IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
[ mingo: Consolidated 4 very similar patches into one, it's silly to spread this out. ]
Signed-off-by: Jason Wang <wangborong@cdjrlc.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220715044809.20572-1-wangborong@cdjrlc.com
The IOMMU table tries to separate the different IOMMUs into different
backends, but actually requires various cross calls.
Rewrite the code to do the generic swiotlb/swiotlb-xen setup directly
in pci-dma.c and then just call into the IOMMU drivers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Tested-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Let's support multiple registered callbacks, making sure that
registering vmcore callbacks cannot fail. Make the callback return a
bool instead of an int, handling how to deal with errors internally.
Drop unused HAVE_OLDMEM_PFN_IS_RAM.
We soon want to make use of this infrastructure from other drivers:
virtio-mem, registering one callback for each virtio-mem device, to
prevent reading unplugged virtio-mem memory.
Handle it via a generic vmcore_cb structure, prepared for future
extensions: for example, once we support virtio-mem on s390x where the
vmcore is completely constructed in the second kernel, we want to detect
and add plugged virtio-mem memory ranges to the vmcore in order for them
to get dumped properly.
Handle corner cases that are unexpected and shouldn't happen in sane
setups: registering a callback after the vmcore has already been opened
(warn only) and unregistering a callback after the vmcore has already been
opened (warn and essentially read only zeroes from that point on).
Link: https://lkml.kernel.org/r/20211005121430.30136-6-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are a lot of uses of memblock_find_in_range() along with
memblock_reserve() from the times memblock allocation APIs did not exist.
memblock_find_in_range() is the very core of memblock allocations, so any
future changes to its internal behaviour would mandate updates of all the
users outside memblock.
Replace the calls to memblock_find_in_range() with an equivalent calls to
memblock_phys_alloc() and memblock_phys_alloc_range() and make
memblock_find_in_range() private method of memblock.
This simplifies the callers, ensures that (unlikely) errors in
memblock_reserve() are handled and improves maintainability of
memblock_find_in_range().
Link: https://lkml.kernel.org/r/20210816122622.30279-1-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> [arm64]
Acked-by: Kirill A. Shutemov <kirill.shtuemov@linux.intel.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> [ACPI]
Acked-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Acked-by: Nick Kossifidis <mick@ics.forth.gr> [riscv]
Tested-by: Guenter Roeck <linux@roeck-us.net>
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On machines where the GART aperture is mapped over physical RAM,
/proc/kcore contains the GART aperture range. Accessing the GART range via
/proc/kcore results in a kernel crash.
vmcore used to have the same issue, until it was fixed with commit
2a3e83c6f96c ("x86/gart: Exclude GART aperture from vmcore")', leveraging
existing hook infrastructure in vmcore to let /proc/vmcore return zeroes
when attempting to read the aperture region, and so it won't read from the
actual memory.
Apply the same workaround for kcore. First implement the same hook
infrastructure for kcore, then reuse the hook functions introduced in the
previous vmcore fix. Just with some minor adjustment, rename some functions
for more general usage, and simplify the hook infrastructure a bit as there
is no module usage yet.
Suggested-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Kairui Song <kasong@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Jiri Bohac <jbohac@suse.cz>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Omar Sandoval <osandov@fb.com>
Cc: Dave Young <dyoung@redhat.com>
Link: https://lkml.kernel.org/r/20190308030508.13548-1-kasong@redhat.com
... to actually explain what the function is trying to do.
Reported-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: <x86@kernel.org>
Link: http://lkml.kernel.org/r/20181101155314.30690-1-bp@alien8.de
On machines where the GART aperture is mapped over physical RAM
/proc/vmcore contains the remapped range and reading it may cause hangs or
reboots.
In the past, the GART region was added into the resource map, implemented
by commit 56dd669a138c ("[PATCH] Insert GART region into resource map")
However, inserting the iomem_resource from the early GART code caused
resource conflicts with some AGP drivers (bko#72201), which got avoided by
reverting the patch in commit 707d4eefbdb3 ("Revert [PATCH] Insert GART
region into resource map"). This revert introduced the /proc/vmcore bug.
The vmcore ELF header is either prepared by the kernel (when using the
kexec_file_load syscall) or by the kexec userspace (when using the kexec_load
syscall). Since we no longer have the GART iomem resource, the userspace
kexec has no way of knowing which region to exclude from the ELF header.
Changes from v1 of this patch:
Instead of excluding the aperture from the ELF header, this patch
makes /proc/vmcore return zeroes in the second kernel when attempting to
read the aperture region. This is done by reusing the
gart_oldmem_pfn_is_ram infrastructure originally intended to exclude XEN
balooned memory. This works for both, the kexec_file_load and kexec_load
syscalls.
[Note that the GART region is the same in the first and second kernels:
regardless whether the first kernel fixed up the northbridge/bios setting
and mapped the aperture over physical memory, the second kernel finds the
northbridge properly configured by the first kernel and the aperture
never overlaps with e820 memory because the second kernel has a fake e820
map created from the crashkernel memory regions. Thus, the second kernel
keeps the aperture address/size as configured by the first kernel.]
register_oldmem_pfn_is_ram can only register one callback and returns an error
if the callback has been registered already. Since XEN used to be the only user
of this function, it never checks the return value. Now that we have more than
one user, I added a WARN_ON just in case agp, XEN, or any other future user of
register_oldmem_pfn_is_ram were to step on each other's toes.
Fixes: 707d4eefbdb3 ("Revert [PATCH] Insert GART region into resource map")
Signed-off-by: Jiri Bohac <jbohac@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Baoquan He <bhe@redhat.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: David Airlie <airlied@linux.ie>
Cc: yinghai@kernel.org
Cc: joro@8bytes.org
Cc: kexec@lists.infradead.org
Cc: Borislav Petkov <bp@alien8.de>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Link: https://lkml.kernel.org/r/20180106010013.73suskgxm7lox7g6@dwarf.suse.cz
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
So there's a number of constants that start with "E820" but which
are not types - these create a confusing mixture when seen together
with 'enum e820_type' values:
E820MAP
E820NR
E820_X_MAX
E820MAX
To better differentiate the 'enum e820_type' values prefix them
with E820_TYPE_.
No change in functionality.
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Huang, Ying <ying.huang@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Jackson <pj@sgi.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We have these three related functions:
extern void e820_add_region(u64 start, u64 size, int type);
extern u64 e820_update_range(u64 start, u64 size, unsigned old_type, unsigned new_type);
extern u64 e820_remove_range(u64 start, u64 size, unsigned old_type, int checktype);
But it's not clear from the naming that they are 3 operations based around the
same 'memory range' concept. Rename them to better signal this, and move
the prototypes next to each other:
extern void e820__range_add (u64 start, u64 size, int type);
extern u64 e820__range_update(u64 start, u64 size, unsigned old_type, unsigned new_type);
extern u64 e820__range_remove(u64 start, u64 size, unsigned old_type, int checktype);
Note that this improved organization of the functions shows another problem that was easy
to miss before: sometimes the E820 entry type is 'int', sometimes 'unsigned int' - but this
will be fixed in a separate patch.
No change in functionality.
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Huang, Ying <ying.huang@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Jackson <pj@sgi.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The 'any' and 'all' are modified to the 'mapped' concept, so move them last in the name.
No change in functionality.
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Huang, Ying <ying.huang@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Jackson <pj@sgi.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
update_e820() should have 'e820' as a prefix as most of the other E820
functions have - but it's also a bit unclear about its purpose, as
it's unclear what is updated - the whole table, or an entry?
Also, the name does not express that it's a trivial wrapper
around sanitize_e820_table() that also prints out the resulting
table.
So rename it to e820__update_table_print(). This also makes it
harmonize with the e820__update_table_firmware() function which
has a very similar purpose.
No change in functionality.
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Huang, Ying <ying.huang@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Jackson <pj@sgi.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In line with asm/e820/types.h, move the e820 API declarations to
asm/e820/api.h and update all usage sites.
This is just a mechanical, obviously correct move & replace patch,
there will be subsequent changes to clean up the code and to make
better use of the new header organization.
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Huang, Ying <ying.huang@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Jackson <pj@sgi.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This changes several users of manual "on"/"off" parsing to use
strtobool.
Some side-effects:
- these uses will now parse y/n/1/0 meaningfully too
- the early_param uses will now bubble up parse errors
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Amitkumar Karwar <akarwar@marvell.com>
Cc: Andy Shevchenko <andy.shevchenko@gmail.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Joe Perches <joe@perches.com>
Cc: Kalle Valo <kvalo@codeaurora.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Nishant Sarmukadam <nishants@marvell.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Steve French <sfrench@samba.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
GART registers are not present in newer AMD processors (Fam15h, Model
10h and later). So, avoid accessing those in PCI config space by
returning early in early_gart_iommu_check() and gart_iommu_hole_init()
if GART is not available.
Current code doesn't break on existing processors but there are some
side effects:
We get bogus AGP aperture messages which are simply noise on
GART-less processors:
AGP: Node 0: aperture [bus addr 0x00000000-0x01ffffff] (32MB)
AGP: Your BIOS doesn't leave aperture memory hole
AGP: Please enable the IOMMU option in the BIOS setup
AGP: This costs you 64MB of RAM
AGP: Mapping aperture over RAM [mem 0xd4000000-0xd7ffffff]
We can avoid calling allocate_aperture() and would not have to
wastefully reserve 64MB of RAM with memblock_reserve(). Also, we can
avoid having to loop through all PCI buses and devices twice, searching
for a non-existent AGP bridge if we bail out early.
Refactor the family check used in amd_nb.c into an inline function so we
can use it here as well as in amd_nb.c
Fix some typos while at it.
Tested the patch on Fam10h and Fam15h Model 00h-fh and this code runs
fine. On Fam15h Model 60h-6fh and on Fam16h, we bail early as they don't
have GART.
Signed-off-by: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Joerg Rodel <joro@8bytes.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1428443197-3834-1-git-send-email-Aravind.Gopalakrishnan@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Print the AGP bridge info the same way as the rest of the kernel, e.g.,
"0000:00:04.0" instead of "00:04:00".
Also print the AGP aperture address range the same way we print resources,
and label it explicitly as a bus address range.
No functional change except the message changes.
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Replace printk() with pr_info(), pr_err(), etc. Define pr_fmt() to prefix
output with "AGP: ".
No functional change except the addition of "AGP: " prefix in dmesg output.
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
This reverts commit 56dd669a138c, which makes the GART visible in
/proc/iomem. This fixes a regression: e501b3d87f00 ("agp: Support 64-bit
APBASE") exposed an existing problem with a conflict between the GART
region and a PCI BAR region.
The GART addresses are bus addresses, not CPU addresses, and therefore
should not be inserted in iomem_resource.
On many machines, the GART region is addressable by the CPU as well as by
an AGP master, but CPU addressability is not required by the spec. On some
of these machines, the GART is mapped by a PCI BAR, and in that case, the
PCI core automatically inserts it into iomem_resource, just as it does for
all BARs.
Inserting it here means we'll have a conflict if the PCI core later tries
to claim the GART region, so let's drop the insertion here.
The conflict indirectly causes X failures, as reported by Jouni in the
bugzilla below. We detected the conflict even before e501b3d87f00, but
after it the AGP code (fix_northbridge()) uses the PCI resource (which is
zeroed because of the conflict) instead of reading the BAR again.
Conflicts:
arch/x86_64/kernel/aperture.c
Fixes: e501b3d87f00 agp: Support 64-bit APBASE
Link: https://bugzilla.kernel.org/show_bug.cgi?id=72201
Reported-and-tested-by: Jouni Mettälä <jtmettala@gmail.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
The memblock_find_in_range() return value addr is guaranteed
to be within "addr + aper_size" and not beyond GART_MAX_ADDR.
Signed-off-by: Wang YanQing <udknight@gmail.com>
Cc: yinghai@kernel.org
Link: http://lkml.kernel.org/r/20130416013734.GA14641@udknight
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Other than sanity check and debug message, the x86 specific version of
memblock reserve/free functions are simple wrappers around the generic
versions - memblock_reserve/free().
This patch adds debug messages with caller identification to the
generic versions and replaces x86 specific ones and kills them.
arch/x86/include/asm/memblock.h and arch/x86/mm/memblock.c are empty
after this change and removed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1310462166-31469-14-git-send-email-tj@kernel.org
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
25818f0f28 (memblock: Make MEMBLOCK_ERROR be 0) thankfully made
MEMBLOCK_ERROR 0 and there already are codes which expect error return
to be 0. There's no point in keeping MEMBLOCK_ERROR around. End its
misery.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1310457490-3356-6-git-send-email-tj@kernel.org
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
This patch changes the allocation of the GART aperture to
enforce only natural alignment instead of aligning it on
512MB. This big alignment was used to force the GART
aperture to be over 512MB. This is enforced by using 512MB
as the lower-bound address in the allocation range.
[ hpa: The actual number 512 MiB needs to be revisited, too. ]
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Link: http://lkml.kernel.org/r/1303134346-5805-2-git-send-email-joerg.roedel@amd.com
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
The DISTLBWALKPRB bit must be set for the GART because the
gatt table is mapped UC. But the current code does not set
the bit at boot when the BIOS setup the aperture correctly.
Fix that by setting this bit when enabling the GART instead
of the other places.
Cc: <stable@kernel.org>
Cc: Borislav Petkov <borislav.petkov@amd.com>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Link: http://lkml.kernel.org/r/1303134346-5805-4-git-send-email-joerg.roedel@amd.com
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
They were generated by 'codespell' and then manually reviewed.
Signed-off-by: Lucas De Marchi <lucas.demarchi@profusion.mobi>
Cc: trivial@kernel.org
LKML-Reference: <1300389856-1099-3-git-send-email-lucas.demarchi@profusion.mobi>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Conflicts:
arch/x86/mm/numa_64.c
Merge reason: fix the conflict, update to latest -rc and pick up this
dependent fix from Yinghai:
e6d2e2b2b1e1: memblock: don't adjust size in memblock_find_base()
Signed-off-by: Ingo Molnar <mingo@elte.hu>
While both methods should work equivalently well for the native
case, the Xen Dom0 case can't reliably work with the MSR one,
since there's no guarantee that the virtual CPUs it has
available fully cover all necessary physical ones.
As per the suggestion of Robert Richter the patch only adds the
PCI method, but leaves the MSR one as a fallback to cover new
systems the PCI IDs of which may not have got added to the code
base yet.
The only change in v2 is the breaking out of the new CPI
initialization method into a separate function, as requested by
Ingo.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Acked-by: Robert Richter <robert.richter@amd.com>
Cc: Andreas Herrmann3 <Andreas.Herrmann3@amd.com>
Cc: Joerg Roedel <joerg.roedel@amd.com>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
LKML-Reference: <4D2B3FD7020000780002B67D@vpn.id2.novell.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When trying to change alloc_bootmem with memblock to go with real top-down
Found one old system:
[ 0.000000] Node 0: aperture @ ac000000 size 64 MB
[ 0.000000] Aperture pointing to e820 RAM. Ignoring.
[ 0.000000] Your BIOS doesn't leave a aperture memory hole
[ 0.000000] Please enable the IOMMU option in the BIOS setup
[ 0.000000] This costs you 64 MB of RAM
[ 0.000000] memblock_x86_reserve_range: [0x2020000000-0x2023ffffff] aperture64
[ 0.000000] Cannot allocate aperture memory hole (ffff882020000000,65536K)
[ 0.000000] memblock_x86_free_range: [0x2020000000-0x2023ffffff]
[ 0.000000] Kernel panic - not syncing: Not enough memory for aperture
[ 0.000000] Pid: 0, comm: swapper Not tainted 2.6.37-rc5-tip-yh-06229-gb792dc2-dirty #331
[ 0.000000] Call Trace:
[ 0.000000] [<ffffffff81cf50fe>] ? panic+0x91/0x1a3
[ 0.000000] [<ffffffff827c66b2>] ? gart_iommu_hole_init+0x3d7/0x4a3
[ 0.000000] [<ffffffff81d026a9>] ? _etext+0x0/0x3
[ 0.000000] [<ffffffff827ba940>] ? pci_iommu_alloc+0x47/0x71
[ 0.000000] [<ffffffff827c820b>] ? mem_init+0x19/0xec
[ 0.000000] [<ffffffff827b3c40>] ? start_kernel+0x20a/0x3e8
[ 0.000000] [<ffffffff827b32cc>] ? x86_64_start_reservations+0x9c/0xa0
[ 0.000000] [<ffffffff827b33e4>] ? x86_64_start_kernel+0x114/0x11b
it means __alloc_bootmem_nopanic() get too high for that aperture.
Use memblock_find_in_range() with limit directly.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
LKML-Reference: <4D0C0740.90104@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Not only the naming of the files was confusing, it was even more so for
the function and variable names.
Renamed the K8 NB and NUMA stuff that is also used on other AMD
platforms. This also renames the CONFIG_K8_NUMA option to
CONFIG_AMD_NUMA and the related file k8topology_64.c to
amdtopology_64.c. No functional changes intended.
Signed-off-by: Hans Rosenfeld <hans.rosenfeld@amd.com>
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
* 'x86-amd-nb-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, amd_nb: Enable GART support for AMD family 0x15 CPUs
x86, amd: Use compute unit information to determine thread siblings
x86, amd: Extract compute unit information for AMD CPUs
x86, amd: Add support for CPUID topology extension of AMD CPUs
x86, nmi: Support NMI watchdog on newer AMD CPU families
x86, mtrr: Assume SYS_CFG[Tom2ForceMemTypeWB] exists on all future AMD CPUs
x86, k8: Rename k8.[ch] to amd_nb.[ch] and CONFIG_K8_NB to CONFIG_AMD_NB
x86, k8-gart: Decouple handling of garts and northbridges
x86, cacheinfo: Fix dependency of AMD L3 CID
x86, kvm: add new AMD SVM feature bits
x86, cpu: Fix allowed CPUID bits for KVM guests
x86, cpu: Update AMD CPUID feature bits
x86, cpu: Fix renamed, not-yet-shipping AMD CPUID feature bit
x86, AMD: Remove needless CPU family check (for L3 cache info)
x86, tsc: Remove CPU frequency calibration on AMD
The file names are somehow misleading as the code is not specific to
AMD K8 CPUs anymore. The files accomodate code for other AMD CPU
northbridges as well.
Same is true for the config option which is valid for AMD CPU
northbridges in general and not specific to K8.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
LKML-Reference: <20100917160343.GD4958@loge.amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Current code tramples over bit F3x90[6] which can be used to
disable GART table walk probes. However, this bit should be set
for performance reasons (speed up GART table walks). We are
allowed to do that since we put GART tables in UC memory later
anyway. Make it so.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Cc: Dave Airlie <airlied@redhat.com>
Cc: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
LKML-Reference: <1283531981-7495-3-git-send-email-bp@amd64.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
There is a GARTEN so use that and drop the duplicate.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Cc: Dave Airlie <airlied@redhat.com>
Cc: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
LKML-Reference: <1283531981-7495-2-git-send-email-bp@amd64.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
We return 1 if the IOMMU has been detected. Zero or an error number
if we failed to find it. This is in preperation of using the IOMMU_INIT
so that we can detect whether an IOMMU is present. I have not
tested this for regression on Calgary, nor on AMD Vi chipsets as
I don't have that hardware.
CC: Muli Ben-Yehuda <muli@il.ibm.com>
CC: "Jon D. Mason" <jdmason@kudzu.us>
CC: "Darrick J. Wong" <djwong@us.ibm.com>
CC: Jesse Barnes <jbarnes@virtuousgeek.org>
CC: David Woodhouse <David.Woodhouse@intel.com>
CC: Chris Wright <chrisw@sous-sol.org>
CC: Yinghai Lu <yinghai@kernel.org>
CC: Joerg Roedel <joerg.roedel@amd.com>
CC: H. Peter Anvin <hpa@zytor.com>
CC: Fujita Tomonori <fujita.tomonori@lab.ntt.co.jp>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
LKML-Reference: <1282845485-8991-3-git-send-email-konrad.wilk@oracle.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Just some dead code, no real bugs.
Found by gcc 4.6 -Wall
Signed-off-by: Andi Kleen <ak@linux.intel.com>
LKML-Reference: <201007202219.o6KMJnQ0021072@imap1.linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
If we boot into a crash-kernel the gart might still be
enabled and its caches might be dirty. This can result in
undefined behavior later. Fix it by explicitly disabling the
gart hardware before initialization and flushing the caches
after enablement.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
I wrongly exported gart_iommu_aperture in the commit
42590a75019a50012f25a962246498dead428433. It's not necessary so
let's unexport it.
Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Cc: Joerg Roedel <joerg.roedel@amd.com>
LKML-Reference: <20100215113241P.fujita.tomonori@lab.ntt.co.jp>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This fixes the regression introduced by the commit
f405d2c02395a74d3883bd03ded36457aa3697ad.
The above commit fixes the following issue:
http://marc.info/?l=linux-kernel&m=126192729110083&w=2
However, it doesn't work properly when you remove and insert the
agp_amd64 module again.
agp_amd64_init() and agp_amd64_cleanup should be called only
when gart_iommu is not called earlier (that is, the GART IOMMU
is not enabled). We need to use 'gart_iommu_aperture' to see if
GART IOMMU is enabled or not.
Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Cc: mitov@issp.bas.bg
Cc: davej@redhat.com
LKML-Reference: <20100104161603L.fujita.tomonori@lab.ntt.co.jp>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This fixes the following breakage of the commit
75f1cdf1dda92cae037ec848ae63690d91913eac:
- GART systems that don't AGP with broken BIOS and more than 4GB
memory are forced to use swiotlb. They can allocate aperture by
hand and use GART.
- GART systems without GAP must disable GART on shutdown.
- swiotlb usage is forced by the boot option,
gart_iommu_hole_init() is not called, so we disable GART
early_gart_iommu_check().
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
LKML-Reference: <1260759135-6450-3-git-send-email-fujita.tomonori@lab.ntt.co.jp>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
If HW IOMMU initialization fails (Intel VT-d often does this,
typically due to BIOS bugs), we fall back to nommu. It doesn't
work for the majority since nowadays we have more than 4GB
memory so we must use swiotlb instead of nommu.
The problem is that it's too late to initialize swiotlb when HW
IOMMU initialization fails. We need to allocate swiotlb memory
earlier from bootmem allocator. Chris explained the issue in
detail:
http://marc.info/?l=linux-kernel&m=125657444317079&w=2
The current x86 IOMMU initialization sequence is too complicated
and handling the above issue makes it more hacky.
This patch changes x86 IOMMU initialization sequence to handle
the above issue cleanly.
The new x86 IOMMU initialization sequence are:
1. we initialize the swiotlb (and setting swiotlb to 1) in the case
of (max_pfn > MAX_DMA32_PFN && !no_iommu). dma_ops is set to
swiotlb_dma_ops or nommu_dma_ops. if swiotlb usage is forced by
the boot option, we finish here.
2. we call the detection functions of all the IOMMUs
3. the detection function sets x86_init.iommu.iommu_init to the
IOMMU initialization function (so we can avoid calling the
initialization functions of all the IOMMUs needlessly).
4. if the IOMMU initialization function doesn't need to swiotlb
then sets swiotlb to zero (e.g. the initialization is
sucessful).
5. if we find that swiotlb is set to zero, we free swiotlb
resource.
Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Cc: chrisw@sous-sol.org
Cc: dwmw2@infradead.org
Cc: joerg.roedel@amd.com
Cc: muli@il.ibm.com
LKML-Reference: <1257849980-22640-10-git-send-email-fujita.tomonori@lab.ntt.co.jp>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This changes gart_iommu_hole_init() to set gart_iommu_init() to
iommu_init hook if gart_iommu_hole_init() finds the GART IOMMU.
We can kill the code to check if we found the IOMMU in
gart_iommu_init() since gart_iommu_hole_init() sets
gart_iommu_init() only when it found the IOMMU.
Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Cc: chrisw@sous-sol.org
Cc: dwmw2@infradead.org
Cc: joerg.roedel@amd.com
Cc: muli@il.ibm.com
LKML-Reference: <1257849980-22640-4-git-send-email-fujita.tomonori@lab.ntt.co.jp>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This block is allocated with alloc_bootmem() and scanned by kmemleak but
the kernel direct mapping may no longer exist. This patch tells kmemleak
to ignore this memory hole. The dma32_bootmem_ptr in
dma32_reserve_bootmem() is also ignored.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Impact: update comment
Clarify that too small aperture is valid reason for this code.
Signed-off-by: Pavel Machek <pavel@suse.cz>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The number of BIOSes that have an option to enable the IOMMU, or fix
anything about its configuration, is vanishingly small. There's no good
reason to punish quiet boot for this.
Signed-off-by: Adam Jackson <ajax@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
gart.h has only GART-specific stuff. Only GART code needs it. Other
IOMMU stuff should include iommu.h instead of gart.h.
Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Acked-by: Muli Ben-Yehuda <muli@il.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
rename update_memory_range to e820_update_range
rename add_memory_region to e820_add_region
to make it more clear that they are about e820 map operations.
Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Kevin Winchester reported a GART related direct rendering failure against
linux-next-20080611, which shows up via these log entries:
PCI: Using ACPI for IRQ routing
PCI: Cannot allocate resource region 0 of device 0000:00:00.0
agpgart: Detected AGP bridge 0
agpgart: Aperture conflicts with PCI mapping.
agpgart: Aperture from AGP @ e0000000 size 128 MB
agpgart: Aperture conflicts with PCI mapping.
agpgart: No usable aperture found.
agpgart: Consider rebooting with iommu=memaper=2 to get a good aperture.
instead of the expected:
PCI: Using ACPI for IRQ routing
agpgart: Detected AGP bridge 0
agpgart: Aperture from AGP @ e0000000 size 128 MB
Kevin bisected it down to this change in tip/x86/gart:
"x86: checking aperture size order".
agp check is using request_mem_region(), and could fail if e820 is reserved...
change it back to e820_any_mapped().
Reported-and-bisected-by: "Kevin Winchester" <kjwinchester@gmail.com>
Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com>
Tested-by: Kevin Winchester <kjwinchester@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>