopefully) clarifying some of the magic in
sugov_get_util().

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: claudio@evidence.eu.com
Cc: daniel.lezcano@linaro.org
Cc: dietmar.eggemann@arm.com
Cc: joel@joelfernandes.org
Cc: juri.lelli@redhat.com
Cc: luca.abeni@santannapisa.it
Cc: patrick.bellasi@arm.com
Cc: quentin.perret@arm.com
Cc: rjw@rjwysocki.net
Cc: valentin.schneider@arm.com
Link: http://lkml.kernel.org/r/20180705123617.GM2458@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-16 00:16:29 +02:00
Vincent Guittot
5fd778915a sched/sysctl: Remove unused sched_time_avg_ms sysctl
/proc/sys/kernel/sched_time_avg_ms entry is not used anywhere,
remove it.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Luis R. Rodriguez <mcgrof@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: claudio@evidence.eu.com
Cc: daniel.lezcano@linaro.org
Cc: dietmar.eggemann@arm.com
Cc: joel@joelfernandes.org
Cc: juri.lelli@redhat.com
Cc: luca.abeni@santannapisa.it
Cc: patrick.bellasi@arm.com
Cc: quentin.perret@arm.com
Cc: rjw@rjwysocki.net
Cc: valentin.schneider@arm.com
Cc: viresh.kumar@linaro.org
Link: http://lkml.kernel.org/r/1530200714-4504-12-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-16 00:16:29 +02:00
Vincent Guittot
bbb62c0b02 sched/core: Remove the rt_avg code
rt_avg is not used anywhere anymore, so we can remove all related code.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: claudio@evidence.eu.com
Cc: daniel.lezcano@linaro.org
Cc: dietmar.eggemann@arm.com
Cc: joel@joelfernandes.org
Cc: juri.lelli@redhat.com
Cc: luca.abeni@santannapisa.it
Cc: patrick.bellasi@arm.com
Cc: quentin.perret@arm.com
Cc: rjw@rjwysocki.net
Cc: valentin.schneider@arm.com
Cc: viresh.kumar@linaro.org
Link: http://lkml.kernel.org/r/1530200714-4504-11-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-16 00:16:29 +02:00
Vincent Guittot
523e979d31 sched/core: Use PELT for scale_rt_capacity()
The utilization of the CPU by RT, DL and IRQs are now tracked with
PELT so we can use these metrics instead of rt_avg to evaluate the remaining
capacity available for CFS class.

scale_rt_capacity() behavior has been changed and now returns the remaining
capacity available for CFS instead of a scaling factor because RT, DL and
IRQ provide now absolute utilization value.

The same formula as schedutil is used:

  IRQ util_avg + (1 - IRQ util_avg / max capacity ) * /Sum rq util_avg

but the implementation is different because it doesn't return the same value
and doesn't benefit of the same optimization.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: claudio@evidence.eu.com
Cc: daniel.lezcano@linaro.org
Cc: dietmar.eggemann@arm.com
Cc: joel@joelfernandes.org
Cc: juri.lelli@redhat.com
Cc: luca.abeni@santannapisa.it
Cc: patrick.bellasi@arm.com
Cc: quentin.perret@arm.com
Cc: rjw@rjwysocki.net
Cc: valentin.schneider@arm.com
Cc: viresh.kumar@linaro.org
Link: http://lkml.kernel.org/r/1530200714-4504-10-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-16 00:16:25 +02:00
Vincent Guittot
dfa444dc2f sched/cpufreq: Remove sugov_aggregate_util()
There is no reason why sugov_get_util() and sugov_aggregate_util()
were in fact separate functions.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
[ Rebased after adding irq tracking and fixed some compilation errors. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: claudio@evidence.eu.com
Cc: daniel.lezcano@linaro.org
Cc: dietmar.eggemann@arm.com
Cc: joel@joelfernandes.org
Cc: juri.lelli@redhat.com
Cc: luca.abeni@santannapisa.it
Cc: patrick.bellasi@arm.com
Cc: quentin.perret@arm.com
Cc: rjw@rjwysocki.net
Cc: valentin.schneider@arm.com
Link: http://lkml.kernel.org/r/1530200714-4504-9-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-15 23:51:21 +02:00
Vincent Guittot
9033ea1188 cpufreq/schedutil: Take time spent in interrupts into account
The time spent executing IRQ handlers can be significant but it is not reflected
in the utilization of CPU when deciding to choose an OPP. Now that we have
access to this metric, schedutil can take it into account when selecting
the OPP for a CPU.

RQS utilization don't see the time spend under interrupt context and report
their value in the normal context time window. We need to compensate this when
adding interrupt utilization

The CPU utilization is:

  IRQ util_avg + (1 - IRQ util_avg / max capacity ) * /Sum rq util_avg

A test with iperf on hikey (octo arm64) gives the following speedup:

 iperf -c server_address -r -t 5

 w/o patch		w/ patch
 Tx 276 Mbits/sec	304 Mbits/sec +10%
 Rx 299 Mbits/sec	328 Mbits/sec  +9%

 8 iterations
 stdev is lower than 1%

Only WFI idle state is enabled (shallowest idle state).

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: claudio@evidence.eu.com
Cc: daniel.lezcano@linaro.org
Cc: dietmar.eggemann@arm.com
Cc: joel@joelfernandes.org
Cc: juri.lelli@redhat.com
Cc: luca.abeni@santannapisa.it
Cc: patrick.bellasi@arm.com
Cc: quentin.perret@arm.com
Cc: rjw@rjwysocki.net
Cc: valentin.schneider@arm.com
Link: http://lkml.kernel.org/r/1530200714-4504-8-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-15 23:51:21 +02:00
Vincent Guittot
91c27493e7 sched/irq: Add IRQ utilization tracking
interrupt and steal time are the only remaining activities tracked by
rt_avg. Like for sched classes, we can use PELT to track their average
utilization of the CPU. But unlike sched class, we don't track when
entering/leaving interrupt; Instead, we take into account the time spent
under interrupt context when we update rqs' clock (rq_clock_task).
This also means that we have to decay the normal context time and account
for interrupt time during the update.

That's also important to note that because:

  rq_clock == rq_clock_task + interrupt time

and rq_clock_task is used by a sched class to compute its utilization, the
util_avg of a sched class only reflects the utilization of the time spent
in normal context and not of the whole time of the CPU. The utilization of
interrupt gives an more accurate level of utilization of CPU.

The CPU utilization is:

  avg_irq + (1 - avg_irq / max capacity) * /Sum avg_rq

Most of the time, avg_irq is small and neglictible so the use of the
approximation CPU utilization = /Sum avg_rq was enough.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: claudio@evidence.eu.com
Cc: daniel.lezcano@linaro.org
Cc: dietmar.eggemann@arm.com
Cc: joel@joelfernandes.org
Cc: juri.lelli@redhat.com
Cc: luca.abeni@santannapisa.it
Cc: patrick.bellasi@arm.com
Cc: quentin.perret@arm.com
Cc: rjw@rjwysocki.net
Cc: valentin.schneider@arm.com
Cc: viresh.kumar@linaro.org
Link: http://lkml.kernel.org/r/1530200714-4504-7-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-15 23:51:21 +02:00
Vincent Guittot
8cc90515a4 cpufreq/schedutil: Use DL utilization tracking
Now that we have both the DL class bandwidth requirement and the DL class
utilization, we can detect when CPU is fully used so we should run at max.
Otherwise, we keep using the DL bandwidth requirement to define the
utilization of the CPU.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: claudio@evidence.eu.com
Cc: daniel.lezcano@linaro.org
Cc: dietmar.eggemann@arm.com
Cc: joel@joelfernandes.org
Cc: juri.lelli@redhat.com
Cc: luca.abeni@santannapisa.it
Cc: patrick.bellasi@arm.com
Cc: quentin.perret@arm.com
Cc: rjw@rjwysocki.net
Cc: valentin.schneider@arm.com
Link: http://lkml.kernel.org/r/1530200714-4504-6-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-15 23:51:21 +02:00
Vincent Guittot
3727e0e163 sched/dl: Add dl_rq utilization tracking
Similarly to what happens with RT tasks, CFS tasks can be preempted by DL
tasks and the CFS's utilization might no longer describes the real
utilization level.

Current DL bandwidth reflects the requirements to meet deadline when tasks are
enqueued but not the current utilization of the DL sched class. We track
DL class utilization to estimate the system utilization.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: claudio@evidence.eu.com
Cc: daniel.lezcano@linaro.org
Cc: dietmar.eggemann@arm.com
Cc: joel@joelfernandes.org
Cc: juri.lelli@redhat.com
Cc: luca.abeni@santannapisa.it
Cc: patrick.bellasi@arm.com
Cc: quentin.perret@arm.com
Cc: rjw@rjwysocki.net
Cc: valentin.schneider@arm.com
Cc: viresh.kumar@linaro.org
Link: http://lkml.kernel.org/r/1530200714-4504-5-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-15 23:51:20 +02:00
Vincent Guittot
3ae117c6cd cpufreq/schedutil: Use RT utilization tracking
Add both CFS and RT utilization when selecting an OPP for CFS tasks as RT
can preempt and steal CFS's running time.

RT util_avg is used to take into account the utilization of RT tasks
on the CPU when selecting OPP. If a RT task migrate, the RT utilization
will not migrate but will decay over time. On an overloaded CPU, CFS
utilization reflects the remaining utilization avialable on CPU. When RT
task migrates, the CFS utilization will increase when tasks will start to
use the newly available capacity. At the same pace, RT utilization will
decay and both variations will compensate each other to keep unchanged
overall utilization and will prevent any OPP drop.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: claudio@evidence.eu.com
Cc: daniel.lezcano@linaro.org
Cc: dietmar.eggemann@arm.com
Cc: joel@joelfernandes.org
Cc: juri.lelli@redhat.com
Cc: luca.abeni@santannapisa.it
Cc: patrick.bellasi@arm.com
Cc: quentin.perret@arm.com
Cc: rjw@rjwysocki.net
Cc: valentin.schneider@arm.com
Link: http://lkml.kernel.org/r/1530200714-4504-4-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-15 23:51:20 +02:00
Vincent Guittot
371bf42732 sched/rt: Add rt_rq utilization tracking
schedutil governor relies on cfs_rq's util_avg to choose the OPP when CFS
tasks are running. When the CPU is overloaded by CFS and RT tasks, CFS tasks
are preempted by RT tasks and in this case util_avg reflects the remaining
capacity but not what CFS want to use. In such case, schedutil can select a
lower OPP whereas the CPU is overloaded. In order to have a more accurate
view of the utilization of the CPU, we track the utilization of RT tasks.
Only util_avg is correctly tracked but not load_avg and runnable_load_avg
which are useless for rt_rq.

rt_rq uses rq_clock_task and cfs_rq uses cfs_rq_clock_task but they are
the same at the root group level, so the PELT windows of the util_sum are
aligned.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: claudio@evidence.eu.com
Cc: daniel.lezcano@linaro.org
Cc: dietmar.eggemann@arm.com
Cc: joel@joelfernandes.org
Cc: juri.lelli@redhat.com
Cc: luca.abeni@santannapisa.it
Cc: patrick.bellasi@arm.com
Cc: quentin.perret@arm.com
Cc: rjw@rjwysocki.net
Cc: valentin.schneider@arm.com
Cc: viresh.kumar@linaro.org
Link: http://lkml.kernel.org/r/1530200714-4504-3-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-15 23:51:20 +02:00
Vincent Guittot
c079629862 sched/pelt: Move PELT related code in a dedicated file
We want to track rt_rq's utilization as a part of the estimation of the
whole rq's utilization. This is necessary because rt tasks can steal
utilization to cfs tasks and make them lighter than they are.
As we want to use the same load tracking mecanism for both and prevent
useless dependency between cfs and rt code, PELT code is moved in a
dedicated file.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: claudio@evidence.eu.com
Cc: daniel.lezcano@linaro.org
Cc: dietmar.eggemann@arm.com
Cc: joel@joelfernandes.org
Cc: juri.lelli@redhat.com
Cc: luca.abeni@santannapisa.it
Cc: patrick.bellasi@arm.com
Cc: quentin.perret@arm.com
Cc: rjw@rjwysocki.net
Cc: valentin.schneider@arm.com
Cc: viresh.kumar@linaro.org
Link: http://lkml.kernel.org/r/1530200714-4504-2-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-15 23:51:20 +02:00
Quentin Perret
8fe5c5a937 sched/fair: Fix util_avg of new tasks for asymmetric systems
When a new task wakes-up for the first time, its initial utilization
is set to half of the spare capacity of its CPU. The current
implementation of post_init_entity_util_avg() uses SCHED_CAPACITY_SCALE
directly as a capacity reference. As a result, on a big.LITTLE system, a
new task waking up on an idle little CPU will be given ~512 of util_avg,
even if the CPU's capacity is significantly less than that.

Fix this by computing the spare capacity with arch_scale_cpu_capacity().

Signed-off-by: Quentin Perret <quentin.perret@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: morten.rasmussen@arm.com
Cc: patrick.bellasi@arm.com
Link: http://lkml.kernel.org/r/20180612112215.25448-1-quentin.perret@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-15 23:51:20 +02:00
Juri Lelli
e117cb52bd sched/deadline: Fix switched_from_dl() warning
Mark noticed that syzkaller is able to reliably trigger the following warning:

  dl_rq->running_bw > dl_rq->this_bw
  WARNING: CPU: 1 PID: 153 at kernel/sched/deadline.c:124 switched_from_dl+0x454/0x608
  Kernel panic - not syncing: panic_on_warn set ...

  CPU: 1 PID: 153 Comm: syz-executor253 Not tainted 4.18.0-rc3+ #29
  Hardware name: linux,dummy-virt (DT)
  Call trace:
   dump_backtrace+0x0/0x458
   show_stack+0x20/0x30
   dump_stack+0x180/0x250
   panic+0x2dc/0x4ec
   __warn_printk+0x0/0x150
   report_bug+0x228/0x2d8
   bug_handler+0xa0/0x1a0
   brk_handler+0x2f0/0x568
   do_debug_exception+0x1bc/0x5d0
   el1_dbg+0x18/0x78
   switched_from_dl+0x454/0x608
   __sched_setscheduler+0x8cc/0x2018
   sys_sched_setattr+0x340/0x758
   el0_svc_naked+0x30/0x34

syzkaller reproducer runs a bunch of threads that constantly switch
between DEADLINE and NORMAL classes while interacting through futexes.

The splat above is caused by the fact that if a DEADLINE task is setattr
back to NORMAL while in non_contending state (blocked on a futex -
inactive timer armed), its contribution to running_bw is not removed
before sub_rq_bw() gets called (!task_on_rq_queued() branch) and the
latter sees running_bw > this_bw.

Fix it by removing a task contribution from running_bw if the task is
not queued and in non_contending state while switched to a different
class.

Reported-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Reviewed-by: Luca Abeni <luca.abeni@santannapisa.it>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: claudio@evidence.eu.com
Cc: rostedt@goodmis.org
Link: http://lkml.kernel.org/r/20180711072948.27061-1-juri.lelli@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-15 23:47:33 +02:00
Ingo Molnar
4520843dfa Merge branch 'sched/urgent' into sched/core, to pick up fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-03 09:20:22 +02:00
Peter Zijlstra
1cef1150ef kthread, sched/core: Fix kthread_parkme() (again...)
Gaurav reports that commit:

  85f1abe001 ("kthread, sched/wait: Fix kthread_parkme() completion issue")

isn't working for him. Because of the following race:

> controller Thread                               CPUHP Thread
> takedown_cpu
> kthread_park
> kthread_parkme
> Set KTHREAD_SHOULD_PARK
>                                                 smpboot_thread_fn
>                                                 set Task interruptible
>
>
> wake_up_process
>  if (!(p->state & state))
>                 goto out;
>
>                                                 Kthread_parkme
>                                                 SET TASK_PARKED
>                                                 schedule
>                                                 raw_spin_lock(&rq->lock)
> ttwu_remote
> waiting for __task_rq_lock
>                                                 context_switch
>
>                                                 finish_lock_switch
>
>
>
>                                                 Case TASK_PARKED
>                                                 kthread_park_complete
>
>
> SET Running

Furthermore, Oleg noticed that the whole scheduler TASK_PARKED
handling is buggered because the TASK_DEAD thing is done with
preemption disabled, the current code can still complete early on
preemption :/

So basically revert that earlier fix and go with a variant of the
alternative mentioned in the commit. Promote TASK_PARKED to special
state to avoid the store-store issue on task->state leading to the
WARN in kthread_unpark() -> __kthread_bind().

But in addition, add wait_task_inactive() to kthread_park() to ensure
the task really is PARKED when we return from kthread_park(). This
avoids the whole kthread still gets migrated nonsense -- although it
would be really good to get this done differently.

Reported-by: Gaurav Kohli <gkohli@codeaurora.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 85f1abe001 ("kthread, sched/wait: Fix kthread_parkme() completion issue")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-03 09:17:30 +02:00
Vincent Guittot
3482d98bbc sched/util_est: Fix util_est_dequeue() for throttled cfs_rq
When a cfs_rq is throttled, parent cfs_rq->nr_running is decreased and
everything happens at cfs_rq level. Currently util_est stays unchanged
in such case and it keeps accounting the utilization of throttled tasks.
This can somewhat make sense as we don't dequeue tasks but only throttled
cfs_rq.

If a task of another group is enqueued/dequeued and root cfs_rq becomes
idle during the dequeue, util_est will be cleared whereas it was
accounting util_est of throttled tasks before. So the behavior of util_est
is not always the same regarding throttled tasks and depends of side
activity. Furthermore, util_est will not be updated when the cfs_rq is
unthrottled as everything happens at cfs_rq level. Main results is that
util_est will stay null whereas we now have running tasks. We have to wait
for the next dequeue/enqueue of the previously throttled tasks to get an
up to date util_est.

Remove the assumption that cfs_rq's estimated utilization of a CPU is 0
if there is no running task so the util_est of a task remains until the
latter is dequeued even if its cfs_rq has been throttled.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 7f65ea42eb ("sched/fair: Add util_est on top of PELT")
Link: http://lkml.kernel.org/r/1528972380-16268-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-03 09:17:30 +02:00
Xunlei Pang
f1d1be8aee sched/fair: Advance global expiration when period timer is restarted
When period gets restarted after some idle time, start_cfs_bandwidth()
doesn't update the expiration information, expire_cfs_rq_runtime() will
see cfs_rq->runtime_expires smaller than rq clock and go to the clock
drift logic, wasting needless CPU cycles on the scheduler hot path.

Update the global expiration in start_cfs_bandwidth() to avoid frequent
expire_cfs_rq_runtime() calls once a new period begins.

Signed-off-by: Xunlei Pang <xlpang@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180620101834.24455-2-xlpang@linux.alibaba.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-03 09:17:29 +02:00
Xunlei Pang
512ac999d2 sched/fair: Fix bandwidth timer clock drift condition
I noticed that cgroup task groups constantly get throttled even
if they have low CPU usage, this causes some jitters on the response
time to some of our business containers when enabling CPU quotas.

It's very simple to reproduce:

  mkdir /sys/fs/cgroup/cpu/test
  cd /sys/fs/cgroup/cpu/test
  echo 100000 > cpu.cfs_quota_us
  echo $$ > tasks

then repeat:

  cat cpu.stat | grep nr_throttled  # nr_throttled will increase steadily

After some analysis, we found that cfs_rq::runtime_remaining will
be cleared by expire_cfs_rq_runtime() due to two equal but stale
"cfs_{b|q}->runtime_expires" after period timer is re-armed.

The current condition to judge clock drift in expire_cfs_rq_runtime()
is wrong, the two runtime_expires are actually the same when clock
drift happens, so this condtion can never hit. The orginal design was
correctly done by this commit:

  a9cf55b286 ("sched: Expire invalid runtime")

... but was changed to be the current implementation due to its locking bug.

This patch introduces another way, it adds a new field in both structures
cfs_rq and cfs_bandwidth to record the expiration update sequence, and
uses them to figure out if clock drift happens (true if they are equal).

Signed-off-by: Xunlei Pang <xlpang@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 51f2176d74 ("sched/fair: Fix unlocked reads of some cfs_b->quota/period")
Link: http://lkml.kernel.org/r/20180620101834.24455-1-xlpang@linux.alibaba.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-03 09:17:29 +02:00
Vincent Guittot
296b2ffe7f sched/rt: Fix call to cpufreq_update_util()
With commit:

  8f111bc357 ("cpufreq/schedutil: Rewrite CPUFREQ_RT support")

the schedutil governor uses rq->rt.rt_nr_running to detect whether an
RT task is currently running on the CPU and to set frequency to max
if necessary.

cpufreq_update_util() is called in enqueue/dequeue_top_rt_rq() but
rq->rt.rt_nr_running has not been updated yet when dequeue_top_rt_rq() is
called so schedutil still considers that an RT task is running when the
last task is dequeued. The update of rq->rt.rt_nr_running happens later
in dequeue_rt_stack().

In fact, we can take advantage of the sequence that the dequeue then
re-enqueue rt entities when a rt task is enqueued or dequeued;
As a result enqueue_top_rt_rq() is always called when a task is
enqueued or dequeued and also when groups are throttled or unthrottled.
The only place that not use enqueue_top_rt_rq() is when root rt_rq is
throttled.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: efault@gmx.de
Cc: juri.lelli@redhat.com
Cc: patrick.bellasi@arm.com
Cc: viresh.kumar@linaro.org
Fixes: 8f111bc357 ('cpufreq/schedutil: Rewrite CPUFREQ_RT support')
Link: http://lkml.kernel.org/r/1530021202-21695-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-03 09:17:28 +02:00
Frederic Weisbecker
d9c0ffcabd sched/nohz: Skip remote tick on idle task entirely
Some people have reported that the warning in sched_tick_remote()
occasionally triggers, especially in favour of some RCU-Torture
pressure:

	WARNING: CPU: 11 PID: 906 at kernel/sched/core.c:3138 sched_tick_remote+0xb6/0xc0
	Modules linked in:
	CPU: 11 PID: 906 Comm: kworker/u32:3 Not tainted 4.18.0-rc2+ #1
	Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014
	Workqueue: events_unbound sched_tick_remote
	RIP: 0010:sched_tick_remote+0xb6/0xc0
	Code: e8 0f 06 b8 00 c6 03 00 fb eb 9d 8b 43 04 85 c0 75 8d 48 8b 83 e0 0a 00 00 48 85 c0 75 81 eb 88 48 89 df e8 bc fe ff ff eb aa <0f> 0b eb
	+c5 66 0f 1f 44 00 00 bf 17 00 00 00 e8 b6 2e fe ff 0f b6
	Call Trace:
	 process_one_work+0x1df/0x3b0
	 worker_thread+0x44/0x3d0
	 kthread+0xf3/0x130
	 ? set_worker_desc+0xb0/0xb0
	 ? kthread_create_worker_on_cpu+0x70/0x70
	 ret_from_fork+0x35/0x40

This happens when the remote tick applies on an idle task. Usually the
idle_cpu() check avoids that, but it is performed before we lock the
runqueue and it is therefore racy. It was intended to be that way in
order to prevent from useless runqueue locks since idle task tick
callback is a no-op.

Now if the racy check slips out of our hands and we end up remotely
ticking an idle task, the empty task_tick_idle() is harmless. Still
it won't pass the WARN_ON_ONCE() test that ensures rq_clock_task() is
not too far from curr->se.exec_start because update_curr_idle() doesn't
update the exec_start value like other scheduler policies. Hence the
reported false positive.

So let's have another check, while the rq is locked, to make sure we
don't remote tick on an idle task. The lockless idle_cpu() still applies
to avoid unecessary rq lock contention.

Reported-by: Jacek Tomaka <jacekt@dug.com>
Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reported-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1530203381-31234-1-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-03 09:17:28 +02:00
Li RongQing
03585a95cd sched/fair: Remove stale tg_unthrottle_up() comments
After commit:

  82958366cf ("sched: Replace update_shares weight distribution with per-entity computation")

tg_unthrottle_up() did not update the weight.

Signed-off-by: Li RongQing <lirongqing@baidu.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/lkml/1523423816-18322-1-git-send-email-lirongqing@baidu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-06-21 17:58:22 +02:00
Yisheng Xie
8f894bf47d sched/debug: Use match_string() helper instead of open-coded logic
match_string() returns the index of an array for a matching string,
which can be used instead of the open coded variant.

Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com>
Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/lkml/1527765086-19873-15-git-send-email-xieyisheng1@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-06-21 15:45:31 +02:00
Peter Zijlstra
ba2591a599 sched/smt: Update sched_smt_present at runtime
The static key sched_smt_present is only updated at boot time when SMT
siblings have been detected. Booting with maxcpus=1 and bringing the
siblings online after boot rebuilds the scheduling domains correctly but
does not update the static key, so the SMT code is not enabled.

Let the key be updated in the scheduler CPU hotplug code to fix this.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
2018-06-21 14:20:56 +02:00
Peter Zijlstra
b3dae109fa sched/swait: Rename to exclusive
Since swait basically implemented exclusive waits only, make sure
the API reflects that.

  $ git grep -l -e "\<swake_up\>"
		-e "\<swait_event[^ (]*"
		-e "\<prepare_to_swait\>" | while read file;
    do
	sed -i -e 's/\<swake_up\>/&_one/g'
	       -e 's/\<swait_event[^ (]*/&_exclusive/g'
	       -e 's/\<prepare_to_swait\>/&_exclusive/g' $file;
    done

With a few manual touch-ups.

Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: bigeasy@linutronix.de
Cc: oleg@redhat.com
Cc: paulmck@linux.vnet.ibm.com
Cc: pbonzini@redhat.com
Link: https://lkml.kernel.org/r/20180612083909.261946548@infradead.org
2018-06-20 11:35:56 +02:00
Peter Zijlstra
0abf17bc77 sched/swait: Switch to full exclusive mode
Linus noted that swait basically implements exclusive mode -- because
swake_up() only wakes a single waiter. And because of that it should
take care to properly deal with the interruptible case.

In short, the problem is that swake_up() can race with a signal. In
this this case it is possible the swake_up() 'wakes' the waiter that
is already on the way out because it just got a signal and the wakeup
gets lost.

The normal wait code is very careful and avoids this situation, make
sure we do too.

Copy the exact exclusive semantics from wait.

Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: bigeasy@linutronix.de
Cc: oleg@redhat.com
Cc: paulmck@linux.vnet.ibm.com
Cc: pbonzini@redhat.com
Link: https://lkml.kernel.org/r/20180612083909.209762413@infradead.org
2018-06-20 11:35:56 +02:00
Peter Zijlstra
6519750210 sched/swait: Remove __prepare_to_swait
There is no public user of this API, remove it.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: bigeasy@linutronix.de
Cc: oleg@redhat.com
Cc: paulmck@linux.vnet.ibm.com
Cc: pbonzini@redhat.com
Link: https://lkml.kernel.org/r/20180612083909.157076812@infradead.org
2018-06-20 11:35:56 +02:00
Mark Rutland
0ed557aa81 sched/core / kcov: avoid kcov_area during task switch
During a context switch, we first switch_mm() to the next task's mm,
then switch_to() that new task.  This means that vmalloc'd regions which
had previously been faulted in can transiently disappear in the context
of the prev task.

Functions instrumented by KCOV may try to access a vmalloc'd kcov_area
during this window, and as the fault handling code is instrumented, this
results in a recursive fault.

We must avoid accessing any kcov_area during this window.  We can do so
with a new flag in kcov_mode, set prior to switching the mm, and cleared
once the new task is live.  Since task_struct::kcov_mode isn't always a
specific enum kcov_mode value, this is made an unsigned int.

The manipulation is hidden behind kcov_{prepare,finish}_switch() helpers,
which are empty for !CONFIG_KCOV kernels.

The code uses macros because I can't use static inline functions without a
circular include dependency between <linux/sched.h> and <linux/kcov.h>,
since the definition of task_struct uses things defined in <linux/kcov.h>

Link: http://lkml.kernel.org/r/20180504135535.53744-4-mark.rutland@arm.com
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-15 07:55:24 +09:00
Kees Cook
6396bb2215 treewide: kzalloc() -> kcalloc()
The kzalloc() function has a 2-factor argument form, kcalloc(). This
patch replaces cases of:

        kzalloc(a * b, gfp)

with:
        kcalloc(a * b, gfp)

as well as handling cases of:

        kzalloc(a * b * c, gfp)

with:

        kzalloc(array3_size(a, b, c), gfp)

as it's slightly less ugly than:

        kzalloc_array(array_size(a, b), c, gfp)

This does, however, attempt to ignore constant size factors like:

        kzalloc(4 * 1024, gfp)

though any constants defined via macros get caught up in the conversion.

Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.

The Coccinelle script used for this was:

// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@

(
  kzalloc(
-	(sizeof(TYPE)) * E
+	sizeof(TYPE) * E
  , ...)
|
  kzalloc(
-	(sizeof(THING)) * E
+	sizeof(THING) * E
  , ...)
)

// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@

(
  kzalloc(
-	sizeof(u8) * (COUNT)
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(__u8) * (COUNT)
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(char) * (COUNT)
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(unsigned char) * (COUNT)
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(u8) * COUNT
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(__u8) * COUNT
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(char) * COUNT
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(unsigned char) * COUNT
+	COUNT
  , ...)
)

// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@

(
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * (COUNT_ID)
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * COUNT_ID
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * (COUNT_CONST)
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * COUNT_CONST
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * (COUNT_ID)
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * COUNT_ID
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * (COUNT_CONST)
+	COUNT_CONST, sizeof(THING)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * COUNT_CONST
+	COUNT_CONST, sizeof(THING)
  , ...)
)

// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@

- kzalloc
+ kcalloc
  (
-	SIZE * COUNT
+	COUNT, SIZE
  , ...)

// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@

(
  kzalloc(
-	sizeof(TYPE) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kzalloc(
-	sizeof(TYPE) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kzalloc(
-	sizeof(TYPE) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kzalloc(
-	sizeof(TYPE) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kzalloc(
-	sizeof(THING) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kzalloc(
-	sizeof(THING) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kzalloc(
-	sizeof(THING) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kzalloc(
-	sizeof(THING) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
)

// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@

(
  kzalloc(
-	sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kzalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kzalloc(
-	sizeof(THING1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kzalloc(
-	sizeof(THING1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kzalloc(
-	sizeof(TYPE1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
|
  kzalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
)

// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@

(
  kzalloc(
-	(COUNT) * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	COUNT * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	COUNT * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	(COUNT) * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	COUNT * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	(COUNT) * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	(COUNT) * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	COUNT * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
)

// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@

(
  kzalloc(C1 * C2 * C3, ...)
|
  kzalloc(
-	(E1) * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kzalloc(
-	(E1) * (E2) * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kzalloc(
-	(E1) * (E2) * (E3)
+	array3_size(E1, E2, E3)
  , ...)
|
  kzalloc(
-	E1 * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
)

// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@

(
  kzalloc(sizeof(THING) * C2, ...)
|
  kzalloc(sizeof(TYPE) * C2, ...)
|
  kzalloc(C1 * C2 * C3, ...)
|
  kzalloc(C1 * C2, ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * (E2)
+	E2, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * E2
+	E2, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * (E2)
+	E2, sizeof(THING)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * E2
+	E2, sizeof(THING)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	(E1) * E2
+	E1, E2
  , ...)
|
- kzalloc
+ kcalloc
  (
-	(E1) * (E2)
+	E1, E2
  , ...)
|
- kzalloc
+ kcalloc
  (
-	E1 * E2
+	E1, E2
  , ...)
)

Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 16:19:22 -07:00
Kees Cook
6da2ec5605 treewide: kmalloc() -> kmalloc_array()
The kmalloc() function has a 2-factor argument form, kmalloc_array(). This
patch replaces cases of:

        kmalloc(a * b, gfp)

with:
        kmalloc_array(a * b, gfp)

as well as handling cases of:

        kmalloc(a * b * c, gfp)

with:

        kmalloc(array3_size(a, b, c), gfp)

as it's slightly less ugly than:

        kmalloc_array(array_size(a, b), c, gfp)

This does, however, attempt to ignore constant size factors like:

        kmalloc(4 * 1024, gfp)

though any constants defined via macros get caught up in the conversion.

Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.

The tools/ directory was manually excluded, since it has its own
implementation of kmalloc().

The Coccinelle script used for this was:

// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@

(
  kmalloc(
-	(sizeof(TYPE)) * E
+	sizeof(TYPE) * E
  , ...)
|
  kmalloc(
-	(sizeof(THING)) * E
+	sizeof(THING) * E
  , ...)
)

// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@

(
  kmalloc(
-	sizeof(u8) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(__u8) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(char) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(unsigned char) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(u8) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(__u8) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(char) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(unsigned char) * COUNT
+	COUNT
  , ...)
)

// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@

(
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (COUNT_ID)
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * COUNT_ID
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (COUNT_CONST)
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * COUNT_CONST
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (COUNT_ID)
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * COUNT_ID
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (COUNT_CONST)
+	COUNT_CONST, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * COUNT_CONST
+	COUNT_CONST, sizeof(THING)
  , ...)
)

// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@

- kmalloc
+ kmalloc_array
  (
-	SIZE * COUNT
+	COUNT, SIZE
  , ...)

// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@

(
  kmalloc(
-	sizeof(TYPE) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(THING) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
)

// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@

(
  kmalloc(
-	sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kmalloc(
-	sizeof(THING1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(THING1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
)

// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@

(
  kmalloc(
-	(COUNT) * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
)

// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@

(
  kmalloc(C1 * C2 * C3, ...)
|
  kmalloc(
-	(E1) * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	(E1) * (E2) * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	(E1) * (E2) * (E3)
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	E1 * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
)

// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@

(
  kmalloc(sizeof(THING) * C2, ...)
|
  kmalloc(sizeof(TYPE) * C2, ...)
|
  kmalloc(C1 * C2 * C3, ...)
|
  kmalloc(C1 * C2, ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (E2)
+	E2, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * E2
+	E2, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (E2)
+	E2, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * E2
+	E2, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	(E1) * E2
+	E1, E2
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	(E1) * (E2)
+	E1, E2
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	E1 * E2
+	E1, E2
  , ...)
)

Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 16:19:22 -07:00
Linus Torvalds
d82991a868 Merge branch 'core-rseq-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull restartable sequence support from Thomas Gleixner:
 "The restartable sequences syscall (finally):

  After a lot of back and forth discussion and massive delays caused by
  the speculative distraction of maintainers, the core set of
  restartable sequences has finally reached a consensus.

  It comes with the basic non disputed core implementation along with
  support for arm, powerpc and x86 and a full set of selftests

  It was exposed to linux-next earlier this week, so it does not fully
  comply with the merge window requirements, but there is really no
  point to drag it out for yet another cycle"

* 'core-rseq-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  rseq/selftests: Provide Makefile, scripts, gitignore
  rseq/selftests: Provide parametrized tests
  rseq/selftests: Provide basic percpu ops test
  rseq/selftests: Provide basic test
  rseq/selftests: Provide rseq library
  selftests/lib.mk: Introduce OVERRIDE_TARGETS
  powerpc: Wire up restartable sequences system call
  powerpc: Add syscall detection for restartable sequences
  powerpc: Add support for restartable sequences
  x86: Wire up restartable sequence system call
  x86: Add support for restartable sequences
  arm: Wire up restartable sequences system call
  arm: Add syscall detection for restartable sequences
  arm: Add restartable sequences support
  rseq: Introduce restartable sequences system call
  uapi/headers: Provide types_32_64.h
2018-06-10 10:17:09 -07:00
Mathieu Desnoyers
d7822b1e24 rseq: Introduce restartable sequences system call
Expose a new system call allowing each thread to register one userspace
memory area to be used as an ABI between kernel and user-space for two
purposes: user-space restartable sequences and quick access to read the
current CPU number value from user-space.

* Restartable sequences (per-cpu atomics)

Restartables sequences allow user-space to perform update operations on
per-cpu data without requiring heavy-weight atomic operations.

The restartable critical sections (percpu atomics) work has been started
by Paul Turner and Andrew Hunter. It lets the kernel handle restart of
critical sections. [1] [2] The re-implementation proposed here brings a
few simplifications to the ABI which facilitates porting to other
architectures and speeds up the user-space fast path.

Here are benchmarks of various rseq use-cases.

Test hardware:

arm32: ARMv7 Processor rev 4 (v7l) "Cubietruck", 2-core
x86-64: Intel E5-2630 v3@2.40GHz, 16-core, hyperthreading

The following benchmarks were all performed on a single thread.

* Per-CPU statistic counter increment

                getcpu+atomic (ns/op)    rseq (ns/op)    speedup
arm32:                344.0                 31.4          11.0
x86-64:                15.3                  2.0           7.7

* LTTng-UST: write event 32-bit header, 32-bit payload into tracer
             per-cpu buffer

                getcpu+atomic (ns/op)    rseq (ns/op)    speedup
arm32:               2502.0                 2250.0         1.1
x86-64:               117.4                   98.0         1.2

* liburcu percpu: lock-unlock pair, dereference, read/compare word

                getcpu+atomic (ns/op)    rseq (ns/op)    speedup
arm32:                751.0                 128.5          5.8
x86-64:                53.4                  28.6          1.9

* jemalloc memory allocator adapted to use rseq

Using rseq with per-cpu memory pools in jemalloc at Facebook (based on
rseq 2016 implementation):

The production workload response-time has 1-2% gain avg. latency, and
the P99 overall latency drops by 2-3%.

* Reading the current CPU number

Speeding up reading the current CPU number on which the caller thread is
running is done by keeping the current CPU number up do date within the
cpu_id field of the memory area registered by the thread. This is done
by making scheduler preemption set the TIF_NOTIFY_RESUME flag on the
current thread. Upon return to user-space, a notify-resume handler
updates the current CPU value within the registered user-space memory
area. User-space can then read the current CPU number directly from
memory.

Keeping the current cpu id in a memory area shared between kernel and
user-space is an improvement over current mechanisms available to read
the current CPU number, which has the following benefits over
alternative approaches:

- 35x speedup on ARM vs system call through glibc
- 20x speedup on x86 compared to calling glibc, which calls vdso
  executing a "lsl" instruction,
- 14x speedup on x86 compared to inlined "lsl" instruction,
- Unlike vdso approaches, this cpu_id value can be read from an inline
  assembly, which makes it a useful building block for restartable
  sequences.
- The approach of reading the cpu id through memory mapping shared
  between kernel and user-space is portable (e.g. ARM), which is not the
  case for the lsl-based x86 vdso.

On x86, yet another possible approach would be to use the gs segment
selector to point to user-space per-cpu data. This approach performs
similarly to the cpu id cache, but it has two disadvantages: it is
not portable, and it is incompatible with existing applications already
using the gs segment selector for other purposes.

Benchmarking various approaches for reading the current CPU number:

ARMv7 Processor rev 4 (v7l)
Machine model: Cubietruck
- Baseline (empty loop):                                    8.4 ns
- Read CPU from rseq cpu_id:                               16.7 ns
- Read CPU from rseq cpu_id (lazy register):               19.8 ns
- glibc 2.19-0ubuntu6.6 getcpu:                           301.8 ns
- getcpu system call:                                     234.9 ns

x86-64 Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz:
- Baseline (empty loop):                                    0.8 ns
- Read CPU from rseq cpu_id:                                0.8 ns
- Read CPU from rseq cpu_id (lazy register):                0.8 ns
- Read using gs segment selector:                           0.8 ns
- "lsl" inline assembly:                                   13.0 ns
- glibc 2.19-0ubuntu6 getcpu:                              16.6 ns
- getcpu system call:                                      53.9 ns

- Speed (benchmark taken on v8 of patchset)

Running 10 runs of hackbench -l 100000 seems to indicate, contrary to
expectations, that enabling CONFIG_RSEQ slightly accelerates the
scheduler:

Configuration: 2 sockets * 8-core Intel(R) Xeon(R) CPU E5-2630 v3 @
2.40GHz (directly on hardware, hyperthreading disabled in BIOS, energy
saving disabled in BIOS, turboboost disabled in BIOS, cpuidle.off=1
kernel parameter), with a Linux v4.6 defconfig+localyesconfig,
restartable sequences series applied.

* CONFIG_RSEQ=n

avg.:      41.37 s
std.dev.:   0.36 s

* CONFIG_RSEQ=y

avg.:      40.46 s
std.dev.:   0.33 s

- Size

On x86-64, between CONFIG_RSEQ=n/y, the text size increase of vmlinux is
567 bytes, and the data size increase of vmlinux is 5696 bytes.

[1] https://lwn.net/Articles/650333/
[2] http://www.linuxplumbersconf.org/2013/ocw/system/presentations/1695/original/LPC%20-%20PerCpu%20Atomics.pdf

Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Watson <davejwatson@fb.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Chris Lameter <cl@linux.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Andrew Hunter <ahh@google.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ben Maurer <bmaurer@fb.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: linux-api@vger.kernel.org
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20151027235635.16059.11630.stgit@pjt-glaptop.roam.corp.google.com
Link: http://lkml.kernel.org/r/20150624222609.6116.86035.stgit@kitami.mtv.corp.google.com
Link: https://lkml.kernel.org/r/20180602124408.8430-3-mathieu.desnoyers@efficios.com
2018-06-06 11:58:31 +02:00
Linus Torvalds
3c89adb0d1 Power management updates for 4.18-rc1
These include a significant update of the generic power domains (genpd)
 and Operating Performance Points (OPP) frameworks, mostly related to
 the introduction of power domain performance levels, cpufreq updates
 (new driver for Qualcomm Kryo processors, updates of the existing
 drivers, some core fixes, schedutil governor improvements), PCI power
 management fixes, ACPI workaround for EC-based wakeup events handling
 on resume from suspend-to-idle, and major updates of the turbostat
 and pm-graph utilities.
 
 Specifics:
 
  - Introduce power domain performance levels into the the generic
    power domains (genpd) and Operating Performance Points (OPP)
    frameworks (Viresh Kumar, Rajendra Nayak, Dan Carpenter).
 
  - Fix two issues in the runtime PM framework related to the
    initialization and removal of devices using device links (Ulf
    Hansson).
 
  - Clean up the initialization of drivers for devices in PM domains
    (Ulf Hansson, Geert Uytterhoeven).
 
  - Fix a cpufreq core issue related to the policy sysfs interface
    causing CPU online to fail for CPUs sharing one cpufreq policy in
    some situations (Tao Wang).
 
  - Make it possible to use platform-specific suspend/resume hooks
    in the cpufreq-dt driver and make the Armada 37xx DVFS use that
    feature (Viresh Kumar, Miquel Raynal).
 
  - Optimize policy transition notifications in cpufreq (Viresh Kumar).
 
  - Improve the iowait boost mechanism in the schedutil cpufreq
    governor (Patrick Bellasi).
 
  - Improve the handling of deferred frequency updates in the
    schedutil cpufreq governor (Joel Fernandes, Dietmar Eggemann,
    Rafael Wysocki, Viresh Kumar).
 
  - Add a new cpufreq driver for Qualcomm Kryo (Ilia Lin).
 
  - Fix and clean up some cpufreq drivers (Colin Ian King, Dmitry
    Osipenko, Doug Smythies, Luc Van Oostenryck, Simon Horman,
    Viresh Kumar).
 
  - Fix the handling of PCI devices with the DPM_SMART_SUSPEND flag
    set and update stale comments in the PCI core PM code (Rafael
    Wysocki).
 
  - Work around an issue related to the handling of EC-based wakeup
    events in the ACPI PM core during resume from suspend-to-idle if
    the EC has been put into the low-power mode (Rafael Wysocki).
 
  - Improve the handling of wakeup source objects in the PM core (Doug
    Berger, Mahendran Ganesh, Rafael Wysocki).
 
  - Update the driver core to prevent deferred probe from breaking
    suspend/resume ordering (Feng Kan).
 
  - Clean up the PM core somewhat (Bjorn Helgaas, Ulf Hansson, Rafael
    Wysocki).
 
  - Make the core suspend/resume code and cpufreq support the RT patch
    (Sebastian Andrzej Siewior, Thomas Gleixner).
 
  - Consolidate the PM QoS handling in cpuidle governors (Rafael
    Wysocki).
 
  - Fix a possible crash in the hibernation core (Tetsuo Handa).
 
  - Update the rockchip-io Adaptive Voltage Scaling (AVS) driver
    (David Wu).
 
  - Update the turbostat utility (fixes, cleanups, new CPU IDs, new
    command line options, built-in "Low Power Idle" counters support,
    new POLL and POLL% columns) and add an entry for it to MAINTAINERS
    (Len Brown, Artem Bityutskiy, Chen Yu, Laura Abbott, Matt Turner,
    Prarit Bhargava, Srinivas Pandruvada).
 
  - Update the pm-graph to version 5.1 (Todd Brandt).
 
  - Update the intel_pstate_tracer utility (Doug Smythies).
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2
 
 iQIcBAABCAAGBQJbFRzjAAoJEILEb/54YlRxREQQAKD7IjnLA86ZDkmwiwzFa9Cz
 OJ0qlKAcMZGjeWH6LYq7lqWtaJ5PcFkBwNB4sRyKFdGPQOX3Ph8ZzILm2j8hhma4
 Azn9632P6CoYHABa8Vof+A1BZ/j0aWtvtJEfqXhtF6rAYyWQlF0UmOIRsMs+54a+
 Z/w4WuLaX8qYq3JlR60TogNtTIbdUjkjfvxMGrE9OSQ8n4oEhqoF/v0WoTHYLpWw
 fu81M378axOu0Sgq1ZQ8GPUdblUqIO97iWwF7k2YUl7D9n5dm4wOhXDz3CLI8Cdb
 RkoFFdp8bJIthbc5desKY2XFU1ClY8lxEVMXewFzTGwWMw0OyWgQP0/ZiG+Mujq3
 CSbstg8GGpbwQoWU+VrluYa0FtqofV2UaGk1gOuPaojMqaIchRU4Nmbd2U6naNwp
 XN7A1DzrOVGEt0ny8ztKH2Oqmj+NOCcRsChlYzdhLQ1wlqG54iCGwAML2ZJF9/Nw
 0Sx8hm6eyWLzjSa0L384Msb+v5oqCoac66gPHCl2x7W+3F+jmqx1KbmkI2SRNUAL
 7CS9lcImpvC4uZB54Aqya104vfqHiDse7WP0GrKqOmNVucD7hYCPiq/pycLwez+b
 V3zLyvly8PsuBIa4AOQGGiK45HGpaKuB4TkRqRyFO0Fb5uL1M+Ld6kJiWlacl4az
 STEUjY/90SRQvX3ocGyB
 =wqBV
 -----END PGP SIGNATURE-----

Merge tag 'pm-4.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull power management updates from Rafael Wysocki:
 "These include a significant update of the generic power domains
  (genpd) and Operating Performance Points (OPP) frameworks, mostly
  related to the introduction of power domain performance levels,
  cpufreq updates (new driver for Qualcomm Kryo processors, updates of
  the existing drivers, some core fixes, schedutil governor
  improvements), PCI power management fixes, ACPI workaround for
  EC-based wakeup events handling on resume from suspend-to-idle, and
  major updates of the turbostat and pm-graph utilities.

  Specifics:

   - Introduce power domain performance levels into the the generic
     power domains (genpd) and Operating Performance Points (OPP)
     frameworks (Viresh Kumar, Rajendra Nayak, Dan Carpenter).

   - Fix two issues in the runtime PM framework related to the
     initialization and removal of devices using device links (Ulf
     Hansson).

   - Clean up the initialization of drivers for devices in PM domains
     (Ulf Hansson, Geert Uytterhoeven).

   - Fix a cpufreq core issue related to the policy sysfs interface
     causing CPU online to fail for CPUs sharing one cpufreq policy in
     some situations (Tao Wang).

   - Make it possible to use platform-specific suspend/resume hooks in
     the cpufreq-dt driver and make the Armada 37xx DVFS use that
     feature (Viresh Kumar, Miquel Raynal).

   - Optimize policy transition notifications in cpufreq (Viresh Kumar).

   - Improve the iowait boost mechanism in the schedutil cpufreq
     governor (Patrick Bellasi).

   - Improve the handling of deferred frequency updates in the schedutil
     cpufreq governor (Joel Fernandes, Dietmar Eggemann, Rafael Wysocki,
     Viresh Kumar).

   - Add a new cpufreq driver for Qualcomm Kryo (Ilia Lin).

   - Fix and clean up some cpufreq drivers (Colin Ian King, Dmitry
     Osipenko, Doug Smythies, Luc Van Oostenryck, Simon Horman, Viresh
     Kumar).

   - Fix the handling of PCI devices with the DPM_SMART_SUSPEND flag set
     and update stale comments in the PCI core PM code (Rafael Wysocki).

   - Work around an issue related to the handling of EC-based wakeup
     events in the ACPI PM core during resume from suspend-to-idle if
     the EC has been put into the low-power mode (Rafael Wysocki).

   - Improve the handling of wakeup source objects in the PM core (Doug
     Berger, Mahendran Ganesh, Rafael Wysocki).

   - Update the driver core to prevent deferred probe from breaking
     suspend/resume ordering (Feng Kan).

   - Clean up the PM core somewhat (Bjorn Helgaas, Ulf Hansson, Rafael
     Wysocki).

   - Make the core suspend/resume code and cpufreq support the RT patch
     (Sebastian Andrzej Siewior, Thomas Gleixner).

   - Consolidate the PM QoS handling in cpuidle governors (Rafael
     Wysocki).

   - Fix a possible crash in the hibernation core (Tetsuo Handa).

   - Update the rockchip-io Adaptive Voltage Scaling (AVS) driver (David
     Wu).

   - Update the turbostat utility (fixes, cleanups, new CPU IDs, new
     command line options, built-in "Low Power Idle" counters support,
     new POLL and POLL% columns) and add an entry for it to MAINTAINERS
     (Len Brown, Artem Bityutskiy, Chen Yu, Laura Abbott, Matt Turner,
     Prarit Bhargava, Srinivas Pandruvada).

   - Update the pm-graph to version 5.1 (Todd Brandt).

   - Update the intel_pstate_tracer utility (Doug Smythies)"

* tag 'pm-4.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (128 commits)
  tools/power turbostat: update version number
  tools/power turbostat: Add Node in output
  tools/power turbostat: add node information into turbostat calculations
  tools/power turbostat: remove num_ from cpu_topology struct
  tools/power turbostat: rename num_cores_per_pkg to num_cores_per_node
  tools/power turbostat: track thread ID in cpu_topology
  tools/power turbostat: Calculate additional node information for a package
  tools/power turbostat: Fix node and siblings lookup data
  tools/power turbostat: set max_num_cpus equal to the cpumask length
  tools/power turbostat: if --num_iterations, print for specific number of iterations
  tools/power turbostat: Add Cannon Lake support
  tools/power turbostat: delete duplicate #defines
  x86: msr-index.h: Correct SNB_C1/C3_AUTO_UNDEMOTE defines
  tools/power turbostat: Correct SNB_C1/C3_AUTO_UNDEMOTE defines
  tools/power turbostat: add POLL and POLL% column
  tools/power turbostat: Fix --hide Pk%pc10
  tools/power turbostat: Build-in "Low Power Idle" counters support
  tools/power turbostat: Don't make man pages executable
  tools/power turbostat: remove blank lines
  tools/power turbostat: a small C-states dump readability immprovement
  ...
2018-06-05 09:38:39 -07:00
Linus Torvalds
f7f4e7fc6c Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:

 - power-aware scheduling improvements (Patrick Bellasi)

 - NUMA balancing improvements (Mel Gorman)

 - vCPU scheduling fixes (Rohit Jain)

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  sched/fair: Update util_est before updating schedutil
  sched/cpufreq: Modify aggregate utilization to always include blocked FAIR utilization
  sched/deadline/Documentation: Add overrun signal and GRUB-PA documentation
  sched/core: Distinguish between idle_cpu() calls based on desired effect, introduce available_idle_cpu()
  sched/wait: Include <linux/wait.h> in <linux/swait.h>
  sched/numa: Stagger NUMA balancing scan periods for new threads
  sched/core: Don't schedule threads on pre-empted vCPUs
  sched/fair: Avoid calling sync_entity_load_avg() unnecessarily
  sched/fair: Rearrange select_task_rq_fair() to optimize it
2018-06-04 17:45:38 -07:00
Linus Torvalds
4057adafb3 Merge branch 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RCU updates from Ingo Molnar:

 - updates to the handling of expedited grace periods

 - updates to reduce lock contention in the rcu_node combining tree

   [ These are in preparation for the consolidation of RCU-bh,
     RCU-preempt, and RCU-sched into a single flavor, which was
     requested by Linus in response to a security flaw whose root cause
     included confusion between the multiple flavors of RCU ]

 - torture-test updates that save their users some time and effort

 - miscellaneous fixes

* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (44 commits)
  rcu/x86: Provide early rcu_cpu_starting() callback
  torture: Make kvm-find-errors.sh find build warnings
  rcutorture: Abbreviate kvm.sh summary lines
  rcutorture: Print end-of-test state in kvm.sh summary
  rcutorture: Print end-of-test state
  torture: Fold parse-torture.sh into parse-console.sh
  torture: Add a script to edit output from failed runs
  rcu: Update list of rcu_future_grace_period() trace events
  rcu: Drop early GP request check from rcu_gp_kthread()
  rcu: Simplify and inline cpu_needs_another_gp()
  rcu: The rcu_gp_cleanup() function does not need cpu_needs_another_gp()
  rcu: Make rcu_start_this_gp() check for out-of-range requests
  rcu: Add funnel locking to rcu_start_this_gp()
  rcu: Make rcu_start_future_gp() caller select grace period
  rcu: Inline rcu_start_gp_advanced() into rcu_start_future_gp()
  rcu: Clear request other than RCU_GP_FLAG_INIT at GP end
  rcu: Cleanup, don't put ->completed into an int
  rcu: Switch __rcu_process_callbacks() to rcu_accelerate_cbs()
  rcu: Avoid __call_rcu_core() root rcu_node ->lock acquisition
  rcu: Make rcu_migrate_callbacks wake GP kthread when needed
  ...
2018-06-04 15:54:04 -07:00
Linus Torvalds
cf626b0da7 Merge branch 'hch.procfs' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull procfs updates from Al Viro:
 "Christoph's proc_create_... cleanups series"

* 'hch.procfs' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (44 commits)
  xfs, proc: hide unused xfs procfs helpers
  isdn/gigaset: add back gigaset_procinfo assignment
  proc: update SIZEOF_PDE_INLINE_NAME for the new pde fields
  tty: replace ->proc_fops with ->proc_show
  ide: replace ->proc_fops with ->proc_show
  ide: remove ide_driver_proc_write
  isdn: replace ->proc_fops with ->proc_show
  atm: switch to proc_create_seq_private
  atm: simplify procfs code
  bluetooth: switch to proc_create_seq_data
  netfilter/x_tables: switch to proc_create_seq_private
  netfilter/xt_hashlimit: switch to proc_create_{seq,single}_data
  neigh: switch to proc_create_seq_data
  hostap: switch to proc_create_{seq,single}_data
  bonding: switch to proc_create_seq_data
  rtc/proc: switch to proc_create_single_data
  drbd: switch to proc_create_single
  resource: switch to proc_create_seq_data
  staging/rtl8192u: simplify procfs code
  jfs: simplify procfs code
  ...
2018-06-04 10:00:01 -07:00
Rafael J. Wysocki
601ef1f3c0 Merge branches 'pm-cpufreq-sched' and 'pm-cpuidle'
* pm-cpufreq-sched:
  cpufreq: schedutil: Avoid missing updates for one-CPU policies
  schedutil: Allow cpufreq requests to be made even when kthread kicked
  cpufreq: Rename cpufreq_can_do_remote_dvfs()
  cpufreq: schedutil: Cleanup and document iowait boost
  cpufreq: schedutil: Fix iowait boost reset
  cpufreq: schedutil: Don't set next_freq to UINT_MAX
  Revert "cpufreq: schedutil: Don't restrict kthread to related_cpus unnecessarily"

* pm-cpuidle:
  cpuidle: governors: Consolidate PM QoS handling
  cpuidle: governors: Drop redundant checks related to PM QoS
2018-06-04 10:41:07 +02:00
Davidlohr Bueso
595058b667 sched/headers: Fix typo
I cannot spell 'throttling'.

Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180530224940.17839-1-dave@stgolabs.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-05-31 12:27:13 +02:00
Juri Lelli
ecda2b66e2 sched/deadline: Fix missing clock update
A missing clock update is causing the following warning:

 rq->clock_update_flags < RQCF_ACT_SKIP
 WARNING: CPU: 10 PID: 0 at kernel/sched/sched.h:963 inactive_task_timer+0x5d6/0x720
 Call Trace:
  <IRQ>
  __hrtimer_run_queues+0x10f/0x530
  hrtimer_interrupt+0xe5/0x240
  smp_apic_timer_interrupt+0x79/0x2b0
  apic_timer_interrupt+0xf/0x20
  </IRQ>
  do_idle+0x203/0x280
  cpu_startup_entry+0x6f/0x80
  start_secondary+0x1b0/0x200
  secondary_startup_64+0xa5/0xb0
 hardirqs last  enabled at (793919): [<ffffffffa27c5f6e>] cpuidle_enter_state+0x9e/0x360
 hardirqs last disabled at (793920): [<ffffffffa2a0096e>] interrupt_entry+0xce/0xe0
 softirqs last  enabled at (793922): [<ffffffffa20bef78>] irq_enter+0x68/0x70
 softirqs last disabled at (793921): [<ffffffffa20bef5d>] irq_enter+0x4d/0x70

This happens because inactive_task_timer() calls sub_running_bw() (if
TASK_DEAD and non_contending) that might trigger a schedutil update,
which might access the clock. Clock is however currently updated only
later in inactive_task_timer() function.

Fix the problem by updating the clock right after task_rq_lock().

Reported-by: kernel test robot <xiaolong.ye@intel.com>
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Claudio Scordino <claudio@evidence.eu.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luca Abeni <luca.abeni@santannapisa.it>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180530160809.9074-1-juri.lelli@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-05-31 12:27:13 +02:00
Paul Burton
7af443ee16 sched/core: Require cpu_active() in select_task_rq(), for user tasks
select_task_rq() is used in a few paths to select the CPU upon which a
thread should be run - for example it is used by try_to_wake_up() & by
fork or exec balancing. As-is it allows use of any online CPU that is
present in the task's cpus_allowed mask.

This presents a problem because there is a period whilst CPUs are
brought online where a CPU is marked online, but is not yet fully
initialized - ie. the period where CPUHP_AP_ONLINE_IDLE <= state <
CPUHP_ONLINE. Usually we don't run any user tasks during this window,
but there are corner cases where this can happen. An example observed
is:

  - Some user task A, running on CPU X, forks to create task B.

  - sched_fork() calls __set_task_cpu() with cpu=X, setting task B's
    task_struct::cpu field to X.

  - CPU X is offlined.

  - Task A, currently somewhere between the __set_task_cpu() in
    copy_process() and the call to wake_up_new_task(), is migrated to
    CPU Y by migrate_tasks() when CPU X is offlined.

  - CPU X is onlined, but still in the CPUHP_AP_ONLINE_IDLE state. The
    scheduler is now active on CPU X, but there are no user tasks on
    the runqueue.

  - Task A runs on CPU Y & reaches wake_up_new_task(). This calls
    select_task_rq() with cpu=X, taken from task B's task_struct,
    and select_task_rq() allows CPU X to be returned.

  - Task A enqueues task B on CPU X's runqueue, via activate_task() &
    enqueue_task().

  - CPU X now has a user task on its runqueue before it has reached the
    CPUHP_ONLINE state.

In most cases, the user tasks that schedule on the newly onlined CPU
have no idea that anything went wrong, but one case observed to be
problematic is if the task goes on to invoke the sched_setaffinity
syscall. The newly onlined CPU reaches the CPUHP_AP_ONLINE_IDLE state
before the CPU that brought it online calls stop_machine_unpark(). This
means that for a portion of the window of time between
CPUHP_AP_ONLINE_IDLE & CPUHP_ONLINE the newly onlined CPU's struct
cpu_stopper has its enabled field set to false. If a user thread is
executed on the CPU during this window and it invokes sched_setaffinity
with a CPU mask that does not include the CPU it's running on, then when
__set_cpus_allowed_ptr() calls stop_one_cpu() intending to invoke
migration_cpu_stop() and perform the actual migration away from the CPU
it will simply return -ENOENT rather than calling migration_cpu_stop().
We then return from the sched_setaffinity syscall back to the user task
that is now running on a CPU which it just asked not to run on, and
which is not present in its cpus_allowed mask.

This patch resolves the problem by having select_task_rq() enforce that
user tasks run on CPUs that are active - the same requirement that
select_fallback_rq() already enforces. This should ensure that newly
onlined CPUs reach the CPUHP_AP_ACTIVE state before being able to
schedule user tasks, and also implies that bringup_wait_for_ap() will
have called stop_machine_unpark() which resolves the sched_setaffinity
issue above.

I haven't yet investigated them, but it may be of interest to review
whether any of the actions performed by hotplug states between
CPUHP_AP_ONLINE_IDLE & CPUHP_AP_ACTIVE could have similar unintended
effects on user tasks that might schedule before they are reached, which
might widen the scope of the problem from just affecting the behaviour
of sched_setaffinity.

Signed-off-by: Paul Burton <paul.burton@mips.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180526154648.11635-2-paul.burton@mips.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-05-31 12:24:25 +02:00
Peter Zijlstra
175f0e25ab sched/core: Fix rules for running on online && !active CPUs
As already enforced by the WARN() in __set_cpus_allowed_ptr(), the rules
for running on an online && !active CPU are stricter than just being a
kthread, you need to be a per-cpu kthread.

If you're not strictly per-CPU, you have better CPUs to run on and
don't need the partially booted one to get your work done.

The exception is to allow smpboot threads to bootstrap the CPU itself
and get kernel 'services' initialized before we allow userspace on it.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 955dbdf4ce ("sched: Allow migrating kthreads into online but inactive CPUs")
Link: http://lkml.kernel.org/r/20170725165821.cejhb7v2s3kecems@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-05-31 12:24:24 +02:00
Patrick Bellasi
2539fc82aa sched/fair: Update util_est before updating schedutil
When a task is enqueued the estimated utilization of a CPU is updated
to better support the selection of the required frequency.

However, schedutil is (implicitly) updated by update_load_avg() which
always happens before util_est_{en,de}queue(), thus potentially
introducing a latency between estimated utilization updates and
frequency selections.

Let's update util_est at the beginning of enqueue_task_fair(),
which will ensure that all schedutil updates will see the most
updated estimated utilization value for a CPU.

Reported-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Fixes: 7f65ea42eb ("sched/fair: Add util_est on top of PELT")
Link: http://lkml.kernel.org/r/20180524141023.13765-3-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-05-25 08:04:56 +02:00
Patrick Bellasi
8ecf04e112 sched/cpufreq: Modify aggregate utilization to always include blocked FAIR utilization
Since the refactoring introduced by:

   commit 8f111bc357 ("cpufreq/schedutil: Rewrite CPUFREQ_RT support")

we aggregate FAIR utilization only if this class has runnable tasks.

This was mainly due to avoid the risk to stay on an high frequency just
because of the blocked utilization of a CPU not being properly decayed
while the CPU was idle.

However, since:

   commit 31e77c93e4 ("sched/fair: Update blocked load when newly idle")

the FAIR blocked utilization is properly decayed also for IDLE CPUs.

This allows us to use the FAIR blocked utilization as a safe mechanism
to gracefully reduce the frequency only if no FAIR tasks show up on a
CPU for a reasonable period of time.

Moreover, we also reduce the frequency drops of CPUs running periodic
tasks which, depending on the task periodicity and the time required
for a frequency switch, was increasing the chances to introduce some
undesirable performance variations.

Reported-by: Vincent Guittot <vincent.guittot@linaro.org>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Link: http://lkml.kernel.org/r/20180524141023.13765-2-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-05-25 08:04:52 +02:00
Ingo Molnar
0548dc5cde Merge branch 'sched/urgent' into sched/core, to pick up fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-05-25 08:04:39 +02:00
Juri Lelli
bf5015a50f sched/topology: Clarify root domain(s) debug string
When scheduler debug is enabled, building scheduling domains outputs
information about how the domains are laid out and to which root domain
each CPU (or sets of CPUs) belongs, e.g.:

 CPU0 attaching sched-domain(s):
  domain-0: span=0-5 level=MC
   groups: 0:{ span=0 }, 1:{ span=1 }, 2:{ span=2 }, 3:{ span=3 }, 4:{ span=4 }, 5:{ span=5 }
 CPU1 attaching sched-domain(s):
  domain-0: span=0-5 level=MC
   groups: 1:{ span=1 }, 2:{ span=2 }, 3:{ span=3 }, 4:{ span=4 }, 5:{ span=5 }, 0:{ span=0 }

 [...]

 span: 0-5 (max cpu_capacity = 1024)

The fact that latest line refers to CPUs 0-5 root domain doesn't however look
immediately obvious to me: one might wonder why span 0-5 is reported "again".

Make it more clear by adding "root domain" to it, as to end with the
following:

 CPU0 attaching sched-domain(s):
  domain-0: span=0-5 level=MC
   groups: 0:{ span=0 }, 1:{ span=1 }, 2:{ span=2 }, 3:{ span=3 }, 4:{ span=4 }, 5:{ span=5 }
 CPU1 attaching sched-domain(s):
  domain-0: span=0-5 level=MC
   groups: 1:{ span=1 }, 2:{ span=2 }, 3:{ span=3 }, 4:{ span=4 }, 5:{ span=5 }, 0:{ span=0 }

 [...]

 root domain span: 0-5 (max cpu_capacity = 1024)

Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180524152936.17611-1-juri.lelli@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-05-25 08:03:38 +02:00
Rafael J. Wysocki
a61dec7447 cpufreq: schedutil: Avoid missing updates for one-CPU policies
Commit 152db033d7 (schedutil: Allow cpufreq requests to be made
even when kthread kicked) made changes to prevent utilization updates
from being discarded during processing a previous request, but it
left a small window in which that still can happen in the one-CPU
policy case.  Namely, updates coming in after setting work_in_progress
in sugov_update_commit() and clearing it in sugov_work() will still
be dropped due to the work_in_progress check in sugov_update_single().

To close that window, rearrange the code so as to acquire the update
lock around the deferred update branch in sugov_update_single()
and drop the work_in_progress check from it.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Juri Lelli <juri.lelli@redhat.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
2018-05-24 10:21:18 +02:00
Joel Fernandes (Google)
152db033d7 schedutil: Allow cpufreq requests to be made even when kthread kicked
Currently there is a chance of a schedutil cpufreq update request to be
dropped if there is a pending update request. This pending request can
be delayed if there is a scheduling delay of the irq_work and the wake
up of the schedutil governor kthread.

A very bad scenario is when a schedutil request was already just made,
such as to reduce the CPU frequency, then a newer request to increase
CPU frequency (even sched deadline urgent frequency increase requests)
can be dropped, even though the rate limits suggest that its Ok to
process a request. This is because of the way the work_in_progress flag
is used.

This patch improves the situation by allowing new requests to happen
even though the old one is still being processed. Note that in this
approach, if an irq_work was already issued, we just update next_freq
and don't bother to queue another request so there's no extra work being
done to make this happen.

Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2018-05-23 10:37:56 +02:00
Viresh Kumar
036399782b cpufreq: Rename cpufreq_can_do_remote_dvfs()
This routine checks if the CPU running this code belongs to the policy
of the target CPU or if not, can it do remote DVFS for it remotely. But
the current name of it implies as if it is only about doing remote
updates.

Rename it to make it more relevant.

Suggested-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2018-05-23 10:37:08 +02:00
Patrick Bellasi
fd7d5287fd cpufreq: schedutil: Cleanup and document iowait boost
The iowait boosting code has been recently updated to add a progressive
boosting behavior which allows to be less aggressive in boosting tasks
doing only sporadic IO operations, thus being more energy efficient for
example on mobile platforms.

The current code is now however a bit convoluted. Some functionalities
(e.g. iowait boost reset) are replicated in different paths and their
documentation is slightly misaligned.

Let's cleanup the code by consolidating all the IO wait boosting related
functionality within within few dedicated functions and better define
their role:

- sugov_iowait_boost: set/increase the IO wait boost of a CPU
- sugov_iowait_apply: apply/reduce the IO wait boost of a CPU

Both these two function are used at every sugov update and they make
use of a unified IO wait boost reset policy provided by:

- sugov_iowait_reset: reset/disable the IO wait boost of a CPU
     if a CPU is not updated for more then one tick

This makes possible a cleaner and more self-contained design for the IO
wait boosting code since the rest of the sugov update routines, both for
single and shared frequency domains, follow the same template:

   /* Configure IO boost, if required */
   sugov_iowait_boost()

   /* Return here if freq change is in progress or throttled */

   /* Collect and aggregate utilization information */
   sugov_get_util()
   sugov_aggregate_util()

   /*
    * Add IO boost, if currently enabled, on top of the aggregated
    * utilization value
    */
   sugov_iowait_apply()

As a extra bonus, let's also add the documentation for the new
functions and better align the in-code documentation.

Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2018-05-22 14:05:05 +02:00
Patrick Bellasi
295f1a9953 cpufreq: schedutil: Fix iowait boost reset
A more energy efficient update of the IO wait boosting mechanism has
been introduced in:

   commit a5a0809bc5 ("cpufreq: schedutil: Make iowait boost more energy efficient")

where the boost value is expected to be:

 - doubled at each successive wakeup from IO
   staring from the minimum frequency supported by a CPU

 - reset when a CPU is not updated for more then one tick
   by either disabling the IO wait boost or resetting its value to the
   minimum frequency if this new update requires an IO boost.

This approach is supposed to "ignore" boosting for sporadic wakeups from
IO, while still getting the frequency boosted to the maximum to benefit
long sequence of wakeup from IO operations.

However, these assumptions are not always satisfied.
For example, when an IO boosted CPU enters idle for more the one tick
and then wakes up after an IO wait, since in sugov_set_iowait_boost() we
first check the IOWAIT flag, we keep doubling the iowait boost instead
of restarting from the minimum frequency value.

This misbehavior could happen mainly on non-shared frequency domains,
thus defeating the energy efficiency optimization, but it can also
happen on shared frequency domain systems.

Let fix this issue in sugov_set_iowait_boost() by:
 - first check the IO wait boost reset conditions
   to eventually reset the boost value
 - then applying the correct IO boost value
   if required by the caller

Fixes: a5a0809bc5 (cpufreq: schedutil: Make iowait boost more energy efficient)
Reported-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2018-05-22 14:05:05 +02:00
Mathieu Malaterre
3febfc8a21 sched/deadline: Make the grub_reclaim() function static
Since the grub_reclaim() function can be made static, make it so.

Silences the following GCC warning (W=1):

  kernel/sched/deadline.c:1120:5: warning: no previous prototype for ‘grub_reclaim’ [-Wmissing-prototypes]

Signed-off-by: Mathieu Malaterre <malat@debian.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180516200902.959-1-malat@debian.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-05-18 09:05:22 +02:00
Mathieu Malaterre
f6a3463063 sched/debug: Move the print_rt_rq() and print_dl_rq() declarations to kernel/sched/sched.h
In the following commit:

  6b55c9654f ("sched/debug: Move print_cfs_rq() declaration to kernel/sched/sched.h")

the print_cfs_rq() prototype was added to <kernel/sched/sched.h>,
right next to the prototypes for print_cfs_stats(), print_rt_stats()
and print_dl_stats().

Finish this previous commit and also move related prototypes for
print_rt_rq() and print_dl_rq().

Remove existing extern declarations now that they not needed anymore.

Silences the following GCC warning, triggered by W=1:

  kernel/sched/debug.c:573:6: warning: no previous prototype for ‘print_rt_rq’ [-Wmissing-prototypes]
  kernel/sched/debug.c:603:6: warning: no previous prototype for ‘print_dl_rq’ [-Wmissing-prototypes]

Signed-off-by: Mathieu Malaterre <malat@debian.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180516195348.30426-1-malat@debian.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-05-18 09:05:14 +02:00
Ingo Molnar
13a553199f Merge branch 'for-mingo' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu into core/rcu
- Updates to the handling of expedited grace periods, perhaps most
   notably parallelizing their initialization.  Other changes
   include fixes from Boqun Feng.

 - Miscellaneous fixes.  These include an nvme fix from Nitzan Carmi
   that I am carrying because it depends on a new SRCU function
   cleanup_srcu_struct_quiesced().  This branch also includes fixes
   from Byungchul Park and Yury Norov.

 - Updates to reduce lock contention in the rcu_node combining tree.
   These are in preparation for the consolidation of RCU-bh,
   RCU-preempt, and RCU-sched into a single flavor, which was
   requested by Linus Torvalds in response to a security flaw
   whose root cause included confusion between the multiple flavors
   of RCU.

 - Torture-test updates that save their users some time and effort.

Conflicts:
	drivers/nvme/host/core.c

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-05-16 09:34:51 +02:00