IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
For the DEBUGS!
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
xfs: Delay Ready Attributes
Hi all,
This set is a subset of a larger series for Dealyed Attributes. Which is a
subset of a yet larger series for parent pointers. Delayed attributes allow
attribute operations (set and remove) to be logged and committed in the same
way that other delayed operations do. This allows more complex operations (like
parent pointers) to be broken up into multiple smaller transactions. To do
this, the existing attr operations must be modified to operate as a delayed
operation. This means that they cannot roll, commit, or finish transactions.
Instead, they return -EAGAIN to allow the calling function to handle the
transaction. In this series, we focus on only the delayed attribute portion.
We will introduce parent pointers in a later set.
The set as a whole is a bit much to digest at once, so I usually send out the
smaller sub series to reduce reviewer burn out. But the entire extended series
is visible through the included github links.
Updates since v19: Added Darricks fix for the remote block accounting as well as
some minor nits about the default assert in xfs_attr_set_iter. Spent quite
a bit of time testing this cycle to weed out any more unexpected bugs. No new
test failures were observed with the addition of this set.
xfs: Fix default ASSERT in xfs_attr_set_iter
Replaced the assert with ASSERT(0);
xfs: Add delay ready attr remove routines
Added Darricks fix for remote block accounting
This series can be viewed on github here:
https://github.com/allisonhenderson/xfs_work/tree/delay_ready_attrs_v20
As well as the extended delayed attribute and parent pointer series:
https://github.com/allisonhenderson/xfs_work/tree/delay_ready_attrs_v20_extended
And the test cases:
https://github.com/allisonhenderson/xfs_work/tree/pptr_xfstestsv3
In order to run the test cases, you will need have the corresponding xfsprogs
changes as well. Which can be found here:
https://github.com/allisonhenderson/xfs_work/tree/delay_ready_attrs_xfsprogs_v20https://github.com/allisonhenderson/xfs_work/tree/delay_ready_attrs_xfsprogs_v20_extended
To run the xfs attributes tests run:
check -g attr
To run as delayed attributes run:
export MOUNT_OPTIONS="-o delattr"
check -g attr
To run parent pointer tests:
check -g parent
I've also made the corresponding updates to the user space side as well, and ported anything
they need to seat correctly.
Questions, comment and feedback appreciated!
Thanks all!
Allison
* tag 'xfs-delay-ready-attrs-v20.1' of https://github.com/allisonhenderson/xfs_work:
xfs: Make attr name schemes consistent
xfs: Fix default ASSERT in xfs_attr_set_iter
xfs: Clean up xfs_attr_node_addname_clear_incomplete
xfs: Remove xfs_attr_rmtval_set
xfs: Add delay ready attr set routines
xfs: Add delay ready attr remove routines
xfs: Hoist node transaction handling
xfs: Hoist xfs_attr_leaf_addname
xfs: Hoist xfs_attr_node_addname
xfs: Add helper xfs_attr_node_addname_find_attr
xfs: Separate xfs_attr_node_addname and xfs_attr_node_addname_clear_incomplete
xfs: Refactor xfs_attr_set_shortform
xfs: Add xfs_attr_node_remove_name
xfs: Reverse apply 72b97ea40d
The xfs_eofblocks structure is no longer well-named -- nowadays it
provides optional filtering criteria to any walk of the incore inode
cache. Only one of the cache walk goals has anything to do with
clearing of speculative post-EOF preallocations, so change the name to
be more appropriate.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
This ambitious series aims to cleans up redundant inode walk code in
xfs_icache.c, hide implementation details of the quotaoff dquot release
code, and eliminates indirect function calls from incore inode walks.
The first thing it does is to move all the code that quotaoff calls to
release dquots from all incore inodes into xfs_icache.c. Next, it
separates the goal of an inode walk from the actual radix tree tags that
may or may not be involved and drops the kludgy XFS_ICI_NO_TAG thing.
Finally, we split the speculative preallocation (blockgc) and quotaoff
dquot release code paths into separate functions so that we can keep the
implementations cohesive.
Christoph suggested last cycle that we 'simply' change quotaoff not to
allow deactivating quota entirely, but as these cleanups are to enable
one major change in behavior (deferred inode inactivation) I do not want
to add a second behavior change (quotaoff) as a dependency.
To be blunt: Additional cleanups are not in scope for this series.
Next, I made two observations about incore inode radix tree walks --
since there's a 1:1 mapping between the walk goal and the per-inode
processing function passed in, we can use the goal to make a direct call
to the processing function. Furthermore, the only caller to supply a
nonzero iter_flags argument is quotaoff, and there's only one INEW flag.
From that observation, I concluded that it's quite possible to remove
two parameters from the xfs_inode_walk* function signatures -- the
iter_flags, and the execute function pointer. The middle of the series
moves the INEW functionality into the one piece (quotaoff) that wants
it, and removes the indirect calls.
The final observation is that the inode reclaim walk loop is now almost
the same as xfs_inode_walk, so it's silly to maintain two copies. Merge
the reclaim loop code into xfs_inode_walk.
Lastly, refactor the per-ag radix tagging functions since there's
duplicated code that can be consolidated.
This series is a prerequisite for the next two patchsets, since deferred
inode inactivation will add another inode radix tree tag and iterator
function to xfs_inode_walk.
v2: walk the vfs inode list when running quotaoff instead of the radix
tree, then rework the (now completely internal) inode walk function
to take the tag as the main parameter.
v3: merge the reclaim loop into xfs_inode_walk, then consolidate the
radix tree tagging functions
v4: rebase to 5.13-rc4
v5: combine with the quotaoff patchset, reorder functions to minimize
forward declarations, split inode walk goals from radix tree tags
to reduce conceptual confusion
v6: start moving the inode cache code towards the xfs_icwalk prefix
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmC5Yv0ACgkQ+H93GTRK
tOv7Fg//Z7cKph0zSg6qsukMEMZxscuNcEBydCW1bu9gSx1NpszDpiGqAiO5ZB3X
wP2XkCqjuatbNGGvkNLHS/M4sbLX3ELogvYmMRvUhDoaSFxT/KKgxvsyNffiCSS7
xRB/rvWRp9MGRpBWPF0ZUxFU6VBzhCrYdMsNhvW95AEup8S/j+NplwoIif0gzaZZ
Q6Fl4Ca9VEBvJQPV+/zkLih19iFItmARJhPHUs4BO1nZv+CzZBFQHg7Ijw7nW92j
eSY68W4LH/IQ5cqm+HrD/+Z6ns0P7J2viewzVymkNEGnuX4a0xrQrzQ8ydRsAxTi
9EDrpIe3MbSI5YjJfmRe8G3LX5p7vBpqc8TeyZdRDMGWkFjT33HPlQNb6WxKLQbA
mjKdfr8AYZR/UQKW/7oZFrJnOoMpYRAQ4Sn/9BAYZQYm7tiLzuZsrEZ7JBwiUA56
XHmlsDDeLzJeKvjmUu8M3H4oh4Nwf5/I2vJwHjueTfhl83uJP04igIXC4rnq56bM
AAAjH9uV11Fo3q0ywAnRtN2HYj8PEJlCMK5CNskILrGeMITsBPGht0SbaA6hDI2h
GYmltKInHzuPhHC9NfyPVrVr3BrmPR5cBsVFESiz5A4E9rbuKmmna6Yk8MFlMyl8
FRIA3zVatJ2qQXtsAcdI8AZzMd7ciYhkAgCqFKxv8qK/qxITHh4=
=Rxdn
-----END PGP SIGNATURE-----
Merge tag 'inode-walk-cleanups-5.14_2021-06-03' of https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into xfs-5.14-merge2
xfs: clean up incore inode walk functions
This ambitious series aims to cleans up redundant inode walk code in
xfs_icache.c, hide implementation details of the quotaoff dquot release
code, and eliminates indirect function calls from incore inode walks.
The first thing it does is to move all the code that quotaoff calls to
release dquots from all incore inodes into xfs_icache.c. Next, it
separates the goal of an inode walk from the actual radix tree tags that
may or may not be involved and drops the kludgy XFS_ICI_NO_TAG thing.
Finally, we split the speculative preallocation (blockgc) and quotaoff
dquot release code paths into separate functions so that we can keep the
implementations cohesive.
Christoph suggested last cycle that we 'simply' change quotaoff not to
allow deactivating quota entirely, but as these cleanups are to enable
one major change in behavior (deferred inode inactivation) I do not want
to add a second behavior change (quotaoff) as a dependency.
To be blunt: Additional cleanups are not in scope for this series.
Next, I made two observations about incore inode radix tree walks --
since there's a 1:1 mapping between the walk goal and the per-inode
processing function passed in, we can use the goal to make a direct call
to the processing function. Furthermore, the only caller to supply a
nonzero iter_flags argument is quotaoff, and there's only one INEW flag.
From that observation, I concluded that it's quite possible to remove
two parameters from the xfs_inode_walk* function signatures -- the
iter_flags, and the execute function pointer. The middle of the series
moves the INEW functionality into the one piece (quotaoff) that wants
it, and removes the indirect calls.
The final observation is that the inode reclaim walk loop is now almost
the same as xfs_inode_walk, so it's silly to maintain two copies. Merge
the reclaim loop code into xfs_inode_walk.
Lastly, refactor the per-ag radix tagging functions since there's
duplicated code that can be consolidated.
This series is a prerequisite for the next two patchsets, since deferred
inode inactivation will add another inode radix tree tag and iterator
function to xfs_inode_walk.
v2: walk the vfs inode list when running quotaoff instead of the radix
tree, then rework the (now completely internal) inode walk function
to take the tag as the main parameter.
v3: merge the reclaim loop into xfs_inode_walk, then consolidate the
radix tree tagging functions
v4: rebase to 5.13-rc4
v5: combine with the quotaoff patchset, reorder functions to minimize
forward declarations, split inode walk goals from radix tree tags
to reduce conceptual confusion
v6: start moving the inode cache code towards the xfs_icwalk prefix
* tag 'inode-walk-cleanups-5.14_2021-06-03' of https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux:
xfs: refactor per-AG inode tagging functions
xfs: merge xfs_reclaim_inodes_ag into xfs_inode_walk_ag
xfs: pass struct xfs_eofblocks to the inode scan callback
xfs: fix radix tree tag signs
xfs: make the icwalk processing functions clean up the grab state
xfs: clean up inode state flag tests in xfs_blockgc_igrab
xfs: remove indirect calls from xfs_inode_walk{,_ag}
xfs: remove iter_flags parameter from xfs_inode_walk_*
xfs: move xfs_inew_wait call into xfs_dqrele_inode
xfs: separate the dqrele_all inode grab logic from xfs_inode_walk_ag_grab
xfs: pass the goal of the incore inode walk to xfs_inode_walk()
xfs: rename xfs_inode_walk functions to xfs_icwalk
xfs: move the inode walk functions further down
xfs: detach inode dquots at the end of inactivation
xfs: move the quotaoff dqrele inode walk into xfs_icache.c
[djwong: added variable names to function declarations while fixing
merge conflicts]
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
In preparation for adding another incore inode tree tag, refactor the
code that sets and clears tags from the per-AG inode tree and the tree
of per-AG structures, and remove the open-coded versions used by the
blockgc code.
Note: For reclaim, we now rely on the radix tree tags instead of the
reclaimable inode count more heavily than we used to. The conversion
should be fine, but the logic isn't 100% identical.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Merge these two inode walk loops together, since they're pretty similar
now.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Now that everything passes a perag, the agno is not needed anymore.
Convert all the users to use pag->pag_agno instead and remove the
agno from the cursor. This was largely done as an automated search
and replace.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
This patch modifies the attr set routines to be delay ready. This means
they no longer roll or commit transactions, but instead return -EAGAIN
to have the calling routine roll and refresh the transaction. In this
series, xfs_attr_set_args has become xfs_attr_set_iter, which uses a
state machine like switch to keep track of where it was when EAGAIN was
returned. See xfs_attr.h for a more detailed diagram of the states.
Two new helper functions have been added: xfs_attr_rmtval_find_space and
xfs_attr_rmtval_set_blk. They provide a subset of logic similar to
xfs_attr_rmtval_set, but they store the current block in the delay attr
context to allow the caller to roll the transaction between allocations.
This helps to simplify and consolidate code used by
xfs_attr_leaf_addname and xfs_attr_node_addname. xfs_attr_set_args has
now become a simple loop to refresh the transaction until the operation
is completed. Lastly, xfs_attr_rmtval_remove is no longer used, and is
removed.
Signed-off-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Brian Foster <bfoster@redhat.com>
This patch hoists xfs_attr_leaf_addname into the calling function. The
goal being to get all the code that will require state management into
the same scope. This isn't particularly aesthetic right away, but it is a
preliminary step to merging in the state machine code.
Signed-off-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
In preparation of removing the historic icinode struct, move the on-disk
size field into the containing xfs_inode structure.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
- Fix an ABBA deadlock when renaming files on overlayfs.
- Make sure that we can't overflow the inode extent counters when adding
to or removing extents from a file.
- Make directory sgid inheritance work the same way as all the other
filesystems.
- Don't drain the buffer cache on freeze and ro remount, which should
reduce the amount of time if read-only workloads are continuing
during the freeze.
- Fix a bug where symlink size isn't reported to the vfs in ecryptfs.
- Disentangle log cleaning from log covering. This refactoring sets us
up for future changes to the log, though for now it simply means that
we can use covering for freezes, and cleaning becomes something we
only do at unmount.
- Speed up file fsyncs by reducing iolock cycling.
- Fix delalloc blocks leaking when changing the project id fails because
of input validation errors in FSSETXATTR.
- Fix oversized quota reservation when converting unwritten extents
during a DAX write.
- Create a transaction allocation helper function to standardize the
idiom of allocating a transaction, reserving blocks, locking inodes,
and reserving quota. Replace all the open-coded logic for file
creation, file ownership changes, and file modifications to use them.
- Actually shut down the fs if the incore quota reservations get
corrupted.
- Fix background block garbage collection scans to not block and to
actually clean out CoW staging extents properly.
- Run block gc scans when we run low on project quota.
- Use the standardized transaction allocation helpers to make it so that
ENOSPC and EDQUOT errors during reservation will back out, invoke the
block gc scanner, and try again. This is preparation for introducing
background inode garbage collection in the next cycle.
- Combine speculative post-EOF block garbage collection with speculative
copy on write block garbage collection.
- Enable multithreaded quotacheck.
- Allow sysadmins to tweak the CPU affinities and maximum concurrency
levels of quotacheck and background blockgc worker pools.
- Expose the inode btree counter feature in the fs geometry ioctl.
- Cleanups of the growfs code in preparation for starting work on
filesystem shrinking.
- Fix all the bloody gcc warnings that the maintainer knows about. :P
- Fix a RST syntax error.
- Don't trigger bmbt corruption assertions after the fs shuts down.
- Restore behavior of forcing SIGBUS on a shut down filesystem when
someone triggers a mmap write fault (or really, any buffered write).
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmAlX/UACgkQ+H93GTRK
tOta+RAAiGqLKxeY07HH7F98pRJ86j6lU0zmc5i5UCOGMvZd8hLKDdThzggsjqO6
rrUSc7Ppg7MQt1JdXLSdZw2N6Ksb9yy6chufj+j3Dq1JQfSL4YvBO/LlXmZmFE6d
80Qbqq6HFSRWb6JzCMr3knhC+FJovAGhFgZYZGBZ817A/FXacTg9/A5Ow8SX81WX
42s517QOmegAn7YhC3xcPZp5iavjbMd7Y9v7izpuo4FBB9AY7NYyb5wVhvffILfS
/SMLQPw3T/tccRJuVJ8TfLA9R+B9+LaGmQ5tn/AtdwN+Lv7ykinzGKYLagkdlTmE
onGkEIwrebEgq9phT47eX7ixiEt7oWQiQGZukXLVn7mL/0WPVI2pbYi/M1BNpi8i
UftOEVroav+m4h0DF3duOE7rLGuBIEdjPuuAs85QhZ6UTusBjwxp1gOJbjuN0Up9
9hBGTtYQIRhWxHkxWKAeuYzIbtMxC2S2XGxnW4cNOxbE7GxwfxBw0KP/38ZP4iYQ
LKt6JVX+iFDQ+lH8JA6DD7+j+m7W37Alu89OPmpW2nYpFyisFDY+1dEIFvPw9roZ
BtbKlZzS2O2zD67/tTVh+ZcPoEcPfp156GDCrgfgdIdiBvQtGbyOLB/WQC6wSU1L
2PLt1inFBx5wNrIEMFMHT1hsduRihNMM+eLn6LV5XIK2RmSCT+I=
=CaLz
-----END PGP SIGNATURE-----
Merge tag 'xfs-5.12-merge-5' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull xfs updates from Darrick Wong:
"There's a lot going on this time, which seems about right for this
drama-filled year.
Community developers added some code to speed up freezing when
read-only workloads are still running, refactored the logging code,
added checks to prevent file extent counter overflow, reduced iolock
cycling to speed up fsync and gc scans, and started the slow march
towards supporting filesystem shrinking.
There's a huge refactoring of the internal speculative preallocation
garbage collection code which fixes a bunch of bugs, makes the gc
scheduling per-AG and hence multithreaded, and standardizes the retry
logic when we try to reserve space or quota, can't, and want to
trigger a gc scan. We also enable multithreaded quotacheck to reduce
mount times further. This is also preparation for background file gc,
which may or may not land for 5.13.
We also fixed some deadlocks in the rename code, fixed a quota
accounting leak when FSSETXATTR fails, restored the behavior that
write faults to an mmap'd region actually cause a SIGBUS, fixed a bug
where sgid directory inheritance wasn't quite working properly, and
fixed a bug where symlinks weren't working properly in ecryptfs. We
also now advertise the inode btree counters feature that was
introduced two cycles ago.
Summary:
- Fix an ABBA deadlock when renaming files on overlayfs.
- Make sure that we can't overflow the inode extent counters when
adding to or removing extents from a file.
- Make directory sgid inheritance work the same way as all the other
filesystems.
- Don't drain the buffer cache on freeze and ro remount, which should
reduce the amount of time if read-only workloads are continuing
during the freeze.
- Fix a bug where symlink size isn't reported to the vfs in ecryptfs.
- Disentangle log cleaning from log covering. This refactoring sets
us up for future changes to the log, though for now it simply means
that we can use covering for freezes, and cleaning becomes
something we only do at unmount.
- Speed up file fsyncs by reducing iolock cycling.
- Fix delalloc blocks leaking when changing the project id fails
because of input validation errors in FSSETXATTR.
- Fix oversized quota reservation when converting unwritten extents
during a DAX write.
- Create a transaction allocation helper function to standardize the
idiom of allocating a transaction, reserving blocks, locking
inodes, and reserving quota. Replace all the open-coded logic for
file creation, file ownership changes, and file modifications to
use them.
- Actually shut down the fs if the incore quota reservations get
corrupted.
- Fix background block garbage collection scans to not block and to
actually clean out CoW staging extents properly.
- Run block gc scans when we run low on project quota.
- Use the standardized transaction allocation helpers to make it so
that ENOSPC and EDQUOT errors during reservation will back out,
invoke the block gc scanner, and try again. This is preparation for
introducing background inode garbage collection in the next cycle.
- Combine speculative post-EOF block garbage collection with
speculative copy on write block garbage collection.
- Enable multithreaded quotacheck.
- Allow sysadmins to tweak the CPU affinities and maximum concurrency
levels of quotacheck and background blockgc worker pools.
- Expose the inode btree counter feature in the fs geometry ioctl.
- Cleanups of the growfs code in preparation for starting work on
filesystem shrinking.
- Fix all the bloody gcc warnings that the maintainer knows about. :P
- Fix a RST syntax error.
- Don't trigger bmbt corruption assertions after the fs shuts down.
- Restore behavior of forcing SIGBUS on a shut down filesystem when
someone triggers a mmap write fault (or really, any buffered
write)"
* tag 'xfs-5.12-merge-5' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (85 commits)
xfs: consider shutdown in bmapbt cursor delete assert
xfs: fix boolreturn.cocci warnings
xfs: restore shutdown check in mapped write fault path
xfs: fix rst syntax error in admin guide
xfs: fix incorrect root dquot corruption error when switching group/project quota types
xfs: get rid of xfs_growfs_{data,log}_t
xfs: rename `new' to `delta' in xfs_growfs_data_private()
libxfs: expose inobtcount in xfs geometry
xfs: don't bounce the iolock between free_{eof,cow}blocks
xfs: expose the blockgc workqueue knobs publicly
xfs: parallelize block preallocation garbage collection
xfs: rename block gc start and stop functions
xfs: only walk the incore inode tree once per blockgc scan
xfs: consolidate the eofblocks and cowblocks workers
xfs: consolidate incore inode radix tree posteof/cowblocks tags
xfs: remove trivial eof/cowblocks functions
xfs: hide xfs_icache_free_cowblocks
xfs: hide xfs_icache_free_eofblocks
xfs: relocate the eofb/cowb workqueue functions
xfs: set WQ_SYSFS on all workqueues in debug mode
...
The clearing of posteof blocks and cowblocks serve the same purpose:
removing speculative block preallocations from inactive files. We don't
need to burn two radix tree tags on this, so combine them into one.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
In anticipation of more restructuring of the eof/cowblocks gc code,
refactor calling of those two functions into a single internal helper
function, then present a new standard interface to purge speculative
block preallocations and start shifting higher level code to use that.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Add some tracepoints so that we can observe when the speculative
preallocation garbage collector runs.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Use a more suitable event class.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Pass the iocb and iov_iter to the tracepoints and leave decoding of
actual arguments to the code only run when tracing is enabled.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
xfs_wait_buftarg() is vaguely named and somewhat overloaded. Its
primary purpose is to reclaim all buffers from the provided buffer
target LRU. In preparation to refactor xfs_wait_buftarg() into
serialization and LRU draining components, rename the function and
associated helpers to something more descriptive. This patch has no
functional changes with the minor exception of renaming a
tracepoint.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Add a trace point so that we can capture when a recovered log intent
item fails to recover.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
There's a subtle design flaw in the deferred log item code that can lead
to pinning the log tail. Taking up the defer ops chain examples from
the previous commit, we can get trapped in sequences like this:
Caller hands us a transaction t0 with D0-D3 attached. The defer ops
chain will look like the following if the transaction rolls succeed:
t1: D0(t0), D1(t0), D2(t0), D3(t0)
t2: d4(t1), d5(t1), D1(t0), D2(t0), D3(t0)
t3: d5(t1), D1(t0), D2(t0), D3(t0)
...
t9: d9(t7), D3(t0)
t10: D3(t0)
t11: d10(t10), d11(t10)
t12: d11(t10)
In transaction 9, we finish d9 and try to roll to t10 while holding onto
an intent item for D3 that we logged in t0.
The previous commit changed the order in which we place new defer ops in
the defer ops processing chain to reduce the maximum chain length. Now
make xfs_defer_finish_noroll capable of relogging the entire chain
periodically so that we can always move the log tail forward. Most
chains will never get relogged, except for operations that generate very
long chains (large extents containing many blocks with different sharing
levels) or are on filesystems with small logs and a lot of ongoing
metadata updates.
Callers are now required to ensure that the transaction reservation is
large enough to handle logging done items and new intent items for the
maximum possible chain length. Most callers are careful to keep the
chain lengths low, so the overhead should be minimal.
The decision to relog an intent item is made based on whether the intent
was logged in a previous checkpoint, since there's no point in relogging
an intent into the same checkpoint.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Add a couple of tracepoints so that we can check the timestamp limits
being set on inodes and quotas.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Gao Xiang <hsiangkao@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Move the buffer retry state machine logic to xfs_buf.c and call it once
from xfs_ioend instead of duplicating it three times for the three kinds
of buffers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Remove kmem_realloc() function and convert its users to use MM API
directly (krealloc())
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
All their users have been converted to use MM API directly, no need to
keep them around anymore.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Create a new type (xfs_dqtype_t) to represent the type of an incore
dquot (user, group, project, or none). Rename the incore dquot's
dq_flags field to q_type.
This allows us to replace all the "uint type" arguments to the quota
functions with "xfs_dqtype_t type", to make it obvious when we're
passing a quota type argument into a function.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Add all the xfs_dquot fields to the tracepoint for that type; add a new
tracepoint type for the qtrx structure (dquot transaction deltas); and
use our new tracepoints. This makes it easier for the author to trace
changes to dquot counters for debugging.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Add counter fields to the incore dquot, and use that instead of the ones
in qcore. This eliminates a bunch of endian conversions and will
eventually allow us to remove qcore entirely.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Add limits fields in the incore dquot, and use that instead of the ones
in qcore. This eliminates a bunch of endian conversions and will
eventually allow us to remove qcore entirely.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Introduce a new struct xfs_dquot_res that we'll use to track all the
incore data for a particular resource type (block, inode, rt block).
This will help us (once we've eliminated q_core) to declutter quota
functions that currently open-code field access or pass around fields
around explicitly.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Add a dquot id field to the incore dquot, and use that instead of the
one in qcore. This eliminates a bunch of endian conversions and will
eventually allow us to remove qcore entirely.
We also rearrange the start of xfs_dquot to remove padding holes, saving
8 bytes.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Rename the existing incore dquot "dq_flags" field to "q_flags" to match
everything else in the structure, then move the two actual dquot state
flags to the XFS_DQFLAG_ namespace from XFS_DQ_.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
The existing reflink remapping loop has some structural problems that
need addressing:
The biggest problem is that we create one transaction for each extent in
the source file without accounting for the number of mappings there are
for the same range in the destination file. In other words, we don't
know the number of remap operations that will be necessary and we
therefore cannot guess the block reservation required. On highly
fragmented filesystems (e.g. ones with active dedupe) we guess wrong,
run out of block reservation, and fail.
The second problem is that we don't actually use the bmap intents to
their full potential -- instead of calling bunmapi directly and having
to deal with its backwards operation, we could call the deferred ops
xfs_bmap_unmap_extent and xfs_refcount_decrease_extent instead. This
makes the frontend loop much simpler.
Solve all of these problems by refactoring the remapping loops so that
we only perform one remapping operation per transaction, and each
operation only tries to remap a single extent from source to dest.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reported-by: Edwin Török <edwin@etorok.net>
Tested-by: Edwin Török <edwin@etorok.net>
Both the data and attr fork have a format that is stored in the legacy
idinode. Move it into the xfs_ifork structure instead, where it uses
up padding.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
There are there are three extents counters per inode, one for each of
the forks. Two are in the legacy icdinode and one is directly in
struct xfs_inode. Switch to a single counter in the xfs_ifork structure
where it uses up padding at the end of the structure. This simplifies
various bits of code that just wants the number of extents counter and
can now directly dereference it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
In certain situations the background CIL push can be indefinitely
delayed. While we have workarounds from the obvious cases now, it
doesn't solve the underlying issue. This issue is that there is no
upper limit on the CIL where we will either force or wait for
a background push to start, hence allowing the CIL to grow without
bound until it consumes all log space.
To fix this, add a new wait queue to the CIL which allows background
pushes to wait for the CIL context to be switched out. This happens
when the push starts, so it will allow us to block incoming
transaction commit completion until the push has started. This will
only affect processes that are running modifications, and only when
the CIL threshold has been significantly overrun.
This has no apparent impact on performance, and doesn't even trigger
until over 45 million inodes had been created in a 16-way fsmark
test on a 2GB log. That was limiting at 64MB of log space used, so
the active CIL size is only about 3% of the total log in that case.
The concurrent removal of those files did not trigger the background
sleep at all.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Remove xlog_ticket_done and just call the renamed low-level helpers for
ungranting or regranting log space directly. To make that a little
the reference put on the ticket and all tracing is moved into the actual
helpers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Add a new btree function that enables us to bulk load a btree cursor.
This will be used by the upcoming online repair patches to generate new
btrees. This avoids the programmatic inefficiency of calling
xfs_btree_insert in a loop (which generates a lot of log traffic) in
favor of stamping out new btree blocks with ordered buffers, and then
committing both the new root and scheduling the removal of the old btree
blocks in a single transaction commit.
The design of this new generic code is based off the btree rebuilding
code in xfs_repair's phase 5 code, with the explicit goal of enabling us
to share that code between scrub and repair. It has the additional
feature of being able to control btree block loading factors.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Create an in-core fake root for inode-rooted btree types so that callers
can generate a whole new btree using the upcoming btree bulk load
function without making the new tree accessible from the rest of the
filesystem. It is up to the individual btree type to provide a function
to create a staged cursor (presumably with the appropriate callouts to
update the fakeroot) and then commit the staged root back into the
filesystem.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Create an in-core fake root for AG-rooted btree types so that callers
can generate a whole new btree using the upcoming btree bulk load
function without making the new tree accessible from the rest of the
filesystem. It is up to the individual btree type to provide a function
to create a staged cursor (presumably with the appropriate callouts to
update the fakeroot) and then commit the staged root back into the
filesystem.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
The attrlist cursor only exists as part of an attr list context, so
embedd the structure instead of pointing to it. Also give it a proper
xfs_ prefix and remove the obsolete typedef.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Chandan Rajendra <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Now that we use the on-disk flags field also for the interface to the
lower level attr routines we can use the XFS_ATTR_INCOMPLETE definition
from the on-disk format directly instead.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Chandan Rajendra <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The ATTR_* flags have a long IRIX history, where they a userspace
interface, the on-disk format and an internal interface. We've split
out the on-disk interface to the XFS_ATTR_* values, but despite (or
because?) of that the flag have still been a mess. Switch the
internal interface to pass the on-disk XFS_ATTR_* flags for the
namespace and the Linux XATTR_* flags for the actual flags instead.
The ATTR_* values that are actually used are move to xfs_fs.h with a
new XFS_IOC_* prefix to not conflict with the userspace version that
has the same name and must have the same value.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Chandan Rajendra <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Replace the alist char pointer with a void buffer given that different
callers use it in different ways. Use the chance to remove the typedef
and reduce the indentation of the struct definition so that it doesn't
overflow 80 char lines all over.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Chandan Rajendra <chandanrlinux@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Alex Lyakas reported[1] that mounting an xfs filesystem with new sunit
and swidth values could cause xfs_repair to fail loudly. The problem
here is that repair calculates the where mkfs should have allocated the
root inode, based on the superblock geometry. The allocation decisions
depend on sunit, which means that we really can't go updating sunit if
it would lead to a subsequent repair failure on an otherwise correct
filesystem.
Port from xfs_repair some code that computes the location of the root
inode and teach mount to skip the ondisk update if it would cause
problems for repair. Along the way we'll update the documentation,
provide a function for computing the minimum AGFL size instead of
open-coding it, and cut down some indenting in the mount code.
Note that we allow the mount to proceed (and new allocations will
reflect this new geometry) because we've never screened this kind of
thing before. We'll have to wait for a new future incompat feature to
enforce correct behavior, alas.
Note that the geometry reporting always uses the superblock values, not
the incore ones, so that is what xfs_info and xfs_growfs will report.
[1] https://lore.kernel.org/linux-xfs/20191125130744.GA44777@bfoster/T/#m00f9594b511e076e2fcdd489d78bc30216d72a7d
Reported-by: Alex Lyakas <alex@zadara.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Rework event_create_dir() to use an array of static data instead of
function pointers where possible.
The problem is that it would call the function pointer on module load
before parse_args(), possibly even before jump_labels were initialized.
Luckily the generated functions don't use jump_labels but it still seems
fragile. It also gets in the way of changing when we make the module map
executable.
The generated function are basically calling trace_define_field() with a
bunch of static arguments. So instead of a function, capture these
arguments in a static array, avoiding the function call.
Now there are a number of cases where the fields are dynamic (syscall
arguments, kprobes and uprobes), in which case a static array does not
work, for these we preserve the function call. Luckily all these cases
are not related to modules and so we can retain the function call for
them.
Also fix up all broken tracepoint definitions that now generate a
compile error.
Tested-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20191111132458.342979914@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use the allocsize name to match the mount option and usage instead.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The near mode fallback algorithm consists of a left/right scan of
the bnobt. This algorithm has very poor breakdown characteristics
under worst case free space fragmentation conditions. If a suitable
extent is far enough from the locality hint, each allocation may
scan most or all of the bnobt before it completes. This causes
pathological behavior and extremely high allocation latencies.
While locality is important to near mode allocations, it is not so
important as to incur pathological allocation latency to provide the
asolute best available locality for every allocation. If the
allocation is large enough or far enough away, there is a point of
diminishing returns. As such, we can bound the overall operation by
including an iterative cntbt lookup in the broader search. The cntbt
lookup is optimized to immediately find the extent with best
locality for the given size on each iteration. Since the cntbt is
indexed by extent size, the lookup repeats with a variably
aggressive increasing search key size until it runs off the edge of
the tree.
This approach provides a natural balance between the two algorithms
for various situations. For example, the bnobt scan is able to
satisfy smaller allocations such as for inode chunks or btree blocks
more quickly where the cntbt search may have to search through a
large set of extent sizes when the search key starts off small
relative to the largest extent in the tree. On the other hand, the
cntbt search more deterministically covers the set of suitable
extents for larger data extent allocation requests that the bnobt
scan may have to search the entire tree to locate.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Lift the btree fixup path into a helper function.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The near mode bnobt scan searches left and right in the bnobt
looking for the closest free extent to the allocation hint that
satisfies minlen. Once such an extent is found, the left/right
search terminates, we search one more time in the opposite direction
and finish the allocation with the best overall extent.
The left/right and find best searches are currently controlled via a
combination of cursor state and local variables. Clean up this code
and prepare for further improvements to the near mode fallback
algorithm by reusing the allocation cursor best extent tracking
mechanism. Update the tracking logic to deactivate bnobt cursors
when out of allocation range and replace open-coded extent checks to
calls to the common helper. In doing so, rename some misnamed local
variables in the top-level near mode allocation function.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>