IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
WARN and continue if misc_cg_set_capacity() fails, as the only scenario
in which it can fail is if the specified resource is invalid, which should
never happen when CONFIG_KVM_AMD_SEV=y. Deliberately not bailing "fixes"
a theoretical bug where KVM would leak the ASID bitmaps on failure, which
again can't happen.
If the impossible should happen, the end result is effectively the same
with respect to SEV and SEV-ES (they are unusable), while continuing on
has the advantage of letting KVM load, i.e. userspace can still run
non-SEV guests.
Reported-by: Alexander Mikhalitsyn <aleksandr.mikhalitsyn@canonical.com>
Link: https://lore.kernel.org/r/20230607004449.1421131-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add a "never" option to the nx_huge_pages module param to allow userspace
to do a one-way hard disabling of the mitigation, and don't create the
per-VM recovery threads when the mitigation is hard disabled. Letting
userspace pinky swear that userspace doesn't want to enable NX mitigation
(without reloading KVM) allows certain use cases to avoid the latency
problems associated with spawning a kthread for each VM.
E.g. in FaaS use cases, the guest kernel is trusted and the host may
create 100+ VMs per logical CPU, which can result in 100ms+ latencies when
a burst of VMs is created.
Reported-by: Li RongQing <lirongqing@baidu.com>
Closes: https://lore.kernel.org/all/1679555884-32544-1-git-send-email-lirongqing@baidu.com
Cc: Yong He <zhuangel570@gmail.com>
Cc: Robert Hoo <robert.hoo.linux@gmail.com>
Cc: Kai Huang <kai.huang@intel.com>
Reviewed-by: Robert Hoo <robert.hoo.linux@gmail.com>
Acked-by: Kai Huang <kai.huang@intel.com>
Tested-by: Luiz Capitulino <luizcap@amazon.com>
Reviewed-by: Li RongQing <lirongqing@baidu.com>
Link: https://lore.kernel.org/r/20230602005859.784190-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Refresh comments about msrs_to_save, emulated_msrs, and msr_based_features
to remove stale references left behind by commit 2374b7310b66 (KVM:
x86/pmu: Use separate array for defining "PMU MSRs to save"), and to
better reflect the current reality, e.g. emulated_msrs is no longer just
for MSRs that are "kvm-specific".
Reported-by: Binbin Wu <binbin.wu@linux.intel.com>
Link: https://lore.kernel.org/r/20230607004636.1421424-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
CPUID leaf 0x80000022 i.e. ExtPerfMonAndDbg advertises some new
performance monitoring features for AMD processors.
Bit 0 of EAX indicates support for Performance Monitoring Version 2
(PerfMonV2) features. If found to be set during PMU initialization,
the EBX bits of the same CPUID function can be used to determine
the number of available PMCs for different PMU types.
Expose the relevant bits via KVM_GET_SUPPORTED_CPUID so that
guests can make use of the PerfMonV2 features.
Co-developed-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Link: https://lore.kernel.org/r/20230603011058.1038821-13-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
If AMD Performance Monitoring Version 2 (PerfMonV2) is detected by
the guest, it can use a new scheme to manage the Core PMCs using the
new global control and status registers.
In addition to benefiting from the PerfMonV2 functionality in the same
way as the host (higher precision), the guest also can reduce the number
of vm-exits by lowering the total number of MSRs accesses.
In terms of implementation details, amd_is_valid_msr() is resurrected
since three newly added MSRs could not be mapped to one vPMC.
The possibility of emulating PerfMonV2 on the mainframe has also
been eliminated for reasons of precision.
Co-developed-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Like Xu <likexu@tencent.com>
[sean: drop "Based on the observed HW." comments]
Link: https://lore.kernel.org/r/20230603011058.1038821-12-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add a KVM-only leaf for AMD's PerfMonV2 to redirect the kernel's scattered
version to its architectural location, e.g. so that KVM can query guest
support via guest_cpuid_has().
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
[sean: massage changelog]
Link: https://lore.kernel.org/r/20230603011058.1038821-11-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Cap the number of general purpose counters enumerated on AMD to what KVM
actually supports, i.e. don't allow userspace to coerce KVM into thinking
there are more counters than actually exist, e.g. by enumerating
X86_FEATURE_PERFCTR_CORE in guest CPUID when its not supported.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
[sean: massage changelog]
Link: https://lore.kernel.org/r/20230603011058.1038821-10-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Enable and advertise PERFCTR_CORE if and only if the minimum number of
required counters are available, i.e. if perf says there are less than six
general purpose counters.
Opportunistically, use kvm_cpu_cap_check_and_set() instead of open coding
the check for host support.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
[sean: massage shortlog and changelog]
Link: https://lore.kernel.org/r/20230603011058.1038821-9-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Disable PMU support when running on AMD and perf reports fewer than four
general purpose counters. All AMD PMUs must define at least four counters
due to AMD's legacy architecture hardcoding the number of counters
without providing a way to enumerate the number of counters to software,
e.g. from AMD's APM:
The legacy architecture defines four performance counters (PerfCtrn)
and corresponding event-select registers (PerfEvtSeln).
Virtualizing fewer than four counters can lead to guest instability as
software expects four counters to be available. Rather than bleed AMD
details into the common code, just define a const unsigned int and
provide a convenient location to document why Intel and AMD have different
mins (in particular, AMD's lack of any way to enumerate less than four
counters to the guest).
Keep the minimum number of counters at Intel at one, even though old P6
and Core Solo/Duo processor effectively require a minimum of two counters.
KVM can, and more importantly has up until this point, supported a vPMU so
long as the CPU has at least one counter. Perf's support for P6/Core CPUs
does require two counters, but perf will happily chug along with a single
counter when running on a modern CPU.
Cc: Jim Mattson <jmattson@google.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
[sean: set Intel min to '1', not '2']
Link: https://lore.kernel.org/r/20230603011058.1038821-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add an explicit !enable_pmu check as relying on kvm_pmu_cap to be
zeroed isn't obvious. Although when !enable_pmu, KVM will have
zero-padded kvm_pmu_cap to do subsequent CPUID leaf assignments.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Link: https://lore.kernel.org/r/20230603011058.1038821-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move the Intel PMU implementation of pmc_is_enabled() to common x86 code
as pmc_is_globally_enabled(), and drop AMD's implementation. AMD PMU
currently supports only v1, and thus not PERF_GLOBAL_CONTROL, thus the
semantics for AMD are unchanged. And when support for AMD PMU v2 comes
along, the common behavior will also Just Work.
Signed-off-by: Like Xu <likexu@tencent.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20230603011058.1038821-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move the handling of GLOBAL_CTRL, GLOBAL_STATUS, and GLOBAL_OVF_CTRL,
a.k.a. GLOBAL_STATUS_RESET, from Intel PMU code to generic x86 PMU code.
AMD PerfMonV2 defines three registers that have the same semantics as
Intel's variants, just with different names and indices. Conveniently,
since KVM virtualizes GLOBAL_CTRL on Intel only for PMU v2 and above, and
AMD's version shows up in v2, KVM can use common code for the existence
check as well.
Signed-off-by: Like Xu <likexu@tencent.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20230603011058.1038821-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reject userspace writes to MSR_CORE_PERF_GLOBAL_STATUS that attempt to set
reserved bits. Allowing userspace to stuff reserved bits doesn't harm KVM
itself, but it's architecturally wrong and the guest can't clear the
unsupported bits, e.g. makes the guest's PMI handler very confused.
Signed-off-by: Like Xu <likexu@tencent.com>
[sean: rewrite changelog to avoid use of #GP, rebase on name change]
Link: https://lore.kernel.org/r/20230603011058.1038821-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move reprogram_counters() out of Intel specific PMU code and into pmu.h so
that it can be used to implement AMD PMU v2 support.
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
[sean: rewrite changelog]
Link: https://lore.kernel.org/r/20230603011058.1038821-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Rename global_ovf_ctrl_mask to global_status_mask to avoid confusion now
that Intel has renamed GLOBAL_OVF_CTRL to GLOBAL_STATUS_RESET in PMU v4.
GLOBAL_OVF_CTRL and GLOBAL_STATUS_RESET are the same MSR index, i.e. are
just different names for the same thing, but the SDM provides different
entries in the IA-32 Architectural MSRs table, which gets really confusing
when looking at PMU v4 definitions since it *looks* like GLOBAL_STATUS has
bits that don't exist in GLOBAL_OVF_CTRL, but in reality the bits are
simply defined in the GLOBAL_STATUS_RESET entry.
No functional change intended.
Cc: Like Xu <like.xu.linux@gmail.com>
Link: https://lore.kernel.org/r/20230603011058.1038821-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
As test_bit() returns bool, explicitly converting result to bool is
unnecessary. Get rid of '!!'.
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Michal Luczaj <mhal@rbox.co>
Link: https://lore.kernel.org/r/20230605200158.118109-1-mhal@rbox.co
Signed-off-by: Sean Christopherson <seanjc@google.com>
Replace an #ifdef on CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS with a
cpu_feature_enabled() check on X86_FEATURE_PKU. The macro magic of
DISABLED_MASK_BIT_SET() means that cpu_feature_enabled() provides the
same end result (no code generated) when PKU is disabled by Kconfig.
No functional change intended.
Cc: Jon Kohler <jon@nutanix.com>
Reviewed-by: Jon Kohler <jon@nutanix.com>
Link: https://lore.kernel.org/r/20230602010550.785722-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Request an APIC-access page reload when the backing page is migrated (or
unmapped) if and only if vendor code actually plugs the backing pfn into
structures that reside outside of KVM's MMU. This avoids kicking all
vCPUs in the (hopefully infrequent) scenario where the backing page is
migrated/invalidated.
Unlike VMX's APICv, SVM's AVIC doesn't plug the backing pfn directly into
the VMCB and so doesn't need a hook to invalidate an out-of-MMU "mapping".
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/r/20230602011518.787006-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Now that KVM honors past and in-progress mmu_notifier invalidations when
reloading the APIC-access page, use KVM's "standard" invalidation hooks
to trigger a reload and delete the one-off usage of invalidate_range().
Aside from eliminating one-off code in KVM, dropping KVM's use of
invalidate_range() will allow common mmu_notifier to redefine the API to
be more strictly focused on invalidating secondary TLBs that share the
primary MMU's page tables.
Suggested-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/r/20230602011518.787006-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Re-request an APIC-access page reload if there is a relevant mmu_notifier
invalidation in-progress when KVM retrieves the backing pfn, i.e. stall
vCPUs until the backing pfn for the APIC-access page is "officially"
stable. Relying on the primary MMU to not make changes after invoking
->invalidate_range() works, e.g. any additional changes to a PRESENT PTE
would also trigger an ->invalidate_range(), but using ->invalidate_range()
to fudge around KVM not honoring past and in-progress invalidations is a
bit hacky.
Honoring invalidations will allow using KVM's standard mmu_notifier hooks
to detect APIC-access page reloads, which will in turn allow removing
KVM's implementation of ->invalidate_range() (the APIC-access page case is
a true one-off).
Opportunistically add a comment to explain why doing nothing if a memslot
isn't found is functionally correct.
Suggested-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/r/20230602011518.787006-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Let's print available ASID ranges for SEV/SEV-ES guests.
This information can be useful for system administrator
to debug if SEV/SEV-ES fails to enable.
There are a few reasons.
SEV:
- NPT is disabled (module parameter)
- CPU lacks some features (sev, decodeassists)
- Maximum SEV ASID is 0
SEV-ES:
- mmio_caching is disabled (module parameter)
- CPU lacks sev_es feature
- Minimum SEV ASID value is 1 (can be adjusted in BIOS/UEFI)
Cc: Sean Christopherson <seanjc@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Stéphane Graber <stgraber@ubuntu.com>
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Alexander Mikhalitsyn <aleksandr.mikhalitsyn@canonical.com>
Link: https://lore.kernel.org/r/20230522161249.800829-3-aleksandr.mikhalitsyn@canonical.com
[sean: print '0' for min SEV-ES ASID if there are no available ASIDs]
Signed-off-by: Sean Christopherson <seanjc@google.com>
There is no VMENTER_L1D_FLUSH_NESTED_VM. It should be
ARCH_CAP_SKIP_VMENTRY_L1DFLUSH.
Signed-off-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20230524061634.54141-3-chao.gao@intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Currently hv_read_tsc_page_tsc() (ab)uses the (valid) time value of
U64_MAX as an error return. This breaks the clean wrap-around of the
clock.
Modify the function signature to return a boolean state and provide
another u64 pointer to store the actual time on success. This obviates
the need to steal one time value and restores the full counter width.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Michael Kelley <mikelley@microsoft.com> # Hyper-V
Link: https://lore.kernel.org/r/20230519102715.775630881@infradead.org
Now that we have raw_atomic*_<op>() definitions, there's no need to use
arch_atomic*_<op>() definitions outside of the low-level atomic
definitions.
Move treewide users of arch_atomic*_<op>() over to the equivalent
raw_atomic*_<op>().
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20230605070124.3741859-19-mark.rutland@arm.com
Bail from kvm_recalculate_phys_map() and disable the optimized map if the
target vCPU's x2APIC ID is out-of-bounds, i.e. if the vCPU was added
and/or enabled its local APIC after the map was allocated. This fixes an
out-of-bounds access bug in the !x2apic_format path where KVM would write
beyond the end of phys_map.
Check the x2APIC ID regardless of whether or not x2APIC is enabled,
as KVM's hardcodes x2APIC ID to be the vCPU ID, i.e. it can't change, and
the map allocation in kvm_recalculate_apic_map() doesn't check for x2APIC
being enabled, i.e. the check won't get false postivies.
Note, this also affects the x2apic_format path, which previously just
ignored the "x2apic_id > new->max_apic_id" case. That too is arguably a
bug fix, as ignoring the vCPU meant that KVM would not send interrupts to
the vCPU until the next map recalculation. In practice, that "bug" is
likely benign as a newly present vCPU/APIC would immediately trigger a
recalc. But, there's no functional downside to disabling the map, and
a future patch will gracefully handle the -E2BIG case by retrying instead
of simply disabling the optimized map.
Opportunistically add a sanity check on the xAPIC ID size, along with a
comment explaining why the xAPIC ID is guaranteed to be "good".
Reported-by: Michal Luczaj <mhal@rbox.co>
Fixes: 5b84b0291702 ("KVM: x86: Honor architectural behavior for aliased 8-bit APIC IDs")
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230602233250.1014316-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move SVM's call to trace_kvm_exit() from the "slow" VM-Exit handler to
svm_vcpu_run() so that KVM traces fastpath VM-Exits that re-enter the
guest without bouncing through the slow path. This bug is benign in the
current code base as KVM doesn't currently support any such exits on SVM.
Fixes: a9ab13ff6e84 ("KVM: X86: Improve latency for single target IPI fastpath")
Link: https://lore.kernel.org/r/20230602011920.787844-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Increment vcpu->stat.exits when handling a fastpath VM-Exit without
going through any part of the "slow" path. Not bumping the exits stat
can result in wildly misleading exit counts, e.g. if the primary reason
the guest is exiting is to program the TSC deadline timer.
Fixes: 404d5d7bff0d ("KVM: X86: Introduce more exit_fastpath_completion enum values")
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230602011920.787844-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
While testing Hyper-V enabled Windows Server 2019 guests on Zen4 hardware
I noticed that with vCPU count large enough (> 16) they sometimes froze at
boot.
With vCPU count of 64 they never booted successfully - suggesting some kind
of a race condition.
Since adding "vnmi=0" module parameter made these guests boot successfully
it was clear that the problem is most likely (v)NMI-related.
Running kvm-unit-tests quickly showed failing NMI-related tests cases, like
"multiple nmi" and "pending nmi" from apic-split, x2apic and xapic tests
and the NMI parts of eventinj test.
The issue was that once one NMI was being serviced no other NMI was allowed
to be set pending (NMI limit = 0), which was traced to
svm_is_vnmi_pending() wrongly testing for the "NMI blocked" flag rather
than for the "NMI pending" flag.
Fix this by testing for the right flag in svm_is_vnmi_pending().
Once this is done, the NMI-related kvm-unit-tests pass successfully and
the Windows guest no longer freezes at boot.
Fixes: fa4c027a7956 ("KVM: x86: Add support for SVM's Virtual NMI")
Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/be4ca192eb0c1e69a210db3009ca984e6a54ae69.1684495380.git.maciej.szmigiero@oracle.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Factor in the address space (non-SMM vs. SMM) of the target shadow page
when recovering potential NX huge pages, otherwise KVM will retrieve the
wrong memslot when zapping shadow pages that were created for SMM. The
bug most visibly manifests as a WARN on the memslot being non-NULL, but
the worst case scenario is that KVM could unaccount the shadow page
without ensuring KVM won't install a huge page, i.e. if the non-SMM slot
is being dirty logged, but the SMM slot is not.
------------[ cut here ]------------
WARNING: CPU: 1 PID: 3911 at arch/x86/kvm/mmu/mmu.c:7015
kvm_nx_huge_page_recovery_worker+0x38c/0x3d0 [kvm]
CPU: 1 PID: 3911 Comm: kvm-nx-lpage-re
RIP: 0010:kvm_nx_huge_page_recovery_worker+0x38c/0x3d0 [kvm]
RSP: 0018:ffff99b284f0be68 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff99b284edd000 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffff9271397024e0 R08: 0000000000000000 R09: ffff927139702450
R10: 0000000000000000 R11: 0000000000000001 R12: ffff99b284f0be98
R13: 0000000000000000 R14: ffff9270991fcd80 R15: 0000000000000003
FS: 0000000000000000(0000) GS:ffff927f9f640000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f0aacad3ae0 CR3: 000000088fc2c005 CR4: 00000000003726e0
Call Trace:
<TASK>
__pfx_kvm_nx_huge_page_recovery_worker+0x10/0x10 [kvm]
kvm_vm_worker_thread+0x106/0x1c0 [kvm]
kthread+0xd9/0x100
ret_from_fork+0x2c/0x50
</TASK>
---[ end trace 0000000000000000 ]---
This bug was exposed by commit edbdb43fc96b ("KVM: x86: Preserve TDP MMU
roots until they are explicitly invalidated"), which allowed KVM to retain
SMM TDP MMU roots effectively indefinitely. Before commit edbdb43fc96b,
KVM would zap all SMM TDP MMU roots and thus all SMM TDP MMU shadow pages
once all vCPUs exited SMM, which made the window where this bug (recovering
an SMM NX huge page) could be encountered quite tiny. To hit the bug, the
NX recovery thread would have to run while at least one vCPU was in SMM.
Most VMs typically only use SMM during boot, and so the problematic shadow
pages were gone by the time the NX recovery thread ran.
Now that KVM preserves TDP MMU roots until they are explicitly invalidated
(e.g. by a memslot deletion), the window to trigger the bug is effectively
never closed because most VMMs don't delete memslots after boot (except
for a handful of special scenarios).
Fixes: eb298605705a ("KVM: x86/mmu: Do not recover dirty-tracked NX Huge Pages")
Reported-by: Fabio Coatti <fabio.coatti@gmail.com>
Closes: https://lore.kernel.org/all/CADpTngX9LESCdHVu_2mQkNGena_Ng2CphWNwsRGSMxzDsTjU2A@mail.gmail.com
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230602010137.784664-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Per Intel's SDM, unsupported ENCLS leafs result in a #GP, not a #UD.
SGX1 is a special snowflake as the SGX1 flag is used by the CPU as a
"soft" disable, e.g. if software disables machine check reporting, i.e.
having SGX but not SGX1 is effectively "SGX completely unsupported" and
and thus #UDs.
Fixes: 9798adbc04cf ("KVM: VMX: Frame in ENCLS handler for SGX virtualization")
Cc: Binbin Wu <binbin.wu@linux.intel.com>
Cc: Kai Huang <kai.huang@intel.com>
Tested-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230405234556.696927-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Inject a #GP when emulating/forwarding a valid ENCLS leaf if the vCPU has
paging disabled, e.g. if KVM is intercepting ECREATE to enforce additional
restrictions. The pseudocode in the SDM lists all #GP triggers, including
CR0.PG=0, as being checked after the ENLCS-exiting checks, i.e. the
VM-Exit will occur before the CPU performs the CR0.PG check.
Fixes: 70210c044b4e ("KVM: VMX: Add SGX ENCLS[ECREATE] handler to enforce CPUID restrictions")
Cc: Binbin Wu <binbin.wu@linux.intel.com>
Cc: Kai Huang <kai.huang@intel.com>
Tested-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230405234556.696927-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Update cpuid->nent if and only if kvm_vcpu_ioctl_get_cpuid2() succeeds.
The sole caller copies @cpuid to userspace only on success, i.e. the
existing code effectively does nothing.
Arguably, KVM should report the number of entries when returning -E2BIG so
that userspace doesn't have to guess the size, but all other similar KVM
ioctls() don't report the size either, i.e. userspace is conditioned to
guess.
Suggested-by: Takahiro Itazuri <itazur@amazon.com>
Link: https://lore.kernel.org/all/20230410141820.57328-1-itazur@amazon.com
Link: https://lore.kernel.org/r/20230526210340.2799158-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
After commit 2de154f541fc ("KVM: x86/pmu: Provide "error" semantics
for unsupported-but-known PMU MSRs"), the guest_cpuid_has(DS) check
is not necessary any more since if the guest supports X86_FEATURE_DS,
it never returns 1. And if the guest does not support this feature,
the set_msr handler will get false from kvm_pmu_is_valid_msr() before
reaching this point. Therefore, the check will not be true in all cases
and can be safely removed, which also simplifies the code and improves
its readability.
Signed-off-by: Jinrong Liang <cloudliang@tencent.com>
Link: https://lore.kernel.org/r/20230411130338.8592-1-cloudliang@tencent.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
According to the hardware manual, when the Poll command is issued, the
byte returned by the I/O read is 1 in Bit 7 when there is an interrupt,
and the highest priority binary code in Bits 2:0. The current pic
simulation code is not implemented strictly according to the above
expression.
Fix the implementation of pic_poll_read(), set Bit 7 when there is an
interrupt.
Signed-off-by: Jinliang Zheng <alexjlzheng@tencent.com>
Link: https://lore.kernel.org/r/20230419021924.1342184-1-alexjlzheng@tencent.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move the common check-and-set handling of PAT MSR writes out of vendor
code and into kvm_set_msr_common(). This aligns writes with reads, which
are already handled in common code, i.e. makes the handling of reads and
writes symmetrical in common code.
Alternatively, the common handling in kvm_get_msr_common() could be moved
to vendor code, but duplicating code is generally undesirable (even though
the duplicatated code is trivial in this case), and guest writes to PAT
should be rare, i.e. the overhead of the extra function call is a
non-issue in practice.
Suggested-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230511233351.635053-9-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Make kvm_mtrr_valid() local to mtrr.c now that it's not used to check the
validity of a PAT MSR value.
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230511233351.635053-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Drop handling of MSR_IA32_CR_PAT from mtrr.c now that SVM and VMX handle
writes without bouncing through kvm_set_msr_common(). PAT isn't truly an
MTRR even though it affects memory types, and more importantly KVM enables
hardware virtualization of guest PAT (by NOT setting "ignore guest PAT")
when a guest has non-coherent DMA, i.e. KVM doesn't need to zap SPTEs when
the guest PAT changes.
The read path is and always has been trivial, i.e. burying it in the MTRR
code does more harm than good.
WARN and continue for the PAT case in kvm_set_msr_common(), as that code
is _currently_ reached if and only if KVM is buggy. Defer cleaning up the
lack of symmetry between the read and write paths to a future patch.
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230511233351.635053-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use the MTRR macros to identify the ranges of possible MTRR MSRs instead
of bounding the ranges with a mismash of open coded values and unrelated
MSR indices. Carving out the gap for the machine check MSRs in particular
is confusing, as it's easy to incorrectly think the case statement handles
MCE MSRs instead of skipping them.
Drop the range-based funneling of MSRs between the end of the MCE MSRs
and MTRR_DEF_TYPE, i.e. 0x2A0-0x2FF, and instead handle MTTR_DEF_TYPE as
the one-off case that it is.
Extract PAT (0x277) as well in anticipation of dropping PAT "handling"
from the MTRR code.
Keep the range-based handling for the variable+fixed MTRRs even though
capturing unknown MSRs 0x214-0x24F is arguably "wrong". There is a gap in
the fixed MTRRs, 0x260-0x267, i.e. the MTRR code needs to filter out
unknown MSRs anyways, and using a single range generates marginally better
code for the big switch statement.
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230511233351.635053-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add a helper to dedup the logic for retrieving a variable MTRR range
structure given a variable MTRR MSR index.
No functional change intended.
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230511233351.635053-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add a helper to query whether a variable MTRR MSR is a base versus as mask
MSR. Replace the unnecessarily complex math with a simple check on bit 0;
base MSRs are even, mask MSRs are odd.
Link: https://lore.kernel.org/r/20230511233351.635053-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use kvm_pat_valid() directly instead of bouncing through kvm_mtrr_valid().
The PAT is not an MTRR, and kvm_mtrr_valid() just redirects to
kvm_pat_valid(), i.e. is exempt from KVM's "zap SPTEs" logic that's
needed to honor guest MTRRs when the VM has a passthrough device with
non-coherent DMA (KVM does NOT set "ignore guest PAT" in this case, and so
enables hardware virtualization of the guest's PAT, i.e. doesn't need to
manually emulate the PAT memtype).
Signed-off-by: Ke Guo <guoke@uniontech.com>
[sean: massage changelog]
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230511233351.635053-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Open code setting "vcpu->arch.pat" in vmx_set_msr() instead of bouncing
through kvm_set_msr_common() to get to the same code in kvm_mtrr_set_msr().
This aligns VMX with SVM, avoids hiding a very simple operation behind a
relatively complicated function call (finding the PAT MSR case in
kvm_set_msr_common() is non-trivial), and most importantly, makes it clear
that not unwinding the VMCS updates if kvm_set_msr_common() isn't a bug
(because kvm_set_msr_common() can never fail for PAT).
Opportunistically set vcpu->arch.pat before updating the VMCS info so that
a future patch can move the common bits (back) into kvm_set_msr_common()
without a functional change.
Note, MSR_IA32_CR_PAT is 0x277, and is very subtly handled by
case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
in kvm_set_msr_common().
Cc: Kai Huang <kai.huang@intel.com>
Signed-off-by: Wenyao Hai <haiwenyao@uniontech.com>
[sean: massage changelog, hoist setting vcpu->arch.pat up]
Reviewed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230511233351.635053-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Use kvm_is_cr4_bit_set() to read guest CR4.UMIP when sanity checking that
a descriptor table VM-Exit occurs if and only if guest.CR4.UMIP=1. UMIP
can't be guest-owned, i.e. using kvm_read_cr4_bits() to decache guest-
owned bits isn't strictly necessary, but eliminating raw reads of
vcpu->arch.cr4 is desirable as it makes it easy to visually audit KVM for
correctness.
Opportunistically add a compile-time assertion that UMIP isn't guest-owned
as letting the guest own UMIP isn't compatible with emulation (or any CR4
bit that is emulated by KVM).
Opportunistically change the WARN_ON() to a ONCE variant. When the WARN
fires, it fires _a lot_, and spamming the kernel logs ends up doing more
harm than whatever led to KVM's unnecessary emulation.
Reported-by: Robert Hoo <robert.hu@intel.com>
Link: https://lore.kernel.org/all/20230310125718.1442088-4-robert.hu@intel.com
Link: https://lore.kernel.org/r/20230413231914.1482782-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Advertise UMIP as emulated if and only if the host doesn't natively
support UMIP, otherwise vmx_umip_emulated() is misleading when the host
_does_ support UMIP. Of the four users of vmx_umip_emulated(), two
already check for native support, and the logic in vmx_set_cpu_caps() is
relevant if and only if UMIP isn't natively supported as UMIP is set in
KVM's caps by kvm_set_cpu_caps() when UMIP is present in hardware.
That leaves KVM's stuffing of X86_CR4_UMIP into the default cr4_fixed1
value enumerated for nested VMX. In that case, checking for (lack of)
host support is actually a bug fix of sorts, as enumerating UMIP support
based solely on descriptor table exiting works only because KVM doesn't
sanity check MSR_IA32_VMX_CR4_FIXED1. E.g. if a (very theoretical) host
supported UMIP in hardware but didn't allow UMIP+VMX, KVM would advertise
UMIP but not actually emulate UMIP. Of course, KVM would explode long
before it could run a nested VM on said theoretical CPU, as KVM doesn't
modify host CR4 when enabling VMX, i.e. would load an "illegal" value into
vmcs.HOST_CR4.
Reported-by: Robert Hoo <robert.hu@intel.com>
Link: https://lore.kernel.org/all/20230310125718.1442088-2-robert.hu@intel.com
Link: https://lore.kernel.org/r/20230413231914.1482782-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move the comment about keeping the hosts CR4.MCE loaded in hardware above
the code that actually modifies the hardware CR4 value.
No functional change indented.
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20230410125017.1305238-3-xiaoyao.li@intel.com
[sean: elaborate in changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Directly use vcpu->arch.cr4 is not recommended since it gets stale value
if the cr4 is not available.
Use kvm_read_cr4() instead to ensure correct value.
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20230410125017.1305238-2-xiaoyao.li@intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add assertion to track that "mmu == vcpu->arch.mmu" is always true in the
context of __kvm_mmu_invalidate_addr(). for_each_shadow_entry_using_root()
and kvm_sync_spte() operate on vcpu->arch.mmu, but the only reason that
doesn't cause explosions is because handle_invept() frees roots instead of
doing a manual invalidation. As of now, there are no major roadblocks
to switching INVEPT emulation over to use kvm_mmu_invalidate_addr().
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Link: https://lore.kernel.org/r/20230523032947.60041-1-likexu@tencent.com
Signed-off-by: Sean Christopherson <seanjc@google.com>