IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
After commit a1fde08c74 ("VM: skip the stack guard page lookup in
get_user_pages only for mlock") FOLL_MLOCK has lost its original
meaning: we don't necessarily mlock the page if the flags is set -- we
also take VM_LOCKED into consideration.
Since we use the same codepath for __mm_populate(), let's rename
FOLL_MLOCK to FOLL_POPULATE.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
slob_alloc_node() is only used in slob.c. Remove the EXPORT_SYMBOL and
make slob_alloc_node() static.
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use the normal return values for bool functions
Signed-off-by: Joe Perches <joe@perches.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
By moving the O option detection into the switch statement, we allow this
parameter to be combined with other options correctly. Previously options
like slub_debug=OFZ would only detect the 'o' and use DEBUG_DEFAULT_FLAGS
to fill in the rest of the flags.
Signed-off-by: Chris J Arges <chris.j.arges@canonical.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With gcc version 4.7.3 (Ubuntu/Linaro 4.7.3-12ubuntu1) :
mm/migrate.c: In function `migrate_pages':
mm/migrate.c:1148:1: internal compiler error: in push_minipool_fix, at config/arm/arm.c:13500
Please submit a full bug report,
with preprocessed source if appropriate.
See <file:///usr/share/doc/gcc-4.7/README.Bugs> for instructions.
Preprocessed source stored into /tmp/ccPoM1tr.out file, please attach this to your bugreport.
make[1]: *** [mm/migrate.o] Error 1
make: *** [mm/migrate.o] Error 2
Mark unmap_and_move() (which is used in a single place only) "noinline"
to work around this compiler bug.
[akpm@linux-foundation.org: make it conditional on gcc-4.7.3 and arm]
[khilman@kernel.org: fine-tune compiler versions]
[akpm@linux-foundation.org: fix comment]
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Reported-by: Kevin Hilman <khilman@kernel.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Kevin Hilman <khilman@linaro.org>
Tested-by: Lina Iyer <lina.iyer@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 61f77eda9b ("mm/hugetlb: reduce arch dependent code around
follow_huge_*") broke follow_huge_pmd() on s390, where pmd and pte
layout differ and using pte_page() on a huge pmd will return wrong
results. Using pmd_page() instead fixes this.
All architectures that were touched by that commit have pmd_page()
defined, so this should not break anything on other architectures.
Fixes: 61f77eda "mm/hugetlb: reduce arch dependent code around follow_huge_*"
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@suse.cz>, Andrea Arcangeli <aarcange@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull vfs update from Al Viro:
"Part one:
- struct filename-related cleanups
- saner iov_iter_init() replacements (and switching the syscalls to
use of those)
- ntfs switch to ->write_iter() (Anton)
- aio cleanups and splitting iocb into common and async parts
(Christoph)
- assorted fixes (me, bfields, Andrew Elble)
There's a lot more, including the completion of switchover to
->{read,write}_iter(), d_inode/d_backing_inode annotations, f_flags
race fixes, etc, but that goes after #for-davem merge. David has
pulled it, and once it's in I'll send the next vfs pull request"
* 'for-linus-1' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (35 commits)
sg_start_req(): use import_iovec()
sg_start_req(): make sure that there's not too many elements in iovec
blk_rq_map_user(): use import_single_range()
sg_io(): use import_iovec()
process_vm_access: switch to {compat_,}import_iovec()
switch keyctl_instantiate_key_common() to iov_iter
switch {compat_,}do_readv_writev() to {compat_,}import_iovec()
aio_setup_vectored_rw(): switch to {compat_,}import_iovec()
vmsplice_to_user(): switch to import_iovec()
kill aio_setup_single_vector()
aio: simplify arguments of aio_setup_..._rw()
aio: lift iov_iter_init() into aio_setup_..._rw()
lift iov_iter into {compat_,}do_readv_writev()
NFS: fix BUG() crash in notify_change() with patch to chown_common()
dcache: return -ESTALE not -EBUSY on distributed fs race
NTFS: Version 2.1.32 - Update file write from aio_write to write_iter.
VFS: Add iov_iter_fault_in_multipages_readable()
drop bogus check in file_open_root()
switch security_inode_getattr() to struct path *
constify tomoyo_realpath_from_path()
...
Pull workqueue updates from Tejun Heo:
"Workqueue now prints debug information at the end of sysrq-t which
should be helpful when tracking down suspected workqueue stalls. It
only prints out the ones with something currently going on so it
shouldn't add much output in most cases"
* 'for-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
workqueue: Reorder sysfs code
percpu: Fix trivial typos in comments
workqueue: dump workqueues on sysrq-t
workqueue: keep track of the flushing task and pool manager
workqueue: make the workqueues list RCU walkable
... returning -E... upon error and amount of data left in iter after
(possible) truncation upon success. Note, that normal case gives
a non-zero (positive) return value, so any tests for != 0 _must_ be
updated.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Conflicts:
fs/ext4/file.c
A side effect worth noting: in O_APPEND case we set ->ki_pos early,
so if it turns out to be an error or a zero-length write, we'll
end up with ->ki_pos modified. Safe, since all callers never
look at the ->ki_pos after the call of __generic_file_write_iter()
returning non-positive, all the way to caller of ->write_iter() and
those discard ->ki_pos when getting that.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
All places outside of core VFS that checked ->read and ->write for being NULL or
called the methods directly are gone now, so NULL {read,write} with non-NULL
{read,write}_iter will do the right thing in all cases.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
trivial conflict in net/socket.c and non-trivial one in crypto -
that one had evaded aio_complete() removal.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
teach ->mremap() method to return an error and have it fail for
aio mappings in process of being killed
Note that in case of ->mremap() failure we need to undo move_page_tables()
we'd already done; we could call ->mremap() first, but then the failure of
move_page_tables() would require undoing whatever _successful_ ->mremap()
has done, which would be a lot more headache in general.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
struct kiocb now is a generic I/O container, so move it to fs.h.
Also do a #include diet for aio.h while we're at it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Merge misc fixes from Andrew Morton:
"15 fixes"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
mm: numa: mark huge PTEs young when clearing NUMA hinting faults
mm: numa: slow PTE scan rate if migration failures occur
mm: numa: preserve PTE write permissions across a NUMA hinting fault
mm: numa: group related processes based on VMA flags instead of page table flags
hfsplus: fix B-tree corruption after insertion at position 0
MAINTAINERS: add Jan as DMI/SMBIOS support maintainer
fs/affs/file.c: unlock/release page on error
mm/page_alloc.c: call kernel_map_pages in unset_migrateype_isolate
mm/slub: fix lockups on PREEMPT && !SMP kernels
mm/memory hotplug: postpone the reset of obsolete pgdat
MAINTAINERS: correct rtc armada38x pattern entry
mm/pagewalk.c: prevent positive return value of walk_page_test() from being passed to callers
mm: fix anon_vma->degree underflow in anon_vma endless growing prevention
drivers/rtc/rtc-mrst: fix suspend/resume
aoe: update aoe maintainer information
Base PTEs are marked young when the NUMA hinting information is cleared
but the same does not happen for huge pages which this patch addresses.
Note that migrated pages are not marked young as the base page migration
code does not assume that migrated pages have been referenced. This
could be addressed but beyond the scope of this series which is aimed at
Dave Chinners shrink workload that is unlikely to be affected by this
issue.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Dave Chinner reported the following on https://lkml.org/lkml/2015/3/1/226
Across the board the 4.0-rc1 numbers are much slower, and the degradation
is far worse when using the large memory footprint configs. Perf points
straight at the cause - this is from 4.0-rc1 on the "-o bhash=101073" config:
- 56.07% 56.07% [kernel] [k] default_send_IPI_mask_sequence_phys
- default_send_IPI_mask_sequence_phys
- 99.99% physflat_send_IPI_mask
- 99.37% native_send_call_func_ipi
smp_call_function_many
- native_flush_tlb_others
- 99.85% flush_tlb_page
ptep_clear_flush
try_to_unmap_one
rmap_walk
try_to_unmap
migrate_pages
migrate_misplaced_page
- handle_mm_fault
- 99.73% __do_page_fault
trace_do_page_fault
do_async_page_fault
+ async_page_fault
0.63% native_send_call_func_single_ipi
generic_exec_single
smp_call_function_single
This is showing excessive migration activity even though excessive
migrations are meant to get throttled. Normally, the scan rate is tuned
on a per-task basis depending on the locality of faults. However, if
migrations fail for any reason then the PTE scanner may scan faster if
the faults continue to be remote. This means there is higher system CPU
overhead and fault trapping at exactly the time we know that migrations
cannot happen. This patch tracks when migration failures occur and
slows the PTE scanner.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reported-by: Dave Chinner <david@fromorbit.com>
Tested-by: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Protecting a PTE to trap a NUMA hinting fault clears the writable bit
and further faults are needed after trapping a NUMA hinting fault to set
the writable bit again. This patch preserves the writable bit when
trapping NUMA hinting faults. The impact is obvious from the number of
minor faults trapped during the basis balancing benchmark and the system
CPU usage;
autonumabench
4.0.0-rc4 4.0.0-rc4
baseline preserve
Time System-NUMA01 107.13 ( 0.00%) 103.13 ( 3.73%)
Time System-NUMA01_THEADLOCAL 131.87 ( 0.00%) 83.30 ( 36.83%)
Time System-NUMA02 8.95 ( 0.00%) 10.72 (-19.78%)
Time System-NUMA02_SMT 4.57 ( 0.00%) 3.99 ( 12.69%)
Time Elapsed-NUMA01 515.78 ( 0.00%) 517.26 ( -0.29%)
Time Elapsed-NUMA01_THEADLOCAL 384.10 ( 0.00%) 384.31 ( -0.05%)
Time Elapsed-NUMA02 48.86 ( 0.00%) 48.78 ( 0.16%)
Time Elapsed-NUMA02_SMT 47.98 ( 0.00%) 48.12 ( -0.29%)
4.0.0-rc4 4.0.0-rc4
baseline preserve
User 44383.95 43971.89
System 252.61 201.24
Elapsed 998.68 1000.94
Minor Faults 2597249 1981230
Major Faults 365 364
There is a similar drop in system CPU usage using Dave Chinner's xfsrepair
workload
4.0.0-rc4 4.0.0-rc4
baseline preserve
Amean real-xfsrepair 454.14 ( 0.00%) 442.36 ( 2.60%)
Amean syst-xfsrepair 277.20 ( 0.00%) 204.68 ( 26.16%)
The patch looks hacky but the alternatives looked worse. The tidest was
to rewalk the page tables after a hinting fault but it was more complex
than this approach and the performance was worse. It's not generally
safe to just mark the page writable during the fault if it's a write
fault as it may have been read-only for COW so that approach was
discarded.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reported-by: Dave Chinner <david@fromorbit.com>
Tested-by: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These are three follow-on patches based on the xfsrepair workload Dave
Chinner reported was problematic in 4.0-rc1 due to changes in page table
management -- https://lkml.org/lkml/2015/3/1/226.
Much of the problem was reduced by commit 53da3bc2ba ("mm: fix up numa
read-only thread grouping logic") and commit ba68bc0115 ("mm: thp:
Return the correct value for change_huge_pmd"). It was known that the
performance in 3.19 was still better even if is far less safe. This
series aims to restore the performance without compromising on safety.
For the test of this mail, I'm comparing 3.19 against 4.0-rc4 and the
three patches applied on top
autonumabench
3.19.0 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4
vanilla vanilla vmwrite-v5r8 preserve-v5r8 slowscan-v5r8
Time System-NUMA01 124.00 ( 0.00%) 161.86 (-30.53%) 107.13 ( 13.60%) 103.13 ( 16.83%) 145.01 (-16.94%)
Time System-NUMA01_THEADLOCAL 115.54 ( 0.00%) 107.64 ( 6.84%) 131.87 (-14.13%) 83.30 ( 27.90%) 92.35 ( 20.07%)
Time System-NUMA02 9.35 ( 0.00%) 10.44 (-11.66%) 8.95 ( 4.28%) 10.72 (-14.65%) 8.16 ( 12.73%)
Time System-NUMA02_SMT 3.87 ( 0.00%) 4.63 (-19.64%) 4.57 (-18.09%) 3.99 ( -3.10%) 3.36 ( 13.18%)
Time Elapsed-NUMA01 570.06 ( 0.00%) 567.82 ( 0.39%) 515.78 ( 9.52%) 517.26 ( 9.26%) 543.80 ( 4.61%)
Time Elapsed-NUMA01_THEADLOCAL 393.69 ( 0.00%) 384.83 ( 2.25%) 384.10 ( 2.44%) 384.31 ( 2.38%) 380.73 ( 3.29%)
Time Elapsed-NUMA02 49.09 ( 0.00%) 49.33 ( -0.49%) 48.86 ( 0.47%) 48.78 ( 0.63%) 50.94 ( -3.77%)
Time Elapsed-NUMA02_SMT 47.51 ( 0.00%) 47.15 ( 0.76%) 47.98 ( -0.99%) 48.12 ( -1.28%) 49.56 ( -4.31%)
3.19.0 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4
vanilla vanillavmwrite-v5r8preserve-v5r8slowscan-v5r8
User 46334.60 46391.94 44383.95 43971.89 44372.12
System 252.84 284.66 252.61 201.24 249.00
Elapsed 1062.14 1050.96 998.68 1000.94 1026.78
Overall the system CPU usage is comparable and the test is naturally a
bit variable. The slowing of the scanner hurts numa01 but on this
machine it is an adverse workload and patches that dramatically help it
often hurt absolutely everything else.
Due to patch 2, the fault activity is interesting
3.19.0 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4
vanilla vanillavmwrite-v5r8preserve-v5r8slowscan-v5r8
Minor Faults 2097811 2656646 2597249 1981230 1636841
Major Faults 362 450 365 364 365
Note the impact preserving the write bit across protection updates and
fault reduces faults.
NUMA alloc hit 1229008 1217015 1191660 1178322 1199681
NUMA alloc miss 0 0 0 0 0
NUMA interleave hit 0 0 0 0 0
NUMA alloc local 1228514 1216317 1190871 1177448 1199021
NUMA base PTE updates 245706197 240041607 238195516 244704842 115012800
NUMA huge PMD updates 479530 468448 464868 477573 224487
NUMA page range updates 491225557 479886983 476207932 489222218 229950144
NUMA hint faults 659753 656503 641678 656926 294842
NUMA hint local faults 381604 373963 360478 337585 186249
NUMA hint local percent 57 56 56 51 63
NUMA pages migrated 5412140 6374899 6266530 5277468 5755096
AutoNUMA cost 5121% 5083% 4994% 5097% 2388%
Here the impact of slowing the PTE scanner on migratrion failures is
obvious as "NUMA base PTE updates" and "NUMA huge PMD updates" are
massively reduced even though the headline performance is very similar.
As xfsrepair was the reported workload here is the impact of the series
on it.
xfsrepair
3.19.0 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4
vanilla vanilla vmwrite-v5r8 preserve-v5r8 slowscan-v5r8
Min real-fsmark 1183.29 ( 0.00%) 1165.73 ( 1.48%) 1152.78 ( 2.58%) 1153.64 ( 2.51%) 1177.62 ( 0.48%)
Min syst-fsmark 4107.85 ( 0.00%) 4027.75 ( 1.95%) 3986.74 ( 2.95%) 3979.16 ( 3.13%) 4048.76 ( 1.44%)
Min real-xfsrepair 441.51 ( 0.00%) 463.96 ( -5.08%) 449.50 ( -1.81%) 440.08 ( 0.32%) 439.87 ( 0.37%)
Min syst-xfsrepair 195.76 ( 0.00%) 278.47 (-42.25%) 262.34 (-34.01%) 203.70 ( -4.06%) 143.64 ( 26.62%)
Amean real-fsmark 1188.30 ( 0.00%) 1177.34 ( 0.92%) 1157.97 ( 2.55%) 1158.21 ( 2.53%) 1182.22 ( 0.51%)
Amean syst-fsmark 4111.37 ( 0.00%) 4055.70 ( 1.35%) 3987.19 ( 3.02%) 3998.72 ( 2.74%) 4061.69 ( 1.21%)
Amean real-xfsrepair 450.88 ( 0.00%) 468.32 ( -3.87%) 454.14 ( -0.72%) 442.36 ( 1.89%) 440.59 ( 2.28%)
Amean syst-xfsrepair 199.66 ( 0.00%) 290.60 (-45.55%) 277.20 (-38.84%) 204.68 ( -2.51%) 150.55 ( 24.60%)
Stddev real-fsmark 4.12 ( 0.00%) 10.82 (-162.29%) 4.14 ( -0.28%) 5.98 (-45.05%) 4.60 (-11.53%)
Stddev syst-fsmark 2.63 ( 0.00%) 20.32 (-671.82%) 0.37 ( 85.89%) 16.47 (-525.59%) 15.05 (-471.79%)
Stddev real-xfsrepair 6.87 ( 0.00%) 4.55 ( 33.75%) 3.46 ( 49.58%) 1.78 ( 74.12%) 0.52 ( 92.50%)
Stddev syst-xfsrepair 3.02 ( 0.00%) 10.30 (-241.37%) 13.17 (-336.37%) 0.71 ( 76.63%) 5.00 (-65.61%)
CoeffVar real-fsmark 0.35 ( 0.00%) 0.92 (-164.73%) 0.36 ( -2.91%) 0.52 (-48.82%) 0.39 (-12.10%)
CoeffVar syst-fsmark 0.06 ( 0.00%) 0.50 (-682.41%) 0.01 ( 85.45%) 0.41 (-543.22%) 0.37 (-478.78%)
CoeffVar real-xfsrepair 1.52 ( 0.00%) 0.97 ( 36.21%) 0.76 ( 49.94%) 0.40 ( 73.62%) 0.12 ( 92.33%)
CoeffVar syst-xfsrepair 1.51 ( 0.00%) 3.54 (-134.54%) 4.75 (-214.31%) 0.34 ( 77.20%) 3.32 (-119.63%)
Max real-fsmark 1193.39 ( 0.00%) 1191.77 ( 0.14%) 1162.90 ( 2.55%) 1166.66 ( 2.24%) 1188.50 ( 0.41%)
Max syst-fsmark 4114.18 ( 0.00%) 4075.45 ( 0.94%) 3987.65 ( 3.08%) 4019.45 ( 2.30%) 4082.80 ( 0.76%)
Max real-xfsrepair 457.80 ( 0.00%) 474.60 ( -3.67%) 457.82 ( -0.00%) 444.42 ( 2.92%) 441.03 ( 3.66%)
Max syst-xfsrepair 203.11 ( 0.00%) 303.65 (-49.50%) 294.35 (-44.92%) 205.33 ( -1.09%) 155.28 ( 23.55%)
The really relevant lines as syst-xfsrepair which is the system CPU
usage when running xfsrepair. Note that on my machine the overhead was
45% higher on 4.0-rc4 which may be part of what Dave is seeing. Once we
preserve the write bit across faults, it's only 2.51% higher on average.
With the full series applied, system CPU usage is 24.6% lower on
average.
Again, the impact of preserving the write bit on minor faults is obvious
and the impact of slowing scanning after migration failures is obvious
on the PTE updates. Note also that the number of pages migrated is much
reduced even though the headline performance is comparable.
3.19.0 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4
vanilla vanillavmwrite-v5r8preserve-v5r8slowscan-v5r8
Minor Faults 153466827 254507978 249163829 153501373 105737890
Major Faults 610 702 690 649 724
NUMA base PTE updates 217735049 210756527 217729596 216937111 144344993
NUMA huge PMD updates 129294 85044 106921 127246 79887
NUMA pages migrated 21938995 29705270 28594162 22687324 16258075
3.19.0 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4 4.0.0-rc4
vanilla vanillavmwrite-v5r8preserve-v5r8slowscan-v5r8
Mean sdb-avgqusz 13.47 2.54 2.55 2.47 2.49
Mean sdb-avgrqsz 202.32 140.22 139.50 139.02 138.12
Mean sdb-await 25.92 5.09 5.33 5.02 5.22
Mean sdb-r_await 4.71 0.19 0.83 0.51 0.11
Mean sdb-w_await 104.13 5.21 5.38 5.05 5.32
Mean sdb-svctm 0.59 0.13 0.14 0.13 0.14
Mean sdb-rrqm 0.16 0.00 0.00 0.00 0.00
Mean sdb-wrqm 3.59 1799.43 1826.84 1812.21 1785.67
Max sdb-avgqusz 111.06 12.13 14.05 11.66 15.60
Max sdb-avgrqsz 255.60 190.34 190.01 187.33 191.78
Max sdb-await 168.24 39.28 49.22 44.64 65.62
Max sdb-r_await 660.00 52.00 280.00 76.00 12.00
Max sdb-w_await 7804.00 39.28 49.22 44.64 65.62
Max sdb-svctm 4.00 2.82 2.86 1.98 2.84
Max sdb-rrqm 8.30 0.00 0.00 0.00 0.00
Max sdb-wrqm 34.20 5372.80 5278.60 5386.60 5546.15
FWIW, I also checked SPECjbb in different configurations but it's
similar observations -- minor faults lower, PTE update activity lower
and performance is roughly comparable against 3.19.
This patch (of 3):
Threads that share writable data within pages are grouped together as
related tasks. This decision is based on whether the PTE is marked
dirty which is subject to timing races between the PTE scanner update
and when the application writes the page. If the page is file-backed,
then background flushes and sync also affect placement. This is
unpredictable behaviour which is impossible to reason about so this
patch makes grouping decisions based on the VMA flags.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reported-by: Dave Chinner <david@fromorbit.com>
Tested-by: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 3c605096d3 ("mm/page_alloc: restrict max order of merging on
isolated pageblock") changed the logic of unset_migratetype_isolate to
check the buddy allocator and explicitly call __free_pages to merge.
The page that is being freed in this path never had prep_new_page called
so set_page_refcounted is called explicitly but there is no call to
kernel_map_pages. With the default kernel_map_pages this is mostly
harmless but if kernel_map_pages does any manipulation of the page
tables (unmapping or setting pages to read only) this may trigger a
fault:
alloc_contig_range test_pages_isolated(ceb00, ced00) failed
Unable to handle kernel paging request at virtual address ffffffc0cec00000
pgd = ffffffc045fc4000
[ffffffc0cec00000] *pgd=0000000000000000
Internal error: Oops: 9600004f [#1] PREEMPT SMP
Modules linked in: exfatfs
CPU: 1 PID: 23237 Comm: TimedEventQueue Not tainted 3.10.49-gc72ad36-dirty #1
task: ffffffc03de52100 ti: ffffffc015388000 task.ti: ffffffc015388000
PC is at memset+0xc8/0x1c0
LR is at kernel_map_pages+0x1ec/0x244
Fix this by calling kernel_map_pages to ensure the page is set in the
page table properly
Fixes: 3c605096d3 ("mm/page_alloc: restrict max order of merging on isolated pageblock")
Signed-off-by: Laura Abbott <lauraa@codeaurora.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Gioh Kim <gioh.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 9aabf810a6 ("mm/slub: optimize alloc/free fastpath by removing
preemption on/off") introduced an occasional hang for kernels built with
CONFIG_PREEMPT && !CONFIG_SMP.
The problem is the following loop the patch introduced to
slab_alloc_node and slab_free:
do {
tid = this_cpu_read(s->cpu_slab->tid);
c = raw_cpu_ptr(s->cpu_slab);
} while (IS_ENABLED(CONFIG_PREEMPT) && unlikely(tid != c->tid));
GCC 4.9 has been observed to hoist the load of c and c->tid above the
loop for !SMP kernels (as in this case raw_cpu_ptr(x) is compile-time
constant and does not force a reload). On arm64 the generated assembly
looks like:
ldr x4, [x0,#8]
loop:
ldr x1, [x0,#8]
cmp x1, x4
b.ne loop
If the thread is preempted between the load of c->tid (into x1) and tid
(into x4), and an allocation or free occurs in another thread (bumping
the cpu_slab's tid), the thread will be stuck in the loop until
s->cpu_slab->tid wraps, which may be forever in the absence of
allocations/frees on the same CPU.
This patch changes the loop condition to access c->tid with READ_ONCE.
This ensures that the value is reloaded even when the compiler would
otherwise assume it could cache the value, and also ensures that the
load will not be torn.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Steve Capper <steve.capper@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
walk_page_test() is purely pagewalk's internal stuff, and its positive
return values are not intended to be passed to the callers of pagewalk.
However, in the current code if the last vma in the do-while loop in
walk_page_range() happens to return a positive value, it leaks outside
walk_page_range(). So the user visible effect is invalid/unexpected
return value (according to the reporter, mbind() causes it.)
This patch fixes it simply by reinitializing the return value after
checked.
Another exposed interface, walk_page_vma(), already returns 0 for such
cases so no problem.
Fixes: fafaa4264e ("pagewalk: improve vma handling")
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Kazutomo Yoshii <kazutomo.yoshii@gmail.com>
Reported-by: Kazutomo Yoshii <kazutomo.yoshii@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I have constantly stumbled upon "kernel BUG at mm/rmap.c:399!" after
upgrading to 3.19 and had no luck with 4.0-rc1 neither.
So, after looking into new logic introduced by commit 7a3ef208e6 ("mm:
prevent endless growth of anon_vma hierarchy"), I found chances are that
unlink_anon_vmas() is called without incrementing dst->anon_vma->degree
in anon_vma_clone() due to allocation failure. If dst->anon_vma is not
NULL in error path, its degree will be incorrectly decremented in
unlink_anon_vmas() and eventually underflow when exiting as a result of
another call to unlink_anon_vmas(). That's how "kernel BUG at
mm/rmap.c:399!" is triggered for me.
This patch fixes the underflow by dropping dst->anon_vma when allocation
fails. It's safe to do so regardless of original value of dst->anon_vma
because dst->anon_vma doesn't have valid meaning if anon_vma_clone()
fails. Besides, callers don't care dst->anon_vma in such case neither.
Also suggested by Michal Hocko, we can clean up vma_adjust() a bit as
anon_vma_clone() now does the work.
[akpm@linux-foundation.org: tweak comment]
Fixes: 7a3ef208e6 ("mm: prevent endless growth of anon_vma hierarchy")
Signed-off-by: Leon Yu <chianglungyu@gmail.com>
Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull block layer fixes from Jens Axboe:
"A small collection of fixes that has been gathered over the last few
weeks. This contains:
- A one-liner fix for NVMe, fixing a missing list_head init that
could makes us oops on hitting recovery at load time.
- Two small blk-mq fixes:
- Fixup a bad goto jump on error handling.
- Fix for oopsing if running out of reserved tags.
- A memory leak fix for NBD.
- Two small writeback fixes from Tejun, fixing a missing init to
INITIAL_JIFFIES, and a possible underflow introduced recently.
- A core merge fixup in sg gap detection, where rq->biotail was
indexed with the count of rq->bio"
* 'for-linus' of git://git.kernel.dk/linux-block:
writeback: fix possible underflow in write bandwidth calculation
NVMe: Initialize device list head before starting
Fix bug in blk_rq_merge_ok
blkmq: Fix NULL pointer deref when all reserved tags in
blk-mq: fix use of incorrect goto label in blk_mq_init_queue error path
nbd: fix possible memory leak
writeback: add missing INITIAL_JIFFIES init in global_update_bandwidth()
From 1ebf33901ecc75d9496862dceb1ef0377980587c Mon Sep 17 00:00:00 2001
From: Tejun Heo <tj@kernel.org>
Date: Mon, 23 Mar 2015 00:08:19 -0400
2f800fbd77 ("writeback: fix dirtied pages accounting on redirty")
introduced account_page_redirty() which reverts stat updates for a
redirtied page, making BDI_DIRTIED no longer monotonically increasing.
bdi_update_write_bandwidth() uses the delta in BDI_DIRTIED as the
basis for bandwidth calculation. While unlikely, since the above
patch, the newer value may be lower than the recorded past value and
underflow the bandwidth calculation leading to a wild result.
Fix it by subtracing min of the old and new values when calculating
delta. AFAIK, there hasn't been any report of it happening but the
resulting erratic behavior would be non-critical and temporary, so
it's possible that the issue is happening without being reported. The
risk of the fix is very low, so tagged for -stable.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Greg Thelen <gthelen@google.com>
Fixes: 2f800fbd77 ("writeback: fix dirtied pages accounting on redirty")
Cc: stable@vger.kernel.org
Signed-off-by: Jens Axboe <axboe@fb.com>
Pull gadgetfs fixes from Al Viro:
"Assorted fixes around AIO on gadgetfs: leaks, use-after-free, troubles
caused by ->f_op flipping"
* 'gadget' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
gadgetfs: really get rid of switching ->f_op
gadgetfs: get rid of flipping ->f_op in ep_config()
gadget: switch ep_io_operations to ->read_iter/->write_iter
gadgetfs: use-after-free in ->aio_read()
gadget/function/f_fs.c: switch to ->{read,write}_iter()
gadget/function/f_fs.c: use put iov_iter into io_data
gadget/function/f_fs.c: close leaks
move iov_iter.c from mm/ to lib/
new helper: dup_iter()
There is no need to pass the total request length in the kiocb, as
we already get passed in through the iov_iter argument.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Merge misc fixes from Andrew Morton:
"13 fixes"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
memcg: disable hierarchy support if bound to the legacy cgroup hierarchy
mm: reorder can_do_mlock to fix audit denial
kasan, module: move MODULE_ALIGN macro into <linux/moduleloader.h>
kasan, module, vmalloc: rework shadow allocation for modules
fanotify: fix event filtering with FAN_ONDIR set
mm/nommu.c: export symbol max_mapnr
arch/c6x/include/asm/pgtable.h: define dummy pgprot_writecombine for !MMU
nilfs2: fix deadlock of segment constructor during recovery
mm: cma: fix CMA aligned offset calculation
mm, hugetlb: close race when setting PageTail for gigantic pages
mm, oom: do not fail __GFP_NOFAIL allocation if oom killer is disabled
drivers/rtc/rtc-s3c.c: add .needs_src_clk to s3c6410 RTC data
ocfs2: make append_dio an incompat feature
If the memory cgroup controller is initially mounted in the scope of the
default cgroup hierarchy and then remounted to a legacy hierarchy, it will
still have hierarchy support enabled, which is incorrect. We should
disable hierarchy support if bound to the legacy cgroup hierarchy.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A userspace call to mmap(MAP_LOCKED) may result in the successful locking
of memory while also producing a confusing audit log denial. can_do_mlock
checks capable and rlimit. If either of these return positive
can_do_mlock returns true. The capable check leads to an LSM hook used by
apparmour and selinux which produce the audit denial. Reordering so
rlimit is checked first eliminates the denial on success, only recording a
denial when the lock is unsuccessful as a result of the denial.
Signed-off-by: Jeff Vander Stoep <jeffv@google.com>
Acked-by: Nick Kralevich <nnk@google.com>
Cc: Jeff Vander Stoep <jeffv@google.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Paul Cassella <cassella@cray.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Current approach in handling shadow memory for modules is broken.
Shadow memory could be freed only after memory shadow corresponds it is no
longer used. vfree() called from interrupt context could use memory its
freeing to store 'struct llist_node' in it:
void vfree(const void *addr)
{
...
if (unlikely(in_interrupt())) {
struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
if (llist_add((struct llist_node *)addr, &p->list))
schedule_work(&p->wq);
Later this list node used in free_work() which actually frees memory.
Currently module_memfree() called in interrupt context will free shadow
before freeing module's memory which could provoke kernel crash.
So shadow memory should be freed after module's memory. However, such
deallocation order could race with kasan_module_alloc() in module_alloc().
Free shadow right before releasing vm area. At this point vfree()'d
memory is not used anymore and yet not available for other allocations.
New VM_KASAN flag used to indicate that vm area has dynamically allocated
shadow memory so kasan frees shadow only if it was previously allocated.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Several modules may need max_mapnr, so export, the related error with
allmodconfig under c6x:
MODPOST 3327 modules
ERROR: "max_mapnr" [fs/pstore/ramoops.ko] undefined!
ERROR: "max_mapnr" [drivers/media/v4l2-core/videobuf2-dma-contig.ko] undefined!
Signed-off-by: Chen Gang <gang.chen.5i5j@gmail.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Aurelien Jacquiot <a-jacquiot@ti.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The CMA aligned offset calculation is incorrect for non-zero order_per_bit
values.
For example, if cma->order_per_bit=1, cma->base_pfn= 0x2f800000 and
align_order=12, the function returns a value of 0x17c00 instead of 0x400.
This patch fixes the CMA aligned offset calculation.
The previous calculation was wrong and would return too-large values for
the offset, so that when cma_alloc looks for free pages in the bitmap with
the requested alignment > order_per_bit, it starts too far into the bitmap
and so CMA allocations will fail despite there actually being plenty of
free pages remaining. It will also probably have the wrong alignment.
With this change, we will get the correct offset into the bitmap.
One affected user is powerpc KVM, which has kvm_cma->order_per_bit set to
KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, or 18 - 12 = 6.
[gregory.0xf0@gmail.com: changelog additions]
Signed-off-by: Danesh Petigara <dpetigara@broadcom.com>
Reviewed-by: Gregory Fong <gregory.0xf0@gmail.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that gigantic pages are dynamically allocatable, care must be taken to
ensure that p->first_page is valid before setting PageTail.
If this isn't done, then it is possible to race and have compound_head()
return NULL.
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Davidlohr Bueso <dave@stgolabs.net>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Tetsuo Handa has pointed out that __GFP_NOFAIL allocations might fail
after OOM killer is disabled if the allocation is performed by a kernel
thread. This behavior was introduced from the very beginning by
7f33d49a2e ("mm, PM/Freezer: Disable OOM killer when tasks are frozen").
This means that the basic contract for the allocation request is broken
and the context requesting such an allocation might blow up unexpectedly.
There are basically two ways forward.
1) move oom_killer_disable after kernel threads are frozen. This has a
risk that the OOM victim wouldn't be able to finish because it would
depend on an already frozen kernel thread. This would be really tricky
to debug.
2) do not fail GFP_NOFAIL allocation no matter what and risk a
potential Freezable kernel threads will loop and fail the suspend.
Incidental allocations after kernel threads are frozen will at least
dump a warning - if we are lucky and the serial console is still active
of course...
This patch implements the later option because it is safer. We would see
warning rather than allocation failures for the kernel threads which would
blow up otherwise and have a higher chances to identify __GFP_NOFAIL users
from deeper pm code.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: David Rientjes <rientjes@gooogle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The wrong value is being returned by change_huge_pmd since commit
10c1045f28 ("mm: numa: avoid unnecessary TLB flushes when setting
NUMA hinting entries") which allows a fallthrough that tries to adjust
non-existent PTEs. This patch corrects it.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Dave Chinner reported that commit 4d94246699 ("mm: convert
p[te|md]_mknonnuma and remaining page table manipulations") slowed down
his xfsrepair test enormously. In particular, it was using more system
time due to extra TLB flushing.
The ultimate reason turns out to be how the change to use the regular
page table accessor functions broke the NUMA grouping logic. The old
special mknuma/mknonnuma code accessed the page table present bit and
the magic NUMA bit directly, while the new code just changes the page
protections using PROT_NONE and the regular vma protections.
That sounds equivalent, and from a fault standpoint it really is, but a
subtle side effect is that the *other* protection bits of the page table
entries also change. And the code to decide how to group the NUMA
entries together used the writable bit to decide whether a particular
page was likely to be shared read-only or not.
And with the change to make the NUMA handling use the regular permission
setting functions, that writable bit was basically always cleared for
private mappings due to COW. So even if the page actually ends up being
written to in the end, the NUMA balancing would act as if it was always
shared RO.
This code is a heuristic anyway, so the fix - at least for now - is to
instead check whether the page is dirty rather than writable. The bit
doesn't change with protection changes.
NOTE! This also adds a FIXME comment to revisit this issue,
Not only should we probably re-visit the whole "is this a shared
read-only page" heuristic (we might want to take the vma permissions
into account and base this more on those than the per-page ones, and
also look at whether the particular access that triggers it is a write
or not), but the whole COW issue shows that we should think about the
NUMA fault handling some more.
For example, maybe we should do the early-COW thing that a regular fault
does. Or maybe we should accept that while using the same bits as
PROTNONE was a good thing (and got rid of the specual NUMA bit), we
might still want to just preseve the other protection bits across NUMA
faulting.
Those are bigger questions, left for later. This just fixes up the
heuristic so that it at least approximates working again. More analysis
and work needed.
Reported-by: Dave Chinner <david@fromorbit.com>
Tested-by: Mel Gorman <mgorman@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>,
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
global_update_bandwidth() uses static variable update_time as the
timestamp for the last update but forgets to initialize it to
INITIALIZE_JIFFIES.
This means that global_dirty_limit will be 5 mins into the future on
32bit and some large amount jiffies into the past on 64bit. This
isn't critical as the only effect is that global_dirty_limit won't be
updated for the first 5 mins after booting on 32bit machines,
especially given the auxiliary nature of global_dirty_limit's role -
protecting against global dirty threshold's sudden dips; however, it
does lead to unintended suboptimal behavior. Fix it.
Fixes: c42843f2f0 ("writeback: introduce smoothed global dirty limit")
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Jan Kara <jack@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: stable@vger.kernel.org
Signed-off-by: Jens Axboe <axboe@fb.com>
Pull block layer fixes from Jens Axboe:
"Two smaller fixes for this cycle:
- A fixup from Keith so that NVMe compiles without BLK_INTEGRITY,
basically just moving the code around appropriately.
- A fixup for shm, fixing an oops in shmem_mapping() for mapping with
no inode. From Sasha"
[ The shmem fix doesn't look block-layer-related, but fixes a bug that
happened due to the backing_dev_info removal.. - Linus ]
* 'for-linus' of git://git.kernel.dk/linux-block:
mm: shmem: check for mapping owner before dereferencing
NVMe: Fix for BLK_DEV_INTEGRITY not set
Historically, !__GFP_FS allocations were not allowed to invoke the OOM
killer once reclaim had failed, but nevertheless kept looping in the
allocator.
Commit 9879de7373 ("mm: page_alloc: embed OOM killing naturally into
allocation slowpath"), which should have been a simple cleanup patch,
accidentally changed the behavior to aborting the allocation at that
point. This creates problems with filesystem callers (?) that currently
rely on the allocator waiting for other tasks to intervene.
Revert the behavior as it shouldn't have been changed as part of a
cleanup patch.
Fixes: 9879de7373 ("mm: page_alloc: embed OOM killing naturally into allocation slowpath")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Dave Chinner <david@fromorbit.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: <stable@vger.kernel.org> [3.19.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memcg control knobs indicate the highest possible value using the
symbolic name "infinity", which is long and awkward to type.
Switch to the string "max", which is just as descriptive but shorter and
sweeter.
This changes a user interface, so do it before the release and before
the development flag is dropped from the default hierarchy.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A memcg is considered low limited even when the current usage is equal to
the low limit. This leads to interesting side effects e.g.
groups/hierarchies with no memory accounted are considered protected and
so the reclaim will emit MEMCG_LOW event when encountering them.
Another and much bigger issue was reported by Joonsoo Kim. He has hit a
NULL ptr dereference with the legacy cgroup API which even doesn't have
low limit exposed. The limit is 0 by default but the initial check fails
for memcg with 0 consumption and parent_mem_cgroup() would return NULL if
use_hierarchy is 0 and so page_counter_read would try to dereference NULL.
I suppose that the current implementation is just an overlook because the
documentation in Documentation/cgroups/unified-hierarchy.txt says:
"The memory.low boundary on the other hand is a top-down allocated
reserve. A cgroup enjoys reclaim protection when it and all its
ancestors are below their low boundaries"
Fix the usage and the low limit comparision in mem_cgroup_low accordingly.
Fixes: 241994ed86 (mm: memcontrol: default hierarchy interface for memory)
Reported-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Maxime reported the following memory leak regression due to commit
dbc8358c72 ("mm/nommu: use alloc_pages_exact() rather than its own
implementation").
On v3.19, I am facing a memory leak. Each time I run a command one page
is lost. Here an example with busybox's free command:
/ # free
total used free shared buffers cached
Mem: 7928 1972 5956 0 0 492
-/+ buffers/cache: 1480 6448
/ # free
total used free shared buffers cached
Mem: 7928 1976 5952 0 0 492
-/+ buffers/cache: 1484 6444
/ # free
total used free shared buffers cached
Mem: 7928 1980 5948 0 0 492
-/+ buffers/cache: 1488 6440
/ # free
total used free shared buffers cached
Mem: 7928 1984 5944 0 0 492
-/+ buffers/cache: 1492 6436
/ # free
total used free shared buffers cached
Mem: 7928 1988 5940 0 0 492
-/+ buffers/cache: 1496 6432
At some point, the system fails to sastisfy 256KB allocations:
free: page allocation failure: order:6, mode:0xd0
CPU: 0 PID: 67 Comm: free Not tainted 3.19.0-05389-gacf2cf1-dirty #64
Hardware name: STM32 (Device Tree Support)
show_stack+0xb/0xc
warn_alloc_failed+0x97/0xbc
__alloc_pages_nodemask+0x295/0x35c
__get_free_pages+0xb/0x24
alloc_pages_exact+0x19/0x24
do_mmap_pgoff+0x423/0x658
vm_mmap_pgoff+0x3f/0x4e
load_flat_file+0x20d/0x4f8
load_flat_binary+0x3f/0x26c
search_binary_handler+0x51/0xe4
do_execveat_common+0x271/0x35c
do_execve+0x19/0x1c
ret_fast_syscall+0x1/0x4a
Mem-info:
Normal per-cpu:
CPU 0: hi: 0, btch: 1 usd: 0
active_anon:0 inactive_anon:0 isolated_anon:0
active_file:0 inactive_file:0 isolated_file:0
unevictable:123 dirty:0 writeback:0 unstable:0
free:1515 slab_reclaimable:17 slab_unreclaimable:139
mapped:0 shmem:0 pagetables:0 bounce:0
free_cma:0
Normal free:6060kB min:352kB low:440kB high:528kB active_anon:0kB inactive_anon:0kB active_file:0kB inactive_file:0kB unevictable:492kB isolated(anon):0ks
lowmem_reserve[]: 0 0
Normal: 23*4kB (U) 22*8kB (U) 24*16kB (U) 23*32kB (U) 23*64kB (U) 23*128kB (U) 1*256kB (U) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 6060kB
123 total pagecache pages
2048 pages of RAM
1538 free pages
66 reserved pages
109 slab pages
-46 pages shared
0 pages swap cached
nommu: Allocation of length 221184 from process 67 (free) failed
Normal per-cpu:
CPU 0: hi: 0, btch: 1 usd: 0
active_anon:0 inactive_anon:0 isolated_anon:0
active_file:0 inactive_file:0 isolated_file:0
unevictable:123 dirty:0 writeback:0 unstable:0
free:1515 slab_reclaimable:17 slab_unreclaimable:139
mapped:0 shmem:0 pagetables:0 bounce:0
free_cma:0
Normal free:6060kB min:352kB low:440kB high:528kB active_anon:0kB inactive_anon:0kB active_file:0kB inactive_file:0kB unevictable:492kB isolated(anon):0ks
lowmem_reserve[]: 0 0
Normal: 23*4kB (U) 22*8kB (U) 24*16kB (U) 23*32kB (U) 23*64kB (U) 23*128kB (U) 1*256kB (U) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 6060kB
123 total pagecache pages
Unable to allocate RAM for process text/data, errno 12 SEGV
This problem happens because we allocate ordered page through
__get_free_pages() in do_mmap_private() in some cases and we try to free
individual pages rather than ordered page in free_page_series(). In
this case, freeing pages whose refcount is not 0 won't be freed to the
page allocator so memory leak happens.
To fix the problem, this patch changes __get_free_pages() to
alloc_pages_exact() since alloc_pages_exact() returns
physically-contiguous pages but each pages are refcounted.
Fixes: dbc8358c72 ("mm/nommu: use alloc_pages_exact() rather than its own implementation").
Reported-by: Maxime Coquelin <mcoquelin.stm32@gmail.com>
Tested-by: Maxime Coquelin <mcoquelin.stm32@gmail.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: <stable@vger.kernel.org> [3.19]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull more vfs updates from Al Viro:
"Assorted stuff from this cycle. The big ones here are multilayer
overlayfs from Miklos and beginning of sorting ->d_inode accesses out
from David"
* 'for-linus-2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (51 commits)
autofs4 copy_dev_ioctl(): keep the value of ->size we'd used for allocation
procfs: fix race between symlink removals and traversals
debugfs: leave freeing a symlink body until inode eviction
Documentation/filesystems/Locking: ->get_sb() is long gone
trylock_super(): replacement for grab_super_passive()
fanotify: Fix up scripted S_ISDIR/S_ISREG/S_ISLNK conversions
Cachefiles: Fix up scripted S_ISDIR/S_ISREG/S_ISLNK conversions
VFS: (Scripted) Convert S_ISLNK/DIR/REG(dentry->d_inode) to d_is_*(dentry)
SELinux: Use d_is_positive() rather than testing dentry->d_inode
Smack: Use d_is_positive() rather than testing dentry->d_inode
TOMOYO: Use d_is_dir() rather than d_inode and S_ISDIR()
Apparmor: Use d_is_positive/negative() rather than testing dentry->d_inode
Apparmor: mediated_filesystem() should use dentry->d_sb not inode->i_sb
VFS: Split DCACHE_FILE_TYPE into regular and special types
VFS: Add a fallthrough flag for marking virtual dentries
VFS: Add a whiteout dentry type
VFS: Introduce inode-getting helpers for layered/unioned fs environments
Infiniband: Fix potential NULL d_inode dereference
posix_acl: fix reference leaks in posix_acl_create
autofs4: Wrong format for printing dentry
...
Convert the following where appropriate:
(1) S_ISLNK(dentry->d_inode) to d_is_symlink(dentry).
(2) S_ISREG(dentry->d_inode) to d_is_reg(dentry).
(3) S_ISDIR(dentry->d_inode) to d_is_dir(dentry). This is actually more
complicated than it appears as some calls should be converted to
d_can_lookup() instead. The difference is whether the directory in
question is a real dir with a ->lookup op or whether it's a fake dir with
a ->d_automount op.
In some circumstances, we can subsume checks for dentry->d_inode not being
NULL into this, provided we the code isn't in a filesystem that expects
d_inode to be NULL if the dirent really *is* negative (ie. if we're going to
use d_inode() rather than d_backing_inode() to get the inode pointer).
Note that the dentry type field may be set to something other than
DCACHE_MISS_TYPE when d_inode is NULL in the case of unionmount, where the VFS
manages the fall-through from a negative dentry to a lower layer. In such a
case, the dentry type of the negative union dentry is set to the same as the
type of the lower dentry.
However, if you know d_inode is not NULL at the call site, then you can use
the d_is_xxx() functions even in a filesystem.
There is one further complication: a 0,0 chardev dentry may be labelled
DCACHE_WHITEOUT_TYPE rather than DCACHE_SPECIAL_TYPE. Strictly, this was
intended for special directory entry types that don't have attached inodes.
The following perl+coccinelle script was used:
use strict;
my @callers;
open($fd, 'git grep -l \'S_IS[A-Z].*->d_inode\' |') ||
die "Can't grep for S_ISDIR and co. callers";
@callers = <$fd>;
close($fd);
unless (@callers) {
print "No matches\n";
exit(0);
}
my @cocci = (
'@@',
'expression E;',
'@@',
'',
'- S_ISLNK(E->d_inode->i_mode)',
'+ d_is_symlink(E)',
'',
'@@',
'expression E;',
'@@',
'',
'- S_ISDIR(E->d_inode->i_mode)',
'+ d_is_dir(E)',
'',
'@@',
'expression E;',
'@@',
'',
'- S_ISREG(E->d_inode->i_mode)',
'+ d_is_reg(E)' );
my $coccifile = "tmp.sp.cocci";
open($fd, ">$coccifile") || die $coccifile;
print($fd "$_\n") || die $coccifile foreach (@cocci);
close($fd);
foreach my $file (@callers) {
chomp $file;
print "Processing ", $file, "\n";
system("spatch", "--sp-file", $coccifile, $file, "--in-place", "--no-show-diff") == 0 ||
die "spatch failed";
}
[AV: overlayfs parts skipped]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull kconfig updates from Michal Marek:
"Yann E Morin was supposed to take over kconfig maintainership, but
this hasn't happened. So I'm sending a few kconfig patches that I
collected:
- Fix for missing va_end in kconfig
- merge_config.sh displays used if given too few arguments
- s/boolean/bool/ in Kconfig files for consistency, with the plan to
only support bool in the future"
* 'kconfig' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild:
kconfig: use va_end to match corresponding va_start
merge_config.sh: Display usage if given too few arguments
kconfig: use bool instead of boolean for type definition attributes
Copy iter and kmemdup the underlying array for the copy. Returns
a pointer to result of kmemdup() to be kfree()'d later.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull lazytime mount option support from Al Viro:
"Lazytime stuff from tytso"
* 'lazytime' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
ext4: add optimization for the lazytime mount option
vfs: add find_inode_nowait() function
vfs: add support for a lazytime mount option
Pull iov_iter updates from Al Viro:
"More iov_iter work - missing counterpart of iov_iter_init() for
bvec-backed ones and vfs_read_iter()/vfs_write_iter() - wrappers for
sync calls of ->read_iter()/->write_iter()"
* 'iov_iter' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
fs: add vfs_iter_{read,write} helpers
new helper: iov_iter_bvec()
All callers of get_xip_mem() are now gone. Remove checks for it,
initialisers of it, documentation of it and the only implementation of it.
Also remove mm/filemap_xip.c as it is now empty. Also remove
documentation of the long-gone get_xip_page().
Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Andreas Dilger <andreas.dilger@intel.com>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It takes a get_block parameter just like nobh_truncate_page() and
block_truncate_page()
Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andreas Dilger <andreas.dilger@intel.com>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of calling aops->get_xip_mem from the fault handler, the
filesystem passes a get_block_t that is used to find the appropriate
blocks.
This requires that all architectures implement copy_user_page(). At the
time of writing, mips and arm do not. Patches exist and are in progress.
[akpm@linux-foundation.org: remap_file_pages went away]
Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Andreas Dilger <andreas.dilger@intel.com>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use the generic AIO infrastructure instead of custom read and write
methods. In addition to giving us support for AIO, this adds the missing
locking between read() and truncate().
Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Andreas Dilger <andreas.dilger@intel.com>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use an inode flag to tag inodes which should avoid using the page cache.
Convert ext2 to use it instead of mapping_is_xip(). Prevent I/Os to files
tagged with the DAX flag from falling back to buffered I/O.
Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andreas Dilger <andreas.dilger@intel.com>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently COW of an XIP file is done by first bringing in a read-only
mapping, then retrying the fault and copying the page. It is much more
efficient to tell the fault handler that a COW is being attempted (by
passing in the pre-allocated page in the vm_fault structure), and allow
the handler to perform the COW operation itself.
The handler cannot insert the page itself if there is already a read-only
mapping at that address, so allow the handler to return VM_FAULT_LOCKED
and set the fault_page to be NULL. This indicates to the MM code that the
i_mmap_lock is held instead of the page lock.
Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andreas Dilger <andreas.dilger@intel.com>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
DAX is a replacement for the variation of XIP currently supported by the
ext2 filesystem. We have three different things in the tree called 'XIP',
and the new focus is on access to data rather than executables, so a name
change was in order. DAX stands for Direct Access. The X is for
eXciting.
The new focus on data access has resulted in more careful attention to
races that exist in the current XIP code, but are not hit by the use-case
that it was designed for. XIP's architecture worked fine for ext2, but
DAX is architected to work with modern filsystems such as ext4 and XFS.
DAX is not intended for use with btrfs; the value that btrfs adds relies
on manipulating data and writing data to different locations, while DAX's
value is for write-in-place and keeping the kernel from touching the data.
DAX was developed in order to support NV-DIMMs, but it's become clear that
its usefuless extends beyond NV-DIMMs and there are several potential
customers including the tracing machinery. Other people want to place the
kernel log in an area of memory, as long as they have a BIOS that does not
clear DRAM on reboot.
Patch 1 is a bug fix, probably worth including in 3.18.
Patches 2 & 3 are infrastructure for DAX.
Patches 4-8 replace the XIP code with its DAX equivalents, transforming
ext2 to use the DAX code as we go. Note that patch 10 is the
Documentation patch.
Patches 9-15 clean up after the XIP code, removing the infrastructure
that is no longer needed and renaming various XIP things to DAX.
Most of these patches were added after Jan found things he didn't
like in an earlier version of the ext4 patch ... that had been copied
from ext2. So ext2 i being transformed to do things the same way that
ext4 will later. The ability to mount ext2 filesystems with the 'xip'
option is retained, although the 'dax' option is now preferred.
Patch 16 adds some DAX infrastructure to support ext4.
Patch 17 adds DAX support to ext4. It is broadly similar to ext2's DAX
support, but it is more efficient than ext4's due to its support for
unwritten extents.
Patch 18 is another cleanup patch renaming XIP to DAX.
My thanks to Mathieu Desnoyers for his reviews of the v11 patchset. Most
of the changes below were based on his feedback.
This patch (of 18):
Pagecache faults recheck i_size after taking the page lock to ensure that
the fault didn't race against a truncate. We don't have a page to lock in
the XIP case, so use i_mmap_lock_read() instead. It is locked in the
truncate path in unmap_mapping_range() after updating i_size. So while we
hold it in the fault path, we are guaranteed that either i_size has
already been updated in the truncate path, or that the truncate will
subsequently call zap_page_range_single() and so remove the mapping we
have just inserted.
There is a window of time in which i_size has been reduced and the thread
has a mapping to a page which will be removed from the file, but this is
harmless as the page will not be allocated to a different purpose before
the thread's access to it is revoked.
[akpm@linux-foundation.org: switch to i_mmap_lock_read(), add comment in unmap_single_vma()]
Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andreas Dilger <andreas.dilger@intel.com>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This series tightens the rules for ACCESS_ONCE to only work
on scalar types. It also contains the necessary fixups as
indicated by build bots of linux-next.
Now everything is in place to prevent new non-scalar users
of ACCESS_ONCE and we can continue to convert code to
READ_ONCE/WRITE_ONCE.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.14 (GNU/Linux)
iQIcBAABAgAGBQJU2H5MAAoJEBF7vIC1phx8Jm4QALPqKOMDSUBCrqJFWJeujtv2
ILxJKsnjrAlt3dxnlVI3q6e5wi896hSce75PcvZ/vs/K3GdgMxOjrakBJGTJ2Qjg
5njW9aGJDDr/SYFX33MLWfqy222TLtpxgSz379UgXjEzB0ymMWbJJ3FnGjVqQJdp
RXDutpncRySc/rGHh9UPREIRR5GvimONsWE2zxgXjUzB8vIr2fCGvHTXfIb6RKbQ
yaFoihzn0m+eisc5Gy4tQ1qhhnaYyWEGrINjHTjMFTQOWTlH80BZAyQeLdbyj2K5
qloBPS/VhBTr/5TxV5onM+nVhu0LiblVNrdMHVeb7jyST4LeFOCaWK98lB3axSB5
v/2D1YKNb3g1U1x3In/oNGQvs36zGiO1uEdMF1l8ZFXgCvHmATSFSTWBtqUhb5Ew
JA3YyqMTG6dpRTMSnmu3/frr4wDqnxlB/ktQC1pf3tDp87mr1ZYEy/dQld+tltjh
9Z5GSdrw0nf91wNI3DJf+26ZDdz5B+EpDnPnOKG8anI1lc/mQneI21/K/xUteFXw
UZ1XGPLV2vbv9/a13u44SdjenHvQs1egsGeebMxVPoj6WmDLVmcIqinyS6NawYzn
IlDGy/b3bSnXWMBP0ZVBX94KWLxqDDc4a/ayxsmxsP1tPZ+jDXjVDa7E3zskcHxG
Uj5ULCPyU087t8Sl76mv
=Dj70
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/borntraeger/linux
Pull ACCESS_ONCE() rule tightening from Christian Borntraeger:
"Tighten rules for ACCESS_ONCE
This series tightens the rules for ACCESS_ONCE to only work on scalar
types. It also contains the necessary fixups as indicated by build
bots of linux-next. Now everything is in place to prevent new
non-scalar users of ACCESS_ONCE and we can continue to convert code to
READ_ONCE/WRITE_ONCE"
* tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/borntraeger/linux:
kernel: Fix sparse warning for ACCESS_ONCE
next: sh: Fix compile error
kernel: tighten rules for ACCESS ONCE
mm/gup: Replace ACCESS_ONCE with READ_ONCE
x86/spinlock: Leftover conversion ACCESS_ONCE->READ_ONCE
x86/xen/p2m: Replace ACCESS_ONCE with READ_ONCE
ppc/hugetlbfs: Replace ACCESS_ONCE with READ_ONCE
ppc/kvm: Replace ACCESS_ONCE with READ_ONCE
This feature let us to detect accesses out of bounds of global variables.
This will work as for globals in kernel image, so for globals in modules.
Currently this won't work for symbols in user-specified sections (e.g.
__init, __read_mostly, ...)
The idea of this is simple. Compiler increases each global variable by
redzone size and add constructors invoking __asan_register_globals()
function. Information about global variable (address, size, size with
redzone ...) passed to __asan_register_globals() so we could poison
variable's redzone.
This patch also forces module_alloc() to return 8*PAGE_SIZE aligned
address making shadow memory handling (
kasan_module_alloc()/kasan_module_free() ) more simple. Such alignment
guarantees that each shadow page backing modules address space correspond
to only one module_alloc() allocation.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For instrumenting global variables KASan will shadow memory backing memory
for modules. So on module loading we will need to allocate memory for
shadow and map it at address in shadow that corresponds to the address
allocated in module_alloc().
__vmalloc_node_range() could be used for this purpose, except it puts a
guard hole after allocated area. Guard hole in shadow memory should be a
problem because at some future point we might need to have a shadow memory
at address occupied by guard hole. So we could fail to allocate shadow
for module_alloc().
Now we have VM_NO_GUARD flag disabling guard page, so we need to pass into
__vmalloc_node_range(). Add new parameter 'vm_flags' to
__vmalloc_node_range() function.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For instrumenting global variables KASan will shadow memory backing memory
for modules. So on module loading we will need to allocate memory for
shadow and map it at address in shadow that corresponds to the address
allocated in module_alloc().
__vmalloc_node_range() could be used for this purpose, except it puts a
guard hole after allocated area. Guard hole in shadow memory should be a
problem because at some future point we might need to have a shadow memory
at address occupied by guard hole. So we could fail to allocate shadow
for module_alloc().
Add a new vm_struct flag 'VM_NO_GUARD' indicating that vm area doesn't
have a guard hole.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Stack instrumentation allows to detect out of bounds memory accesses for
variables allocated on stack. Compiler adds redzones around every
variable on stack and poisons redzones in function's prologue.
Such approach significantly increases stack usage, so all in-kernel stacks
size were doubled.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Recently instrumentation of builtin functions calls was removed from GCC
5.0. To check the memory accessed by such functions, userspace asan
always uses interceptors for them.
So now we should do this as well. This patch declares
memset/memmove/memcpy as weak symbols. In mm/kasan/kasan.c we have our
own implementation of those functions which checks memory before accessing
it.
Default memset/memmove/memcpy now now always have aliases with '__'
prefix. For files that built without kasan instrumentation (e.g.
mm/slub.c) original mem* replaced (via #define) with prefixed variants,
cause we don't want to check memory accesses there.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kmalloc internally round up allocation size, and kmemleak uses rounded up
size as object's size. This makes kasan to complain while kmemleak scans
memory or calculates of object's checksum. The simplest solution here is
to disable kasan.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With this patch kasan will be able to catch bugs in memory allocated by
slub. Initially all objects in newly allocated slab page, marked as
redzone. Later, when allocation of slub object happens, requested by
caller number of bytes marked as accessible, and the rest of the object
(including slub's metadata) marked as redzone (inaccessible).
We also mark object as accessible if ksize was called for this object.
There is some places in kernel where ksize function is called to inquire
size of really allocated area. Such callers could validly access whole
allocated memory, so it should be marked as accessible.
Code in slub.c and slab_common.c files could validly access to object's
metadata, so instrumentation for this files are disabled.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Signed-off-by: Dmitry Chernenkov <dmitryc@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's ok for slub to access memory that marked by kasan as inaccessible
(object's metadata). Kasan shouldn't print report in that case because
these accesses are valid. Disabling instrumentation of slub.c code is not
enough to achieve this because slub passes pointer to object's metadata
into external functions like memchr_inv().
We don't want to disable instrumentation for memchr_inv() because this is
quite generic function, and we don't want to miss bugs.
metadata_access_enable/metadata_access_disable used to tell KASan where
accesses to metadata starts/end, so we could temporarily disable KASan
reports.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove static and add function declarations to linux/slub_def.h so it
could be used by kernel address sanitizer.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently memory hotplug won't work with KASan. As we don't have shadow
for hotplugged memory, kernel will crash on the first access to it. To
make this work we will need to allocate shadow for new memory.
At some future point proper memory hotplug support will be implemented.
Until then, print a warning at startup and disable memory hot-add.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kernel Address sanitizer (KASan) is a dynamic memory error detector. It
provides fast and comprehensive solution for finding use-after-free and
out-of-bounds bugs.
KASAN uses compile-time instrumentation for checking every memory access,
therefore GCC > v4.9.2 required. v4.9.2 almost works, but has issues with
putting symbol aliases into the wrong section, which breaks kasan
instrumentation of globals.
This patch only adds infrastructure for kernel address sanitizer. It's
not available for use yet. The idea and some code was borrowed from [1].
Basic idea:
The main idea of KASAN is to use shadow memory to record whether each byte
of memory is safe to access or not, and use compiler's instrumentation to
check the shadow memory on each memory access.
Address sanitizer uses 1/8 of the memory addressable in kernel for shadow
memory and uses direct mapping with a scale and offset to translate a
memory address to its corresponding shadow address.
Here is function to translate address to corresponding shadow address:
unsigned long kasan_mem_to_shadow(unsigned long addr)
{
return (addr >> KASAN_SHADOW_SCALE_SHIFT) + KASAN_SHADOW_OFFSET;
}
where KASAN_SHADOW_SCALE_SHIFT = 3.
So for every 8 bytes there is one corresponding byte of shadow memory.
The following encoding used for each shadow byte: 0 means that all 8 bytes
of the corresponding memory region are valid for access; k (1 <= k <= 7)
means that the first k bytes are valid for access, and other (8 - k) bytes
are not; Any negative value indicates that the entire 8-bytes are
inaccessible. Different negative values used to distinguish between
different kinds of inaccessible memory (redzones, freed memory) (see
mm/kasan/kasan.h).
To be able to detect accesses to bad memory we need a special compiler.
Such compiler inserts a specific function calls (__asan_load*(addr),
__asan_store*(addr)) before each memory access of size 1, 2, 4, 8 or 16.
These functions check whether memory region is valid to access or not by
checking corresponding shadow memory. If access is not valid an error
printed.
Historical background of the address sanitizer from Dmitry Vyukov:
"We've developed the set of tools, AddressSanitizer (Asan),
ThreadSanitizer and MemorySanitizer, for user space. We actively use
them for testing inside of Google (continuous testing, fuzzing,
running prod services). To date the tools have found more than 10'000
scary bugs in Chromium, Google internal codebase and various
open-source projects (Firefox, OpenSSL, gcc, clang, ffmpeg, MySQL and
lots of others): [2] [3] [4].
The tools are part of both gcc and clang compilers.
We have not yet done massive testing under the Kernel AddressSanitizer
(it's kind of chicken and egg problem, you need it to be upstream to
start applying it extensively). To date it has found about 50 bugs.
Bugs that we've found in upstream kernel are listed in [5].
We've also found ~20 bugs in out internal version of the kernel. Also
people from Samsung and Oracle have found some.
[...]
As others noted, the main feature of AddressSanitizer is its
performance due to inline compiler instrumentation and simple linear
shadow memory. User-space Asan has ~2x slowdown on computational
programs and ~2x memory consumption increase. Taking into account that
kernel usually consumes only small fraction of CPU and memory when
running real user-space programs, I would expect that kernel Asan will
have ~10-30% slowdown and similar memory consumption increase (when we
finish all tuning).
I agree that Asan can well replace kmemcheck. We have plans to start
working on Kernel MemorySanitizer that finds uses of unitialized
memory. Asan+Msan will provide feature-parity with kmemcheck. As
others noted, Asan will unlikely replace debug slab and pagealloc that
can be enabled at runtime. Asan uses compiler instrumentation, so even
if it is disabled, it still incurs visible overheads.
Asan technology is easily portable to other architectures. Compiler
instrumentation is fully portable. Runtime has some arch-dependent
parts like shadow mapping and atomic operation interception. They are
relatively easy to port."
Comparison with other debugging features:
========================================
KMEMCHECK:
- KASan can do almost everything that kmemcheck can. KASan uses
compile-time instrumentation, which makes it significantly faster than
kmemcheck. The only advantage of kmemcheck over KASan is detection of
uninitialized memory reads.
Some brief performance testing showed that kasan could be
x500-x600 times faster than kmemcheck:
$ netperf -l 30
MIGRATED TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to localhost (127.0.0.1) port 0 AF_INET
Recv Send Send
Socket Socket Message Elapsed
Size Size Size Time Throughput
bytes bytes bytes secs. 10^6bits/sec
no debug: 87380 16384 16384 30.00 41624.72
kasan inline: 87380 16384 16384 30.00 12870.54
kasan outline: 87380 16384 16384 30.00 10586.39
kmemcheck: 87380 16384 16384 30.03 20.23
- Also kmemcheck couldn't work on several CPUs. It always sets
number of CPUs to 1. KASan doesn't have such limitation.
DEBUG_PAGEALLOC:
- KASan is slower than DEBUG_PAGEALLOC, but KASan works on sub-page
granularity level, so it able to find more bugs.
SLUB_DEBUG (poisoning, redzones):
- SLUB_DEBUG has lower overhead than KASan.
- SLUB_DEBUG in most cases are not able to detect bad reads,
KASan able to detect both reads and writes.
- In some cases (e.g. redzone overwritten) SLUB_DEBUG detect
bugs only on allocation/freeing of object. KASan catch
bugs right before it will happen, so we always know exact
place of first bad read/write.
[1] https://code.google.com/p/address-sanitizer/wiki/AddressSanitizerForKernel
[2] https://code.google.com/p/address-sanitizer/wiki/FoundBugs
[3] https://code.google.com/p/thread-sanitizer/wiki/FoundBugs
[4] https://code.google.com/p/memory-sanitizer/wiki/FoundBugs
[5] https://code.google.com/p/address-sanitizer/wiki/AddressSanitizerForKernel#Trophies
Based on work by Andrey Konovalov.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Acked-by: Michal Marek <mmarek@suse.cz>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
printk and friends can now format bitmaps using '%*pb[l]'. cpumask
and nodemask also provide cpumask_pr_args() and nodemask_pr_args()
respectively which can be used to generate the two printf arguments
necessary to format the specified cpu/nodemask.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
printk and friends can now format bitmaps using '%*pb[l]'. cpumask
and nodemask also provide cpumask_pr_args() and nodemask_pr_args()
respectively which can be used to generate the two printf arguments
necessary to format the specified cpu/nodemask.
* This is an equivalent conversion but the whole function should be
converted to use scnprinf famiily of functions rather than
performing custom output length predictions in multiple places.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
printk and friends can now format bitmaps using '%*pb[l]'. cpumask
and nodemask also provide cpumask_pr_args() and nodemask_pr_args()
respectively which can be used to generate the two printf arguments
necessary to format the specified cpu/nodemask.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
slab frequently performs duplication of strings located in read-only
memory section. Replacing kstrdup by kstrdup_const allows to avoid such
operations.
[akpm@linux-foundation.org: make the handling of kmem_cache.name const-correct]
Signed-off-by: Andrzej Hajda <a.hajda@samsung.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Kyungmin Park <kyungmin.park@samsung.com>
Cc: Mike Turquette <mturquette@linaro.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Greg KH <greg@kroah.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kstrdup() is often used to duplicate strings where neither source neither
destination will be ever modified. In such case we can just reuse the
source instead of duplicating it. The problem is that we must be sure
that the source is non-modifiable and its life-time is long enough.
I suspect the good candidates for such strings are strings located in
kernel .rodata section, they cannot be modifed because the section is
read-only and their life-time is equal to kernel life-time.
This small patchset proposes alternative version of kstrdup -
kstrdup_const, which returns source string if it is located in .rodata
otherwise it fallbacks to kstrdup. To verify if the source is in
.rodata function checks if the address is between sentinels
__start_rodata, __end_rodata. I guess it should work with all
architectures.
The main patch is accompanied by four patches constifying kstrdup for
cases where situtation described above happens frequently.
I have tested the patchset on mobile platform (exynos4210-trats) and it
saves 3272 string allocations. Since minimal allocation is 32 or 64
bytes depending on Kconfig options the patchset saves respectively about
100KB or 200KB of memory.
Stats from tested platform show that the main offender is sysfs:
By caller:
2260 __kernfs_new_node
631 clk_register+0xc8/0x1b8
318 clk_register+0x34/0x1b8
51 kmem_cache_create
12 alloc_vfsmnt
By string (with count >= 5):
883 power
876 subsystem
135 parameters
132 device
61 iommu_group
...
This patch (of 5):
Add an alternative version of kstrdup which returns pointer to constant
char array. The function checks if input string is in persistent and
read-only memory section, if yes it returns the input string, otherwise it
fallbacks to kstrdup.
kstrdup_const is accompanied by kfree_const performing conditional memory
deallocation of the string.
Signed-off-by: Andrzej Hajda <a.hajda@samsung.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Kyungmin Park <kyungmin.park@samsung.com>
Cc: Mike Turquette <mturquette@linaro.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Greg KH <greg@kroah.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge third set of updates from Andrew Morton:
- the rest of MM
[ This includes getting rid of the numa hinting bits, in favor of
just generic protnone logic. Yay. - Linus ]
- core kernel
- procfs
- some of lib/ (lots of lib/ material this time)
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (104 commits)
lib/lcm.c: replace include
lib/percpu_ida.c: remove redundant includes
lib/strncpy_from_user.c: replace module.h include
lib/stmp_device.c: replace module.h include
lib/sort.c: move include inside #if 0
lib/show_mem.c: remove redundant include
lib/radix-tree.c: change to simpler include
lib/plist.c: remove redundant include
lib/nlattr.c: remove redundant include
lib/kobject_uevent.c: remove redundant include
lib/llist.c: remove redundant include
lib/md5.c: simplify include
lib/list_sort.c: rearrange includes
lib/genalloc.c: remove redundant include
lib/idr.c: remove redundant include
lib/halfmd4.c: simplify includes
lib/dynamic_queue_limits.c: simplify includes
lib/sort.c: use simpler includes
lib/interval_tree.c: simplify includes
hexdump: make it return number of bytes placed in buffer
...
Currently the underlay of zpool: zsmalloc/zbud, do not know who creates
them. There is not a method to let zsmalloc/zbud find which caller they
belong to.
Now we want to add statistics collection in zsmalloc. We need to name the
debugfs dir for each pool created. The way suggested by Minchan Kim is to
use a name passed by caller(such as zram) to create the zsmalloc pool.
/sys/kernel/debug/zsmalloc/zram0
This patch adds an argument `name' to zs_create_pool() and other related
functions.
Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Seth Jennings <sjennings@variantweb.net>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The vmstat interfaces are good at hiding negative counts (at least when
CONFIG_SMP); but if you peer behind the curtain, you find that
nr_isolated_anon and nr_isolated_file soon go negative, and grow ever
more negative: so they can absorb larger and larger numbers of isolated
pages, yet still appear to be zero.
I'm happy to avoid a congestion_wait() when too_many_isolated() myself;
but I guess it's there for a good reason, in which case we ought to get
too_many_isolated() working again.
The imbalance comes from isolate_migratepages()'s ISOLATE_ABORT case:
putback_movable_pages() decrements the NR_ISOLATED counts, but we forgot
to call acct_isolated() to increment them.
It is possible that the bug whcih this patch fixes could cause OOM kills
when the system still has a lot of reclaimable page cache.
Fixes: edc2ca6124 ("mm, compaction: move pageblock checks up from isolate_migratepages_range()")
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: <stable@vger.kernel.org> [3.18+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A race condition starts to be visible in recent mmotm, where a PG_hwpoison
flag is set on a migration source page *before* it's back in buddy page
poo= l.
This is problematic because no page flag is supposed to be set when
freeing (see __free_one_page().) So the user-visible effect of this race
is that it could trigger the BUG_ON() when soft-offlining is called.
The root cause is that we call lru_add_drain_all() to make sure that the
page is in buddy, but that doesn't work because this function just
schedule= s a work item and doesn't wait its completion.
drain_all_pages() does drainin= g directly, so simply dropping
lru_add_drain_all() solves this problem.
Fixes: f15bdfa802 ("mm/memory-failure.c: fix memory leak in successful soft offlining")
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Chen Gong <gong.chen@linux.intel.com>
Cc: <stable@vger.kernel.org> [3.11+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For whatever reason, generic_access_phys() only remaps one page, but
actually allows to access arbitrary size. It's quite easy to trigger
large reads, like printing out large structure with gdb, which leads to a
crash. Fix it by remapping correct size.
Fixes: 28b2ee20c7 ("access_process_vm device memory infrastructure")
Signed-off-by: Grazvydas Ignotas <notasas@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mminit_loglevel is only referenced from __init and __meminit functions, so
we can mark it __meminitdata.
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vishnu Pratap Singh <vishnu.ps@samsung.com>
Cc: Pintu Kumar <pintu.k@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The only caller of mminit_verify_zonelist is build_all_zonelists_init,
which is annotated with __init, so it should be safe to also mark the
former as __init, saving ~400 bytes of .text.
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vishnu Pratap Singh <vishnu.ps@samsung.com>
Cc: Pintu Kumar <pintu.k@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pulling the code protected by if (system_state == SYSTEM_BOOTING) into
its own helper allows us to shrink .text a little. This relies on
build_all_zonelists already having a __ref annotation. Add a comment
explaining why so one doesn't have to track it down through git log.
The real saving comes in 3/5, ("mm/mm_init.c: Mark mminit_verify_zonelist
as __init"), where we save about 400 bytes
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vishnu Pratap Singh <vishnu.ps@samsung.com>
Cc: Pintu Kumar <pintu.k@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All users of mminit_dprintk pass a compile-time constant as level, so this
just makes gcc emit a single printk call instead of two.
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vishnu Pratap Singh <vishnu.ps@samsung.com>
Cc: Pintu Kumar <pintu.k@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move memcg_socket_limit_enabled decrement to tcp_destroy_cgroup (called
from memcg_destroy_kmem -> mem_cgroup_sockets_destroy) and zap a bunch of
wrapper functions.
Although this patch moves static keys decrement from __mem_cgroup_free to
mem_cgroup_css_free, it does not introduce any functional changes, because
the keys are incremented on setting the limit (tcp or kmem), which can
only happen after successful mem_cgroup_css_online.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Glauber Costa <glommer@parallels.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujtisu.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, freepage isolation in one pageblock doesn't consider how many
freepages we isolate. When I traced flow of compaction, compaction
sometimes isolates more than 256 freepages to migrate just 32 pages.
In this patch, freepage isolation is stopped at the point that we
have more isolated freepage than isolated page for migration. This
results in slowing down free page scanner and make compaction success
rate higher.
stress-highalloc test in mmtests with non movable order 7 allocation shows
increase of compaction success rate.
Compaction success rate (Compaction success * 100 / Compaction stalls, %)
27.13 : 31.82
pfn where both scanners meets on compaction complete
(separate test due to enormous tracepoint buffer)
(zone_start=4096, zone_end=1048576)
586034 : 654378
In fact, I didn't fully understand why this patch results in such good
result. There was a guess that not used freepages are released to pcp list
and on next compaction trial we won't isolate them again so compaction
success rate would decrease. To prevent this effect, I tested with adding
pcp drain code on release_freepages(), but, it has no good effect.
Anyway, this patch reduces waste time to isolate unneeded freepages so
seems reasonable.
Vlastimil said:
: I briefly tried it on top of the pivot-changing series and with order-9
: allocations it reduced free page scanned counter by almost 10%. No effect
: on success rates (maybe because pivot changing already took care of the
: scanners meeting problem) but the scanning reduction is good on its own.
:
: It also explains why e14c720efd ("mm, compaction: remember position
: within pageblock in free pages scanner") had less than expected
: improvements. It would only actually stop within pageblock in case of
: async compaction detecting contention. I guess that's also why the
: infinite loop problem fixed by 1d5bfe1ffb affected so relatively few
: people.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
What we want to check here is whether there is highorder freepage in buddy
list of other migratetype in order to steal it without fragmentation.
But, current code just checks cc->order which means allocation request
order. So, this is wrong.
Without this fix, non-movable synchronous compaction below pageblock order
would not stopped until compaction is complete, because migratetype of
most pageblocks are movable and high order freepage made by compaction is
usually on movable type buddy list.
There is some report related to this bug. See below link.
http://www.spinics.net/lists/linux-mm/msg81666.html
Although the issued system still has load spike comes from compaction,
this makes that system completely stable and responsive according to his
report.
stress-highalloc test in mmtests with non movable order 7 allocation
doesn't show any notable difference in allocation success rate, but, it
shows more compaction success rate.
Compaction success rate (Compaction success * 100 / Compaction stalls, %)
18.47 : 28.94
Fixes: 1fb3f8ca0e ("mm: compaction: capture a suitable high-order page immediately when it is made available")
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org> [3.7+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To speed up further allocations SLUB may store empty slabs in per cpu/node
partial lists instead of freeing them immediately. This prevents per
memcg caches destruction, because kmem caches created for a memory cgroup
are only destroyed after the last page charged to the cgroup is freed.
To fix this issue, this patch resurrects approach first proposed in [1].
It forbids SLUB to cache empty slabs after the memory cgroup that the
cache belongs to was destroyed. It is achieved by setting kmem_cache's
cpu_partial and min_partial constants to 0 and tuning put_cpu_partial() so
that it would drop frozen empty slabs immediately if cpu_partial = 0.
The runtime overhead is minimal. From all the hot functions, we only
touch relatively cold put_cpu_partial(): we make it call
unfreeze_partials() after freezing a slab that belongs to an offline
memory cgroup. Since slab freezing exists to avoid moving slabs from/to a
partial list on free/alloc, and there can't be allocations from dead
caches, it shouldn't cause any overhead. We do have to disable preemption
for put_cpu_partial() to achieve that though.
The original patch was accepted well and even merged to the mm tree.
However, I decided to withdraw it due to changes happening to the memcg
core at that time. I had an idea of introducing per-memcg shrinkers for
kmem caches, but now, as memcg has finally settled down, I do not see it
as an option, because SLUB shrinker would be too costly to call since SLUB
does not keep free slabs on a separate list. Besides, we currently do not
even call per-memcg shrinkers for offline memcgs. Overall, it would
introduce much more complexity to both SLUB and memcg than this small
patch.
Regarding to SLAB, there's no problem with it, because it shrinks
per-cpu/node caches periodically. Thanks to list_lru reparenting, we no
longer keep entries for offline cgroups in per-memcg arrays (such as
memcg_cache_params->memcg_caches), so we do not have to bother if a
per-memcg cache will be shrunk a bit later than it could be.
[1] http://thread.gmane.org/gmane.linux.kernel.mm/118649/focus=118650
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is supposed to return 0 if the cache has no remaining objects and 1
otherwise, while currently it always returns 0. Fix it.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
SLUB's version of __kmem_cache_shrink() not only removes empty slabs, but
also tries to rearrange the partial lists to place slabs filled up most to
the head to cope with fragmentation. To achieve that, it allocates a
temporary array of lists used to sort slabs by the number of objects in
use. If the allocation fails, the whole procedure is aborted.
This is unacceptable for the kernel memory accounting extension of the
memory cgroup, where we want to make sure that kmem_cache_shrink()
successfully discarded empty slabs. Although the allocation failure is
utterly unlikely with the current page allocator implementation, which
retries GFP_KERNEL allocations of order <= 2 infinitely, it is better not
to rely on that.
This patch therefore makes __kmem_cache_shrink() allocate the array on
stack instead of calling kmalloc, which may fail. The array size is
chosen to be equal to 32, because most SLUB caches store not more than 32
objects per slab page. Slab pages with <= 32 free objects are sorted
using the array by the number of objects in use and promoted to the head
of the partial list, while slab pages with > 32 free objects are left in
the end of the list without any ordering imposed on them.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now, the only reason to keep kmemcg_id till css free is list_lru, which
uses it to distribute elements between per-memcg lists. However, it can
be easily sorted out - we only need to change kmemcg_id of an offline
cgroup to its parent's id, making further list_lru_add()'s add elements to
the parent's list, and then move all elements from the offline cgroup's
list to the one of its parent. It will work, because a racing
list_lru_del() does not need to know the list it is deleting the element
from. It can decrement the wrong nr_items counter though, but the ongoing
reparenting will fix it. After list_lru reparenting is done we are free
to release kmemcg_id saving a valuable slot in a per-memcg array for new
cgroups.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, the isolate callback passed to the list_lru_walk family of
functions is supposed to just delete an item from the list upon returning
LRU_REMOVED or LRU_REMOVED_RETRY, while nr_items counter is fixed by
__list_lru_walk_one after the callback returns. Since the callback is
allowed to drop the lock after removing an item (it has to return
LRU_REMOVED_RETRY then), the nr_items can be less than the actual number
of elements on the list even if we check them under the lock. This makes
it difficult to move items from one list_lru_one to another, which is
required for per-memcg list_lru reparenting - we can't just splice the
lists, we have to move entries one by one.
This patch therefore introduces helpers that must be used by callback
functions to isolate items instead of raw list_del/list_move. These are
list_lru_isolate and list_lru_isolate_move. They not only remove the
entry from the list, but also fix the nr_items counter, making sure
nr_items always reflects the actual number of elements on the list if
checked under the appropriate lock.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We need to look up a kmem_cache in ->memcg_params.memcg_caches arrays only
on allocations, so there is no need to have the array entries set until
css free - we can clear them on css offline. This will allow us to reuse
array entries more efficiently and avoid costly array relocations.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, we use mem_cgroup->kmemcg_id to guarantee kmem_cache->name
uniqueness. This is correct, because kmemcg_id is only released on css
free after destroying all per memcg caches.
However, I am going to change that and release kmemcg_id on css offline,
because it is not wise to keep it for so long, wasting valuable entries of
memcg_cache_params->memcg_caches arrays. Therefore, to preserve cache
name uniqueness, let us switch to css->id.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sometimes, we need to iterate over all memcg copies of a particular root
kmem cache. Currently, we use memcg_cache_params->memcg_caches array for
that, because it contains all existing memcg caches.
However, it's a bad practice to keep all caches, including those that
belong to offline cgroups, in this array, because it will be growing
beyond any bounds then. I'm going to wipe away dead caches from it to
save space. To still be able to perform iterations over all memcg caches
of the same kind, let us link them into a list.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, kmem_cache stores a pointer to struct memcg_cache_params
instead of embedding it. The rationale is to save memory when kmem
accounting is disabled. However, the memcg_cache_params has shrivelled
drastically since it was first introduced:
* Initially:
struct memcg_cache_params {
bool is_root_cache;
union {
struct kmem_cache *memcg_caches[0];
struct {
struct mem_cgroup *memcg;
struct list_head list;
struct kmem_cache *root_cache;
bool dead;
atomic_t nr_pages;
struct work_struct destroy;
};
};
};
* Now:
struct memcg_cache_params {
bool is_root_cache;
union {
struct {
struct rcu_head rcu_head;
struct kmem_cache *memcg_caches[0];
};
struct {
struct mem_cgroup *memcg;
struct kmem_cache *root_cache;
};
};
};
So the memory saving does not seem to be a clear win anymore.
OTOH, keeping a pointer to memcg_cache_params struct instead of embedding
it results in touching one more cache line on kmem alloc/free hot paths.
Besides, it makes linking kmem caches in a list chained by a field of
struct memcg_cache_params really painful due to a level of indirection,
while I want to make them linked in the following patch. That said, let
us embed it.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are several FS shrinkers, including super_block::s_shrink, that
keep reclaimable objects in the list_lru structure. Hence to turn them
to memcg-aware shrinkers, it is enough to make list_lru per-memcg.
This patch does the trick. It adds an array of lru lists to the
list_lru_node structure (per-node part of the list_lru), one for each
kmem-active memcg, and dispatches every item addition or removal to the
list corresponding to the memcg which the item is accounted to. So now
the list_lru structure is not just per node, but per node and per memcg.
Not all list_lrus need this feature, so this patch also adds a new
method, list_lru_init_memcg, which initializes a list_lru as memcg
aware. Otherwise (i.e. if initialized with old list_lru_init), the
list_lru won't have per memcg lists.
Just like per memcg caches arrays, the arrays of per-memcg lists are
indexed by memcg_cache_id, so we must grow them whenever
memcg_nr_cache_ids is increased. So we introduce a callback,
memcg_update_all_list_lrus, invoked by memcg_alloc_cache_id if the id
space is full.
The locking is implemented in a manner similar to lruvecs, i.e. we have
one lock per node that protects all lists (both global and per cgroup) on
the node.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To make list_lru memcg aware, we need all list_lrus to be kept on a list
protected by a mutex, so that we could sleep while walking over the
list.
Therefore after this change list_lru_destroy may sleep. Fortunately,
there is only one user that calls it from an atomic context - it's
put_super - and we can easily fix it by calling list_lru_destroy before
put_super in destroy_locked_super - anyway we don't longer need lrus by
that time.
Another point that should be noted is that list_lru_destroy is allowed
to be called on an uninitialized zeroed-out object, in which case it is
a no-op. Before this patch this was guaranteed by kfree, but now we
need an explicit check there.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The active_nodes mask allows us to skip empty nodes when walking over
list_lru items from all nodes in list_lru_count/walk. However, these
functions are never called from hot paths, so it doesn't seem we need
such kind of optimization there. OTOH, removing the mask will make it
easier to make list_lru per-memcg.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We need a stable value of memcg_nr_cache_ids in kmem_cache_create()
(memcg_alloc_cache_params() wants it for root caches), where we only
hold the slab_mutex and no memcg-related locks. As a result, we have to
update memcg_nr_cache_ids under the slab_mutex, which we can only take
on the slab's side (see memcg_update_array_size). This looks awkward
and will become even worse when per-memcg list_lru is introduced, which
also wants stable access to memcg_nr_cache_ids.
To get rid of this dependency between the memcg_nr_cache_ids and the
slab_mutex, this patch introduces a special rwsem. The rwsem is held
for writing during memcg_caches arrays relocation and memcg_nr_cache_ids
updates. Therefore one can take it for reading to get a stable access
to memcg_caches arrays and/or memcg_nr_cache_ids.
Currently the semaphore is taken for reading only from
kmem_cache_create, right before taking the slab_mutex, so right now
there's no much point in using rwsem instead of mutex. However, once
list_lru is made per-memcg it will allow list_lru initializations to
proceed concurrently.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memcg_limited_groups_array_size, which defines the size of memcg_caches
arrays, sounds rather cumbersome. Also it doesn't point anyhow that
it's related to kmem/caches stuff. So let's rename it to
memcg_nr_cache_ids. It's concise and points us directly to
memcg_cache_id.
Also, rename kmem_limited_groups to memcg_cache_ida.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch adds SHRINKER_MEMCG_AWARE flag. If a shrinker has this flag
set, it will be called per memory cgroup. The memory cgroup to scan
objects from is passed in shrink_control->memcg. If the memory cgroup
is NULL, a memcg aware shrinker is supposed to scan objects from the
global list. Unaware shrinkers are only called on global pressure with
memcg=NULL.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kmem accounting of memcg is unusable now, because it lacks slab shrinker
support. That means when we hit the limit we will get ENOMEM w/o any
chance to recover. What we should do then is to call shrink_slab, which
would reclaim old inode/dentry caches from this cgroup. This is what
this patch set is intended to do.
Basically, it does two things. First, it introduces the notion of
per-memcg slab shrinker. A shrinker that wants to reclaim objects per
cgroup should mark itself as SHRINKER_MEMCG_AWARE. Then it will be
passed the memory cgroup to scan from in shrink_control->memcg. For
such shrinkers shrink_slab iterates over the whole cgroup subtree under
the target cgroup and calls the shrinker for each kmem-active memory
cgroup.
Secondly, this patch set makes the list_lru structure per-memcg. It's
done transparently to list_lru users - everything they have to do is to
tell list_lru_init that they want memcg-aware list_lru. Then the
list_lru will automatically distribute objects among per-memcg lists
basing on which cgroup the object is accounted to. This way to make FS
shrinkers (icache, dcache) memcg-aware we only need to make them use
memcg-aware list_lru, and this is what this patch set does.
As before, this patch set only enables per-memcg kmem reclaim when the
pressure goes from memory.limit, not from memory.kmem.limit. Handling
memory.kmem.limit is going to be tricky due to GFP_NOFS allocations, and
it is still unclear whether we will have this knob in the unified
hierarchy.
This patch (of 9):
NUMA aware slab shrinkers use the list_lru structure to distribute
objects coming from different NUMA nodes to different lists. Whenever
such a shrinker needs to count or scan objects from a particular node,
it issues commands like this:
count = list_lru_count_node(lru, sc->nid);
freed = list_lru_walk_node(lru, sc->nid, isolate_func,
isolate_arg, &sc->nr_to_scan);
where sc is an instance of the shrink_control structure passed to it
from vmscan.
To simplify this, let's add special list_lru functions to be used by
shrinkers, list_lru_shrink_count() and list_lru_shrink_walk(), which
consolidate the nid and nr_to_scan arguments in the shrink_control
structure.
This will also allow us to avoid patching shrinkers that use list_lru
when we make shrink_slab() per-memcg - all we will have to do is extend
the shrink_control structure to include the target memcg and make
list_lru_shrink_{count,walk} handle this appropriately.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Suggested-by: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a PTE or PMD is already marked NUMA when scanning to mark entries for
NUMA hinting then it is not necessary to update the entry and incur a TLB
flush penalty. Avoid the avoidhead where possible.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Dave Jones <davej@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pte_protnone_numa is only safe to use after VMA checks for PROT_NONE are
complete. Treating a real PROT_NONE PTE as a NUMA hinting fault is going
to result in strangeness so add a check for it. BUG_ON looks like
overkill but if this is hit then it's a serious bug that could result in
corruption so do not even try recovering. It would have been more
comprehensive to check VMA flags in pte_protnone_numa but it would have
made the API ugly just for a debugging check.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Dave Jones <davej@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Faults on the huge zero page are pointless and there is a BUG_ON to catch
them during fault time. This patch reintroduces a check that avoids
marking the zero page PAGE_NONE.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Dave Jones <davej@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Convert existing users of pte_numa and friends to the new helper. Note
that the kernel is broken after this patch is applied until the other page
table modifiers are also altered. This patch layout is to make review
easier.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Automatic NUMA balancing depends on being able to protect PTEs to trap a
fault and gather reference locality information. Very broadly speaking
it would mark PTEs as not present and use another bit to distinguish
between NUMA hinting faults and other types of faults. It was
universally loved by everybody and caused no problems whatsoever. That
last sentence might be a lie.
This series is very heavily based on patches from Linus and Aneesh to
replace the existing PTE/PMD NUMA helper functions with normal change
protections. I did alter and add parts of it but I consider them
relatively minor contributions. At their suggestion, acked-bys are in
there but I've no problem converting them to Signed-off-by if requested.
AFAIK, this has received no testing on ppc64 and I'm depending on Aneesh
for that. I tested trinity under kvm-tool and passed and ran a few
other basic tests. At the time of writing, only the short-lived tests
have completed but testing of V2 indicated that long-term testing had no
surprises. In most cases I'm leaving out detail as it's not that
interesting.
specjbb single JVM: There was negligible performance difference in the
benchmark itself for short runs. However, system activity is
higher and interrupts are much higher over time -- possibly TLB
flushes. Migrations are also higher. Overall, this is more overhead
but considering the problems faced with the old approach I think
we just have to suck it up and find another way of reducing the
overhead.
specjbb multi JVM: Negligible performance difference to the actual benchmark
but like the single JVM case, the system overhead is noticeably
higher. Again, interrupts are a major factor.
autonumabench: This was all over the place and about all that can be
reasonably concluded is that it's different but not necessarily
better or worse.
autonumabench
3.18.0-rc5 3.18.0-rc5
mmotm-20141119 protnone-v3r3
User NUMA01 32380.24 ( 0.00%) 21642.92 ( 33.16%)
User NUMA01_THEADLOCAL 22481.02 ( 0.00%) 22283.22 ( 0.88%)
User NUMA02 3137.00 ( 0.00%) 3116.54 ( 0.65%)
User NUMA02_SMT 1614.03 ( 0.00%) 1543.53 ( 4.37%)
System NUMA01 322.97 ( 0.00%) 1465.89 (-353.88%)
System NUMA01_THEADLOCAL 91.87 ( 0.00%) 49.32 ( 46.32%)
System NUMA02 37.83 ( 0.00%) 14.61 ( 61.38%)
System NUMA02_SMT 7.36 ( 0.00%) 7.45 ( -1.22%)
Elapsed NUMA01 716.63 ( 0.00%) 599.29 ( 16.37%)
Elapsed NUMA01_THEADLOCAL 553.98 ( 0.00%) 539.94 ( 2.53%)
Elapsed NUMA02 83.85 ( 0.00%) 83.04 ( 0.97%)
Elapsed NUMA02_SMT 86.57 ( 0.00%) 79.15 ( 8.57%)
CPU NUMA01 4563.00 ( 0.00%) 3855.00 ( 15.52%)
CPU NUMA01_THEADLOCAL 4074.00 ( 0.00%) 4136.00 ( -1.52%)
CPU NUMA02 3785.00 ( 0.00%) 3770.00 ( 0.40%)
CPU NUMA02_SMT 1872.00 ( 0.00%) 1959.00 ( -4.65%)
System CPU usage of NUMA01 is worse but it's an adverse workload on this
machine so I'm reluctant to conclude that it's a problem that matters. On
the other workloads that are sensible on this machine, system CPU usage is
great. Overall time to complete the benchmark is comparable
3.18.0-rc5 3.18.0-rc5
mmotm-20141119protnone-v3r3
User 59612.50 48586.44
System 460.22 1537.45
Elapsed 1442.20 1304.29
NUMA alloc hit 5075182 5743353
NUMA alloc miss 0 0
NUMA interleave hit 0 0
NUMA alloc local 5075174 5743339
NUMA base PTE updates 637061448 443106883
NUMA huge PMD updates 1243434 864747
NUMA page range updates 1273699656 885857347
NUMA hint faults 1658116 1214277
NUMA hint local faults 959487 754113
NUMA hint local percent 57 62
NUMA pages migrated 5467056 61676398
The NUMA pages migrated look terrible but when I looked at a graph of the
activity over time I see that the massive spike in migration activity was
during NUMA01. This correlates with high system CPU usage and could be
simply down to bad luck but any modifications that affect that workload
would be related to scan rates and migrations, not the protection
mechanism. For all other workloads, migration activity was comparable.
Overall, headline performance figures are comparable but the overhead is
higher, mostly in interrupts. To some extent, higher overhead from this
approach was anticipated but not to this degree. It's going to be
necessary to reduce this again with a separate series in the future. It's
still worth going ahead with this series though as it's likely to avoid
constant headaches with Xen and is probably easier to maintain.
This patch (of 10):
A transhuge NUMA hinting fault may find the page is migrating and should
wait until migration completes. The check is race-prone because the pmd
is deferenced outside of the page lock and while the race is tiny, it'll
be larger if the PMD is cleared while marking PMDs for hinting fault.
This patch closes the race.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Dave Jones <davej@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull backing device changes from Jens Axboe:
"This contains a cleanup of how the backing device is handled, in
preparation for a rework of the life time rules. In this part, the
most important change is to split the unrelated nommu mmap flags from
it, but also removing a backing_dev_info pointer from the
address_space (and inode), and a cleanup of other various minor bits.
Christoph did all the work here, I just fixed an oops with pages that
have a swap backing. Arnd fixed a missing export, and Oleg killed the
lustre backing_dev_info from staging. Last patch was from Al,
unexporting parts that are now no longer needed outside"
* 'for-3.20/bdi' of git://git.kernel.dk/linux-block:
Make super_blocks and sb_lock static
mtd: export new mtd_mmap_capabilities
fs: make inode_to_bdi() handle NULL inode
staging/lustre/llite: get rid of backing_dev_info
fs: remove default_backing_dev_info
fs: don't reassign dirty inodes to default_backing_dev_info
nfs: don't call bdi_unregister
ceph: remove call to bdi_unregister
fs: remove mapping->backing_dev_info
fs: export inode_to_bdi and use it in favor of mapping->backing_dev_info
nilfs2: set up s_bdi like the generic mount_bdev code
block_dev: get bdev inode bdi directly from the block device
block_dev: only write bdev inode on close
fs: introduce f_op->mmap_capabilities for nommu mmap support
fs: kill BDI_CAP_SWAP_BACKED
fs: deduplicate noop_backing_dev_info
I noticed that "allowed" can easily overflow by falling below 0, because
(total_vm / 32) can be larger than "allowed". The problem occurs in
OVERCOMMIT_NONE mode.
In this case, a huge allocation can success and overcommit the system
(despite OVERCOMMIT_NONE mode). All subsequent allocations will fall
(system-wide), so system become unusable.
The problem was masked out by commit c9b1d0981f
("mm: limit growth of 3% hardcoded other user reserve"),
but it's easy to reproduce it on older kernels:
1) set overcommit_memory sysctl to 2
2) mmap() large file multiple times (with VM_SHARED flag)
3) try to malloc() large amount of memory
It also can be reproduced on newer kernels, but miss-configured
sysctl_user_reserve_kbytes is required.
Fix this issue by switching to signed arithmetic here.
Signed-off-by: Roman Gushchin <klamm@yandex-team.ru>
Cc: Andrew Shewmaker <agshew@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I noticed, that "allowed" can easily overflow by falling below 0,
because (total_vm / 32) can be larger than "allowed". The problem
occurs in OVERCOMMIT_NONE mode.
In this case, a huge allocation can success and overcommit the system
(despite OVERCOMMIT_NONE mode). All subsequent allocations will fall
(system-wide), so system become unusable.
The problem was masked out by commit c9b1d0981f
("mm: limit growth of 3% hardcoded other user reserve"),
but it's easy to reproduce it on older kernels:
1) set overcommit_memory sysctl to 2
2) mmap() large file multiple times (with VM_SHARED flag)
3) try to malloc() large amount of memory
It also can be reproduced on newer kernels, but miss-configured
sysctl_user_reserve_kbytes is required.
Fix this issue by switching to signed arithmetic here.
[akpm@linux-foundation.org: use min_t]
Signed-off-by: Roman Gushchin <klamm@yandex-team.ru>
Cc: Andrew Shewmaker <agshew@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It was noted that the vm stat shepherd runs every 2 seconds and that the
vmstat update is then scheduled 2 seconds in the future.
This yields an interval of double the time interval which is not desired.
Change the shepherd so that it does not delay the vmstat update on the
other cpu. We stil have to use schedule_delayed_work since we are using a
delayed_work_struct but we can set the delay to 0.
Signed-off-by: Christoph Lameter <cl@linux.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Page owner uses the page_ext structure to keep meta-information for every
page in the system. The structure also contains a field of type 'struct
stack_trace', page owner uses this field during invocation of the function
save_stack_trace. It is easy to notice that keeping a copy of this
structure for every page in the system is very inefficiently in terms of
memory.
The patch removes this unnecessary field of page_ext and forces page owner
to use a stack_trace structure allocated on the stack.
[akpm@linux-foundation.org: use struct initializers]
Signed-off-by: Sergei Rogachev <rogachevsergei@gmail.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch aims to improve THP collapse rates, by allowing THP collapse in
the presence of read-only ptes, like those left in place by do_swap_page
after a read fault.
Currently THP can collapse 4kB pages into a THP when there are up to
khugepaged_max_ptes_none pte_none ptes in a 2MB range. This patch applies
the same limit for read-only ptes.
The patch was tested with a test program that allocates 800MB of memory,
writes to it, and then sleeps. I force the system to swap out all but
190MB of the program by touching other memory. Afterwards, the test
program does a mix of reads and writes to its memory, and the memory gets
swapped back in.
Without the patch, only the memory that did not get swapped out remained
in THPs, which corresponds to 24% of the memory of the program. The
percentage did not increase over time.
With this patch, after 5 minutes of waiting khugepaged had collapsed 50%
of the program's memory back into THPs.
Test results:
With the patch:
After swapped out:
cat /proc/pid/smaps:
Anonymous: 100464 kB
AnonHugePages: 100352 kB
Swap: 699540 kB
Fraction: 99,88
cat /proc/meminfo:
AnonPages: 1754448 kB
AnonHugePages: 1716224 kB
Fraction: 97,82
After swapped in:
In a few seconds:
cat /proc/pid/smaps:
Anonymous: 800004 kB
AnonHugePages: 145408 kB
Swap: 0 kB
Fraction: 18,17
cat /proc/meminfo:
AnonPages: 2455016 kB
AnonHugePages: 1761280 kB
Fraction: 71,74
In 5 minutes:
cat /proc/pid/smaps
Anonymous: 800004 kB
AnonHugePages: 407552 kB
Swap: 0 kB
Fraction: 50,94
cat /proc/meminfo:
AnonPages: 2456872 kB
AnonHugePages: 2023424 kB
Fraction: 82,35
Without the patch:
After swapped out:
cat /proc/pid/smaps:
Anonymous: 190660 kB
AnonHugePages: 190464 kB
Swap: 609344 kB
Fraction: 99,89
cat /proc/meminfo:
AnonPages: 1740456 kB
AnonHugePages: 1667072 kB
Fraction: 95,78
After swapped in:
cat /proc/pid/smaps:
Anonymous: 800004 kB
AnonHugePages: 190464 kB
Swap: 0 kB
Fraction: 23,80
cat /proc/meminfo:
AnonPages: 2350032 kB
AnonHugePages: 1667072 kB
Fraction: 70,93
I waited 10 minutes the fractions did not change without the patch.
Signed-off-by: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Vinayak Menon has reported that an excessive number of tasks was throttled
in the direct reclaim inside too_many_isolated() because NR_ISOLATED_FILE
was relatively high compared to NR_INACTIVE_FILE. However it turned out
that the real number of NR_ISOLATED_FILE was 0 and the per-cpu
vm_stat_diff wasn't transferred into the global counter.
vmstat_work which is responsible for the sync is defined as deferrable
delayed work which means that the defined timeout doesn't wake up an idle
CPU. A CPU might stay in an idle state for a long time and general effort
is to keep such a CPU in this state as long as possible which might lead
to all sorts of troubles for vmstat consumers as can be seen with the
excessive direct reclaim throttling.
This patch basically reverts 39bf6270f5 ("VM statistics: Make timer
deferrable") but it shouldn't cause any problems for idle CPUs because
only CPUs with an active per-cpu drift are woken up since 7cc36bbddd
("vmstat: on-demand vmstat workers v8") and CPUs which are idle for a
longer time shouldn't have per-cpu drift.
Fixes: 39bf6270f5 (VM statistics: Make timer deferrable)
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reported-by: Vinayak Menon <vinmenon@codeaurora.org>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When allocation falls back to stealing free pages of another migratetype,
it can decide to steal extra pages, or even the whole pageblock in order
to reduce fragmentation, which could happen if further allocation
fallbacks pick a different pageblock. In try_to_steal_freepages(), one of
the situations where extra pages are stolen happens when we are trying to
allocate a MIGRATE_RECLAIMABLE page.
However, MIGRATE_UNMOVABLE allocations are not treated the same way,
although spreading such allocation over multiple fallback pageblocks is
arguably even worse than it is for RECLAIMABLE allocations. To minimize
fragmentation, we should minimize the number of such fallbacks, and thus
steal as much as is possible from each fallback pageblock.
Note that in theory this might put more pressure on movable pageblocks and
cause movable allocations to steal back from unmovable pageblocks.
However, movable allocations are not as aggressive with stealing, and do
not cause permanent fragmentation, so the tradeoff is reasonable, and
evaluation seems to support the change.
This patch thus adds a check for MIGRATE_UNMOVABLE to the decision to
steal extra free pages. When evaluating with stress-highalloc from
mmtests, this has reduced the number of MIGRATE_UNMOVABLE fallbacks to
roughly 1/6. The number of these fallbacks stealing from MIGRATE_MOVABLE
block is reduced to 1/3. There was no observation of growing number of
unmovable pageblocks over time, and also not of increased movable
allocation fallbacks.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When allocation falls back to another migratetype, it will steal a page
with highest available order, and (depending on this order and desired
migratetype), it might also steal the rest of free pages from the same
pageblock.
Given the preference of highest available order, it is likely that it will
be higher than the desired order, and result in the stolen buddy page
being split. The remaining pages after split are currently stolen only
when the rest of the free pages are stolen. This can however lead to
situations where for MOVABLE allocations we split e.g. order-4 fallback
UNMOVABLE page, but steal only order-0 page. Then on the next MOVABLE
allocation (which may be batched to fill the pcplists) we split another
order-3 or higher page, etc. By stealing all pages that we have split, we
can avoid further stealing.
This patch therefore adjusts the page stealing so that buddy pages created
by split are always stolen. This has effect only on MOVABLE allocations,
as RECLAIMABLE and UNMOVABLE allocations already always do that in
addition to stealing the rest of free pages from the pageblock. The
change also allows to simplify try_to_steal_freepages() and factor out CMA
handling.
According to Mel, it has been intended since the beginning that buddy
pages after split would be stolen always, but it doesn't seem like it was
ever the case until commit 47118af076 ("mm: mmzone: MIGRATE_CMA
migration type added"). The commit has unintentionally introduced this
behavior, but was reverted by commit 0cbef29a78 ("mm:
__rmqueue_fallback() should respect pageblock type"). Neither included
evaluation.
My evaluation with stress-highalloc from mmtests shows about 2.5x
reduction of page stealing events for MOVABLE allocations, without
affecting the page stealing events for other allocation migratetypes.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When studying page stealing, I noticed some weird looking decisions in
try_to_steal_freepages(). The first I assume is a bug (Patch 1), the
following two patches were driven by evaluation.
Testing was done with stress-highalloc of mmtests, using the
mm_page_alloc_extfrag tracepoint and postprocessing to get counts of how
often page stealing occurs for individual migratetypes, and what
migratetypes are used for fallbacks. Arguably, the worst case of page
stealing is when UNMOVABLE allocation steals from MOVABLE pageblock.
RECLAIMABLE allocation stealing from MOVABLE allocation is also not ideal,
so the goal is to minimize these two cases.
The evaluation of v2 wasn't always clear win and Joonsoo questioned the
results. Here I used different baseline which includes RFC compaction
improvements from [1]. I found that the compaction improvements reduce
variability of stress-highalloc, so there's less noise in the data.
First, let's look at stress-highalloc configured to do sync compaction,
and how these patches reduce page stealing events during the test. First
column is after fresh reboot, other two are reiterations of test without
reboot. That was all accumulater over 5 re-iterations (so the benchmark
was run 5x3 times with 5 fresh restarts).
Baseline:
3.19-rc4 3.19-rc4 3.19-rc4
5-nothp-1 5-nothp-2 5-nothp-3
Page alloc extfrag event 10264225 8702233 10244125
Extfrag fragmenting 10263271 8701552 10243473
Extfrag fragmenting for unmovable 13595 17616 15960
Extfrag fragmenting unmovable placed with movable 7989 12193 8447
Extfrag fragmenting for reclaimable 658 1840 1817
Extfrag fragmenting reclaimable placed with movable 558 1677 1679
Extfrag fragmenting for movable 10249018 8682096 10225696
With Patch 1:
3.19-rc4 3.19-rc4 3.19-rc4
6-nothp-1 6-nothp-2 6-nothp-3
Page alloc extfrag event 11834954 9877523 9774860
Extfrag fragmenting 11833993 9876880 9774245
Extfrag fragmenting for unmovable 7342 16129 11712
Extfrag fragmenting unmovable placed with movable 4191 10547 6270
Extfrag fragmenting for reclaimable 373 1130 923
Extfrag fragmenting reclaimable placed with movable 302 906 738
Extfrag fragmenting for movable 11826278 9859621 9761610
With Patch 2:
3.19-rc4 3.19-rc4 3.19-rc4
7-nothp-1 7-nothp-2 7-nothp-3
Page alloc extfrag event 4725990 3668793 3807436
Extfrag fragmenting 4725104 3668252 3806898
Extfrag fragmenting for unmovable 6678 7974 7281
Extfrag fragmenting unmovable placed with movable 2051 3829 4017
Extfrag fragmenting for reclaimable 429 1208 1278
Extfrag fragmenting reclaimable placed with movable 369 976 1034
Extfrag fragmenting for movable 4717997 3659070 3798339
With Patch 3:
3.19-rc4 3.19-rc4 3.19-rc4
8-nothp-1 8-nothp-2 8-nothp-3
Page alloc extfrag event 5016183 4700142 3850633
Extfrag fragmenting 5015325 4699613 3850072
Extfrag fragmenting for unmovable 1312 3154 3088
Extfrag fragmenting unmovable placed with movable 1115 2777 2714
Extfrag fragmenting for reclaimable 437 1193 1097
Extfrag fragmenting reclaimable placed with movable 330 969 879
Extfrag fragmenting for movable 5013576 4695266 3845887
In v2 we've seen apparent regression with Patch 1 for unmovable events,
this is now gone, suggesting it was indeed noise. Here, each patch
improves the situation for unmovable events. Reclaimable is improved by
patch 1 and then either the same modulo noise, or perhaps sligtly worse -
a small price for unmovable improvements, IMHO. The number of movable
allocations falling back to other migratetypes is most noisy, but it's
reduced to half at Patch 2 nevertheless. These are least critical as
compaction can move them around.
If we look at success rates, the patches don't affect them, that didn't change.
Baseline:
3.19-rc4 3.19-rc4 3.19-rc4
5-nothp-1 5-nothp-2 5-nothp-3
Success 1 Min 49.00 ( 0.00%) 42.00 ( 14.29%) 41.00 ( 16.33%)
Success 1 Mean 51.00 ( 0.00%) 45.00 ( 11.76%) 42.60 ( 16.47%)
Success 1 Max 55.00 ( 0.00%) 51.00 ( 7.27%) 46.00 ( 16.36%)
Success 2 Min 53.00 ( 0.00%) 47.00 ( 11.32%) 44.00 ( 16.98%)
Success 2 Mean 59.60 ( 0.00%) 50.80 ( 14.77%) 48.20 ( 19.13%)
Success 2 Max 64.00 ( 0.00%) 56.00 ( 12.50%) 52.00 ( 18.75%)
Success 3 Min 84.00 ( 0.00%) 82.00 ( 2.38%) 78.00 ( 7.14%)
Success 3 Mean 85.60 ( 0.00%) 82.80 ( 3.27%) 79.40 ( 7.24%)
Success 3 Max 86.00 ( 0.00%) 83.00 ( 3.49%) 80.00 ( 6.98%)
Patch 1:
3.19-rc4 3.19-rc4 3.19-rc4
6-nothp-1 6-nothp-2 6-nothp-3
Success 1 Min 49.00 ( 0.00%) 44.00 ( 10.20%) 44.00 ( 10.20%)
Success 1 Mean 51.80 ( 0.00%) 46.00 ( 11.20%) 45.80 ( 11.58%)
Success 1 Max 54.00 ( 0.00%) 49.00 ( 9.26%) 49.00 ( 9.26%)
Success 2 Min 58.00 ( 0.00%) 49.00 ( 15.52%) 48.00 ( 17.24%)
Success 2 Mean 60.40 ( 0.00%) 51.80 ( 14.24%) 50.80 ( 15.89%)
Success 2 Max 63.00 ( 0.00%) 54.00 ( 14.29%) 55.00 ( 12.70%)
Success 3 Min 84.00 ( 0.00%) 81.00 ( 3.57%) 79.00 ( 5.95%)
Success 3 Mean 85.00 ( 0.00%) 81.60 ( 4.00%) 79.80 ( 6.12%)
Success 3 Max 86.00 ( 0.00%) 82.00 ( 4.65%) 82.00 ( 4.65%)
Patch 2:
3.19-rc4 3.19-rc4 3.19-rc4
7-nothp-1 7-nothp-2 7-nothp-3
Success 1 Min 50.00 ( 0.00%) 44.00 ( 12.00%) 39.00 ( 22.00%)
Success 1 Mean 52.80 ( 0.00%) 45.60 ( 13.64%) 42.40 ( 19.70%)
Success 1 Max 55.00 ( 0.00%) 46.00 ( 16.36%) 47.00 ( 14.55%)
Success 2 Min 52.00 ( 0.00%) 48.00 ( 7.69%) 45.00 ( 13.46%)
Success 2 Mean 53.40 ( 0.00%) 49.80 ( 6.74%) 48.80 ( 8.61%)
Success 2 Max 57.00 ( 0.00%) 52.00 ( 8.77%) 52.00 ( 8.77%)
Success 3 Min 84.00 ( 0.00%) 81.00 ( 3.57%) 79.00 ( 5.95%)
Success 3 Mean 85.00 ( 0.00%) 82.40 ( 3.06%) 79.60 ( 6.35%)
Success 3 Max 86.00 ( 0.00%) 83.00 ( 3.49%) 80.00 ( 6.98%)
Patch 3:
3.19-rc4 3.19-rc4 3.19-rc4
8-nothp-1 8-nothp-2 8-nothp-3
Success 1 Min 46.00 ( 0.00%) 44.00 ( 4.35%) 42.00 ( 8.70%)
Success 1 Mean 50.20 ( 0.00%) 45.60 ( 9.16%) 44.00 ( 12.35%)
Success 1 Max 52.00 ( 0.00%) 47.00 ( 9.62%) 47.00 ( 9.62%)
Success 2 Min 53.00 ( 0.00%) 49.00 ( 7.55%) 48.00 ( 9.43%)
Success 2 Mean 55.80 ( 0.00%) 50.60 ( 9.32%) 49.00 ( 12.19%)
Success 2 Max 59.00 ( 0.00%) 52.00 ( 11.86%) 51.00 ( 13.56%)
Success 3 Min 84.00 ( 0.00%) 80.00 ( 4.76%) 79.00 ( 5.95%)
Success 3 Mean 85.40 ( 0.00%) 81.60 ( 4.45%) 80.40 ( 5.85%)
Success 3 Max 87.00 ( 0.00%) 83.00 ( 4.60%) 82.00 ( 5.75%)
While there's no improvement here, I consider reduced fragmentation events
to be worth on its own. Patch 2 also seems to reduce scanning for free
pages, and migrations in compaction, suggesting it has somewhat less work
to do:
Patch 1:
Compaction stalls 4153 3959 3978
Compaction success 1523 1441 1446
Compaction failures 2630 2517 2531
Page migrate success 4600827 4943120 5104348
Page migrate failure 19763 16656 17806
Compaction pages isolated 9597640 10305617 10653541
Compaction migrate scanned 77828948 86533283 87137064
Compaction free scanned 517758295 521312840 521462251
Compaction cost 5503 5932 6110
Patch 2:
Compaction stalls 3800 3450 3518
Compaction success 1421 1316 1317
Compaction failures 2379 2134 2201
Page migrate success 4160421 4502708 4752148
Page migrate failure 19705 14340 14911
Compaction pages isolated 8731983 9382374 9910043
Compaction migrate scanned 98362797 96349194 98609686
Compaction free scanned 496512560 469502017 480442545
Compaction cost 5173 5526 5811
As with v2, /proc/pagetypeinfo appears unaffected with respect to numbers
of unmovable and reclaimable pageblocks.
Configuring the benchmark to allocate like THP page fault (i.e. no sync
compaction) gives much noisier results for iterations 2 and 3 after
reboot. This is not so surprising given how [1] offers lower improvements
in this scenario due to less restarts after deferred compaction which
would change compaction pivot.
Baseline:
3.19-rc4 3.19-rc4 3.19-rc4
5-thp-1 5-thp-2 5-thp-3
Page alloc extfrag event 8148965 6227815 6646741
Extfrag fragmenting 8147872 6227130 6646117
Extfrag fragmenting for unmovable 10324 12942 15975
Extfrag fragmenting unmovable placed with movable 5972 8495 10907
Extfrag fragmenting for reclaimable 601 1707 2210
Extfrag fragmenting reclaimable placed with movable 520 1570 2000
Extfrag fragmenting for movable 8136947 6212481 6627932
Patch 1:
3.19-rc4 3.19-rc4 3.19-rc4
6-thp-1 6-thp-2 6-thp-3
Page alloc extfrag event 8345457 7574471 7020419
Extfrag fragmenting 8343546 7573777 7019718
Extfrag fragmenting for unmovable 10256 18535 30716
Extfrag fragmenting unmovable placed with movable 6893 11726 22181
Extfrag fragmenting for reclaimable 465 1208 1023
Extfrag fragmenting reclaimable placed with movable 353 996 843
Extfrag fragmenting for movable 8332825 7554034 6987979
Patch 2:
3.19-rc4 3.19-rc4 3.19-rc4
7-thp-1 7-thp-2 7-thp-3
Page alloc extfrag event 3512847 3020756 2891625
Extfrag fragmenting 3511940 3020185 2891059
Extfrag fragmenting for unmovable 9017 6892 6191
Extfrag fragmenting unmovable placed with movable 1524 3053 2435
Extfrag fragmenting for reclaimable 445 1081 1160
Extfrag fragmenting reclaimable placed with movable 375 918 986
Extfrag fragmenting for movable 3502478 3012212 2883708
Patch 3:
3.19-rc4 3.19-rc4 3.19-rc4
8-thp-1 8-thp-2 8-thp-3
Page alloc extfrag event 3181699 3082881 2674164
Extfrag fragmenting 3180812 3082303 2673611
Extfrag fragmenting for unmovable 1201 4031 4040
Extfrag fragmenting unmovable placed with movable 974 3611 3645
Extfrag fragmenting for reclaimable 478 1165 1294
Extfrag fragmenting reclaimable placed with movable 387 985 1030
Extfrag fragmenting for movable 3179133 3077107 2668277
The improvements for first iteration are clear, the rest is much noisier
and can appear like regression for Patch 1. Anyway, patch 2 rectifies it.
Allocation success rates are again unaffected so there's no point in
making this e-mail any longer.
[1] http://marc.info/?l=linux-mm&m=142166196321125&w=2
This patch (of 3):
When __rmqueue_fallback() is called to allocate a page of order X, it will
find a page of order Y >= X of a fallback migratetype, which is different
from the desired migratetype. With the help of try_to_steal_freepages(),
it may change the migratetype (to the desired one) also of:
1) all currently free pages in the pageblock containing the fallback page
2) the fallback pageblock itself
3) buddy pages created by splitting the fallback page (when Y > X)
These decisions take the order Y into account, as well as the desired
migratetype, with the goal of preventing multiple fallback allocations
that could e.g. distribute UNMOVABLE allocations among multiple
pageblocks.
Originally, decision for 1) has implied the decision for 3). Commit
47118af076 ("mm: mmzone: MIGRATE_CMA migration type added") changed that
(probably unintentionally) so that the buddy pages in case 3) are always
changed to the desired migratetype, except for CMA pageblocks.
Commit fef903efcf ("mm/page_allo.c: restructure free-page stealing code
and fix a bug") did some refactoring and added a comment that the case of
3) is intended. Commit 0cbef29a78 ("mm: __rmqueue_fallback() should
respect pageblock type") removed the comment and tried to restore the
original behavior where 1) implies 3), but due to the previous
refactoring, the result is instead that only 2) implies 3) - and the
conditions for 2) are less frequently met than conditions for 1). This
may increase fragmentation in situations where the code decides to steal
all free pages from the pageblock (case 1)), but then gives back the buddy
pages produced by splitting.
This patch restores the original intended logic where 1) implies 3).
During testing with stress-highalloc from mmtests, this has shown to
decrease the number of events where UNMOVABLE and RECLAIMABLE allocations
steal from MOVABLE pageblocks, which can lead to permanent fragmentation.
In some cases it has increased the number of events when MOVABLE
allocations steal from UNMOVABLE or RECLAIMABLE pageblocks, but these are
fixable by sync compaction and thus less harmful.
Note that evaluation has shown that the behavior introduced by
47118af076 for buddy pages in case 3) is actually even better than the
original logic, so the following patch will introduce it properly once
again. For stable backports of this patch it makes thus sense to only fix
versions containing 0cbef29a78.
[iamjoonsoo.kim@lge.com: tracepoint fix]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: <stable@vger.kernel.org> [3.13+ containing 0cbef29a78]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch makes do_mincore() use walk_page_vma(), which reduces many
lines of code by using common page table walk code.
[daeseok.youn@gmail.com: remove unneeded variable 'err']
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Daeseok Youn <daeseok.youn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
walk_page_range() silently skips vma having VM_PFNMAP set, which leads to
undesirable behaviour at client end (who called walk_page_range). For
example for pagemap_read(), when no callbacks are called against VM_PFNMAP
vma, pagemap_read() may prepare pagemap data for next virtual address
range at wrong index. That could confuse and/or break userspace
applications.
This patch avoid this misbehavior caused by vma(VM_PFNMAP) like follows:
- for pagemap_read() which has its own ->pte_hole(), call the ->pte_hole()
over vma(VM_PFNMAP),
- for clear_refs and queue_pages which have their own ->tests_walk,
just return 1 and skip vma(VM_PFNMAP). This is no problem because
these are not interested in hole regions,
- for other callers, just skip the vma(VM_PFNMAP) as a default behavior.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Shiraz Hashim <shashim@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
queue_pages_range() does page table walking in its own way now, but there
is some code duplicate. This patch applies page table walker to reduce
lines of code.
queue_pages_range() has to do some precheck to determine whether we really
walk over the vma or just skip it. Now we have test_walk() callback in
mm_walk for this purpose, so we can do this replacement cleanly.
queue_pages_test_walk() depends on not only the current vma but also the
previous one, so queue_pages->prev is introduced to remember it.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pagewalk.c can handle vma in itself, so we don't have to pass vma via
walk->private. And both of mem_cgroup_count_precharge() and
mem_cgroup_move_charge() do for each vma loop themselves, but now it's
done in pagewalk.c, so let's clean up them.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce walk_page_vma(), which is useful for the callers which want to
walk over a given vma. It's used by later patches.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Current implementation of page table walker has a fundamental problem in
vma handling, which started when we tried to handle vma(VM_HUGETLB).
Because it's done in pgd loop, considering vma boundary makes code
complicated and bug-prone.
From the users viewpoint, some user checks some vma-related condition to
determine whether the user really does page walk over the vma.
In order to solve these, this patch moves vma check outside pgd loop and
introduce a new callback ->test_walk().
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently no user of page table walker sets ->pgd_entry() or
->pud_entry(), so checking their existence in each loop is just wasting
CPU cycle. So let's remove it to reduce overhead.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This allows those get_user_pages calls to pass FAULT_FLAG_ALLOW_RETRY to
the page fault in order to release the mmap_sem during the I/O.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Peter Feiner <pfeiner@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This allows the get_user_pages_fast slow path to release the mmap_sem
before blocking.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Peter Feiner <pfeiner@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some callers (like KVM) may want to set the gup_flags like FOLL_HWPOSION
to get a proper -EHWPOSION retval instead of -EFAULT to take a more
appropriate action if get_user_pages runs into a memory failure.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Peter Feiner <pfeiner@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
FAULT_FOLL_ALLOW_RETRY allows the page fault to drop the mmap_sem for
reading to reduce the mmap_sem contention (for writing), like while
waiting for I/O completion. The problem is that right now practically no
get_user_pages call uses FAULT_FOLL_ALLOW_RETRY, so we're not leveraging
that nifty feature.
Andres fixed it for the KVM page fault. However get_user_pages_fast
remains uncovered, and 99% of other get_user_pages aren't using it either
(the only exception being FOLL_NOWAIT in KVM which is really nonblocking
and in fact it doesn't even release the mmap_sem).
So this patchsets extends the optimization Andres did in the KVM page
fault to the whole kernel. It makes most important places (including
gup_fast) to use FAULT_FOLL_ALLOW_RETRY to reduce the mmap_sem hold times
during I/O.
The only few places that remains uncovered are drivers like v4l and other
exceptions that tends to work on their own memory and they're not working
on random user memory (for example like O_DIRECT that uses gup_fast and is
fully covered by this patch).
A follow up patch should probably also add a printk_once warning to
get_user_pages that should go obsolete and be phased out eventually. The
"vmas" parameter of get_user_pages makes it fundamentally incompatible
with FAULT_FOLL_ALLOW_RETRY (vmas array becomes meaningless the moment the
mmap_sem is released).
While this is just an optimization, this becomes an absolute requirement
for the userfaultfd feature http://lwn.net/Articles/615086/ .
The userfaultfd allows to block the page fault, and in order to do so I
need to drop the mmap_sem first. So this patch also ensures that all
memory where userfaultfd could be registered by KVM, the very first fault
(no matter if it is a regular page fault, or a get_user_pages) always has
FAULT_FOLL_ALLOW_RETRY set. Then the userfaultfd blocks and it is waken
only when the pagetable is already mapped. The second fault attempt after
the wakeup doesn't need FAULT_FOLL_ALLOW_RETRY, so it's ok to retry
without it.
This patch (of 5):
We can leverage the VM_FAULT_RETRY functionality in the page fault paths
better by using either get_user_pages_locked or get_user_pages_unlocked.
The former allows conversion of get_user_pages invocations that will have
to pass a "&locked" parameter to know if the mmap_sem was dropped during
the call. Example from:
down_read(&mm->mmap_sem);
do_something()
get_user_pages(tsk, mm, ..., pages, NULL);
up_read(&mm->mmap_sem);
to:
int locked = 1;
down_read(&mm->mmap_sem);
do_something()
get_user_pages_locked(tsk, mm, ..., pages, &locked);
if (locked)
up_read(&mm->mmap_sem);
The latter is suitable only as a drop in replacement of the form:
down_read(&mm->mmap_sem);
get_user_pages(tsk, mm, ..., pages, NULL);
up_read(&mm->mmap_sem);
into:
get_user_pages_unlocked(tsk, mm, ..., pages);
Where tsk, mm, the intermediate "..." paramters and "pages" can be any
value as before. Just the last parameter of get_user_pages (vmas) must be
NULL for get_user_pages_locked|unlocked to be usable (the latter original
form wouldn't have been safe anyway if vmas wasn't null, for the former we
just make it explicit by dropping the parameter).
If vmas is not NULL these two methods cannot be used.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Andres Lagar-Cavilla <andreslc@google.com>
Reviewed-by: Peter Feiner <pfeiner@google.com>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The previous commit ("mm/thp: Allocate transparent hugepages on local
node") introduced alloc_hugepage_vma() to mm/mempolicy.c to perform a
special policy for THP allocations. The function has the same interface
as alloc_pages_vma(), shares a lot of boilerplate code and a long
comment.
This patch merges the hugepage special case into alloc_pages_vma. The
extra if condition should be cheap enough price to pay. We also prevent
a (however unlikely) race with parallel mems_allowed update, which could
make hugepage allocation restart only within the fallback call to
alloc_hugepage_vma() and not reconsider the special rule in
alloc_hugepage_vma().
Also by making sure mpol_cond_put(pol) is always called before actual
allocation attempt, we can use a single exit path within the function.
Also update the comment for missing node parameter and obsolete reference
to mm_sem.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This make sure that we try to allocate hugepages from local node if
allowed by mempolicy. If we can't, we fallback to small page allocation
based on mempolicy. This is based on the observation that allocating
pages on local node is more beneficial than allocating hugepages on remote
node.
With this patch applied we may find transparent huge page allocation
failures if the current node doesn't have enough freee hugepages. Before
this patch such failures result in us retrying the allocation on other
nodes in the numa node mask.
[akpm@linux-foundation.org: fix comment, add CONFIG_TRANSPARENT_HUGEPAGE dependency]
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Compaction deferring logic is heavy hammer that block the way to the
compaction. It doesn't consider overall system state, so it could prevent
user from doing compaction falsely. In other words, even if system has
enough range of memory to compact, compaction would be skipped due to
compaction deferring logic. This patch add new tracepoint to understand
work of deferring logic. This will also help to check compaction success
and fail.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is not well analyzed that when/why compaction start/finish or not.
With these new tracepoints, we can know much more about start/finish
reason of compaction. I can find following bug with these tracepoint.
http://www.spinics.net/lists/linux-mm/msg81582.html
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It'd be useful to know current range where compaction work for detailed
analysis. With it, we can know pageblock where we actually scan and
isolate, and, how much pages we try in that pageblock and can guess why it
doesn't become freepage with pageblock order roughly.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We now have tracepoint for begin event of compaction and it prints start
position of both scanners, but, tracepoint for end event of compaction
doesn't print finish position of both scanners. It'd be also useful to
know finish position of both scanners so this patch add it. It will help
to find odd behavior or problem on compaction internal logic.
And mode is added to both begin/end tracepoint output, since according to
mode, compaction behavior is quite different.
And lastly, status format is changed to string rather than status number
for readability.
[akpm@linux-foundation.org: fix sparse warning]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Helper account_page_redirty() fixes dirty pages counter for redirtied
pages. This patch puts it after dirtying and prevents temporary
underflows of dirtied pages counters on zone/bdi and current->nr_dirtied.
Signed-off-by: Konstantin Khebnikov <khlebnikov@yandex-team.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The problem is that we check nr_ptes/nr_pmds in exit_mmap() which happens
*before* pgd_free(). And if an arch does pte/pmd allocation in
pgd_alloc() and frees them in pgd_free() we see offset in counters by the
time of the checks.
We tried to workaround this by offsetting expected counter value according
to FIRST_USER_ADDRESS for both nr_pte and nr_pmd in exit_mmap(). But it
doesn't work in some cases:
1. ARM with LPAE enabled also has non-zero USER_PGTABLES_CEILING, but
upper addresses occupied with huge pmd entries, so the trick with
offsetting expected counter value will get really ugly: we will have
to apply it nr_pmds, but not nr_ptes.
2. Metag has non-zero FIRST_USER_ADDRESS, but doesn't do allocation
pte/pmd page tables allocation in pgd_alloc(), just setup a pgd entry
which is allocated at boot and shared accross all processes.
The proposal is to move the check to check_mm() which happens *after*
pgd_free() and do proper accounting during pgd_alloc() and pgd_free()
which would bring counters to zero if nothing leaked.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Tyler Baker <tyler.baker@linaro.org>
Tested-by: Tyler Baker <tyler.baker@linaro.org>
Tested-by: Nishanth Menon <nm@ti.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Dave noticed that unprivileged process can allocate significant amount of
memory -- >500 MiB on x86_64 -- and stay unnoticed by oom-killer and
memory cgroup. The trick is to allocate a lot of PMD page tables. Linux
kernel doesn't account PMD tables to the process, only PTE.
The use-cases below use few tricks to allocate a lot of PMD page tables
while keeping VmRSS and VmPTE low. oom_score for the process will be 0.
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/prctl.h>
#define PUD_SIZE (1UL << 30)
#define PMD_SIZE (1UL << 21)
#define NR_PUD 130000
int main(void)
{
char *addr = NULL;
unsigned long i;
prctl(PR_SET_THP_DISABLE);
for (i = 0; i < NR_PUD ; i++) {
addr = mmap(addr + PUD_SIZE, PUD_SIZE, PROT_WRITE|PROT_READ,
MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
if (addr == MAP_FAILED) {
perror("mmap");
break;
}
*addr = 'x';
munmap(addr, PMD_SIZE);
mmap(addr, PMD_SIZE, PROT_WRITE|PROT_READ,
MAP_ANONYMOUS|MAP_PRIVATE|MAP_FIXED, -1, 0);
if (addr == MAP_FAILED)
perror("re-mmap"), exit(1);
}
printf("PID %d consumed %lu KiB in PMD page tables\n",
getpid(), i * 4096 >> 10);
return pause();
}
The patch addresses the issue by account PMD tables to the process the
same way we account PTE.
The main place where PMD tables is accounted is __pmd_alloc() and
free_pmd_range(). But there're few corner cases:
- HugeTLB can share PMD page tables. The patch handles by accounting
the table to all processes who share it.
- x86 PAE pre-allocates few PMD tables on fork.
- Architectures with FIRST_USER_ADDRESS > 0. We need to adjust sanity
check on exit(2).
Accounting only happens on configuration where PMD page table's level is
present (PMD is not folded). As with nr_ptes we use per-mm counter. The
counter value is used to calculate baseline for badness score by
oom-killer.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Reviewed-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: David Rientjes <rientjes@google.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The swap controller code is scattered all over the file. Gather all
the code that isn't directly needed by the memory controller at the
end of the file in its own CONFIG_MEMCG_SWAP section.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The initialization code for the per-cpu charge stock and the soft
limit tree is compact enough to inline it into mem_cgroup_init().
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- No need to test the node for N_MEMORY. node_online() is enough for
node fallback to work in slab, use NUMA_NO_NODE for everything else.
- Remove the BUG_ON() for allocation failure. A NULL pointer crash is
just as descriptive, and the absent return value check is obvious.
- Move local variables to the inner-most blocks.
- Point to the tree structure after its initialized, not before, it's
just more logical that way.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The totalcma_pages variable is not updated to account for CMA regions
defined via device tree reserved-memory sub-nodes. Fix this omission by
moving the calculation of totalcma_pages into cma_init_reserved_mem()
instead of cma_declare_contiguous() such that it will include reserved
memory used by all CMA regions.
Signed-off-by: George G. Davis <george_davis@mentor.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 5695be142e ("OOM, PM: OOM killed task shouldn't escape PM
suspend") has left a race window when OOM killer manages to
note_oom_kill after freeze_processes checks the counter. The race
window is quite small and really unlikely and partial solution deemed
sufficient at the time of submission.
Tejun wasn't happy about this partial solution though and insisted on a
full solution. That requires the full OOM and freezer's task freezing
exclusion, though. This is done by this patch which introduces oom_sem
RW lock and turns oom_killer_disable() into a full OOM barrier.
oom_killer_disabled check is moved from the allocation path to the OOM
level and we take oom_sem for reading for both the check and the whole
OOM invocation.
oom_killer_disable() takes oom_sem for writing so it waits for all
currently running OOM killer invocations. Then it disable all the further
OOMs by setting oom_killer_disabled and checks for any oom victims.
Victims are counted via mark_tsk_oom_victim resp. unmark_oom_victim. The
last victim wakes up all waiters enqueued by oom_killer_disable().
Therefore this function acts as the full OOM barrier.
The page fault path is covered now as well although it was assumed to be
safe before. As per Tejun, "We used to have freezing points deep in file
system code which may be reacheable from page fault." so it would be
better and more robust to not rely on freezing points here. Same applies
to the memcg OOM killer.
out_of_memory tells the caller whether the OOM was allowed to trigger and
the callers are supposed to handle the situation. The page allocation
path simply fails the allocation same as before. The page fault path will
retry the fault (more on that later) and Sysrq OOM trigger will simply
complain to the log.
Normally there wouldn't be any unfrozen user tasks after
try_to_freeze_tasks so the function will not block. But if there was an
OOM killer racing with try_to_freeze_tasks and the OOM victim didn't
finish yet then we have to wait for it. This should complete in a finite
time, though, because
- the victim cannot loop in the page fault handler (it would die
on the way out from the exception)
- it cannot loop in the page allocator because all the further
allocation would fail and __GFP_NOFAIL allocations are not
acceptable at this stage
- it shouldn't be blocked on any locks held by frozen tasks
(try_to_freeze expects lockless context) and kernel threads and
work queues are not frozen yet
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Suggested-by: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
oom_kill_process only sets TIF_MEMDIE flag and sends a signal to the
victim. This is basically noop when the task is frozen though because the
task sleeps in the uninterruptible sleep. The victim is eventually thawed
later when oom_scan_process_thread meets the task again in a later OOM
invocation so the OOM killer doesn't live lock. But this is less than
optimal.
Let's add __thaw_task into mark_tsk_oom_victim after we set TIF_MEMDIE to
the victim. We are not checking whether the task is frozen because that
would be racy and __thaw_task does that already. oom_scan_process_thread
doesn't need to care about freezer anymore as TIF_MEMDIE and freezer are
excluded completely now.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patchset addresses a race which was described in the changelog for
5695be142e ("OOM, PM: OOM killed task shouldn't escape PM suspend"):
: PM freezer relies on having all tasks frozen by the time devices are
: getting frozen so that no task will touch them while they are getting
: frozen. But OOM killer is allowed to kill an already frozen task in order
: to handle OOM situtation. In order to protect from late wake ups OOM
: killer is disabled after all tasks are frozen. This, however, still keeps
: a window open when a killed task didn't manage to die by the time
: freeze_processes finishes.
The original patch hasn't closed the race window completely because that
would require a more complex solution as it can be seen by this patchset.
The primary motivation was to close the race condition between OOM killer
and PM freezer _completely_. As Tejun pointed out, even though the race
condition is unlikely the harder it would be to debug weird bugs deep in
the PM freezer when the debugging options are reduced considerably. I can
only speculate what might happen when a task is still runnable
unexpectedly.
On a plus side and as a side effect the oom enable/disable has a better
(full barrier) semantic without polluting hot paths.
I have tested the series in KVM with 100M RAM:
- many small tasks (20M anon mmap) which are triggering OOM continually
- s2ram which resumes automatically is triggered in a loop
echo processors > /sys/power/pm_test
while true
do
echo mem > /sys/power/state
sleep 1s
done
- simple module which allocates and frees 20M in 8K chunks. If it sees
freezing(current) then it tries another round of allocation before calling
try_to_freeze
- debugging messages of PM stages and OOM killer enable/disable/fail added
and unmark_oom_victim is delayed by 1s after it clears TIF_MEMDIE and before
it wakes up waiters.
- rebased on top of the current mmotm which means some necessary updates
in mm/oom_kill.c. mark_tsk_oom_victim is now called under task_lock but
I think this should be OK because __thaw_task shouldn't interfere with any
locking down wake_up_process. Oleg?
As expected there are no OOM killed tasks after oom is disabled and
allocations requested by the kernel thread are failing after all the tasks
are frozen and OOM disabled. I wasn't able to catch a race where
oom_killer_disable would really have to wait but I kinda expected the race
is really unlikely.
[ 242.609330] Killed process 2992 (mem_eater) total-vm:24412kB, anon-rss:2164kB, file-rss:4kB
[ 243.628071] Unmarking 2992 OOM victim. oom_victims: 1
[ 243.636072] (elapsed 2.837 seconds) done.
[ 243.641985] Trying to disable OOM killer
[ 243.643032] Waiting for concurent OOM victims
[ 243.644342] OOM killer disabled
[ 243.645447] Freezing remaining freezable tasks ... (elapsed 0.005 seconds) done.
[ 243.652983] Suspending console(s) (use no_console_suspend to debug)
[ 243.903299] kmem_eater: page allocation failure: order:1, mode:0x204010
[...]
[ 243.992600] PM: suspend of devices complete after 336.667 msecs
[ 243.993264] PM: late suspend of devices complete after 0.660 msecs
[ 243.994713] PM: noirq suspend of devices complete after 1.446 msecs
[ 243.994717] ACPI: Preparing to enter system sleep state S3
[ 243.994795] PM: Saving platform NVS memory
[ 243.994796] Disabling non-boot CPUs ...
The first 2 patches are simple cleanups for OOM. They should go in
regardless the rest IMO.
Patches 3 and 4 are trivial printk -> pr_info conversion and they should
go in ditto.
The main patch is the last one and I would appreciate acks from Tejun and
Rafael. I think the OOM part should be OK (except for __thaw_task vs.
task_lock where a look from Oleg would appreciated) but I am not so sure I
haven't screwed anything in the freezer code. I have found several
surprises there.
This patch (of 5):
This patch is just a preparatory and it doesn't introduce any functional
change.
Note:
I am utterly unhappy about lowmemory killer abusing TIF_MEMDIE just to
wait for the oom victim and to prevent from new killing. This is
just a side effect of the flag. The primary meaning is to give the oom
victim access to the memory reserves and that shouldn't be necessary
here.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Turn the move type enum into flags and give the flags field a shorter
name. Once that is done, move_anon() and move_file() are simple enough to
just fold them into the callsites.
[akpm@linux-foundation.org: tweak MOVE_MASK definition, per Michal]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce the basic control files to account, partition, and limit
memory using cgroups in default hierarchy mode.
This interface versioning allows us to address fundamental design
issues in the existing memory cgroup interface, further explained
below. The old interface will be maintained indefinitely, but a
clearer model and improved workload performance should encourage
existing users to switch over to the new one eventually.
The control files are thus:
- memory.current shows the current consumption of the cgroup and its
descendants, in bytes.
- memory.low configures the lower end of the cgroup's expected
memory consumption range. The kernel considers memory below that
boundary to be a reserve - the minimum that the workload needs in
order to make forward progress - and generally avoids reclaiming
it, unless there is an imminent risk of entering an OOM situation.
- memory.high configures the upper end of the cgroup's expected
memory consumption range. A cgroup whose consumption grows beyond
this threshold is forced into direct reclaim, to work off the
excess and to throttle new allocations heavily, but is generally
allowed to continue and the OOM killer is not invoked.
- memory.max configures the hard maximum amount of memory that the
cgroup is allowed to consume before the OOM killer is invoked.
- memory.events shows event counters that indicate how often the
cgroup was reclaimed while below memory.low, how often it was
forced to reclaim excess beyond memory.high, how often it hit
memory.max, and how often it entered OOM due to memory.max. This
allows users to identify configuration problems when observing a
degradation in workload performance. An overcommitted system will
have an increased rate of low boundary breaches, whereas increased
rates of high limit breaches, maximum hits, or even OOM situations
will indicate internally overcommitted cgroups.
For existing users of memory cgroups, the following deviations from
the current interface are worth pointing out and explaining:
- The original lower boundary, the soft limit, is defined as a limit
that is per default unset. As a result, the set of cgroups that
global reclaim prefers is opt-in, rather than opt-out. The costs
for optimizing these mostly negative lookups are so high that the
implementation, despite its enormous size, does not even provide
the basic desirable behavior. First off, the soft limit has no
hierarchical meaning. All configured groups are organized in a
global rbtree and treated like equal peers, regardless where they
are located in the hierarchy. This makes subtree delegation
impossible. Second, the soft limit reclaim pass is so aggressive
that it not just introduces high allocation latencies into the
system, but also impacts system performance due to overreclaim, to
the point where the feature becomes self-defeating.
The memory.low boundary on the other hand is a top-down allocated
reserve. A cgroup enjoys reclaim protection when it and all its
ancestors are below their low boundaries, which makes delegation
of subtrees possible. Secondly, new cgroups have no reserve per
default and in the common case most cgroups are eligible for the
preferred reclaim pass. This allows the new low boundary to be
efficiently implemented with just a minor addition to the generic
reclaim code, without the need for out-of-band data structures and
reclaim passes. Because the generic reclaim code considers all
cgroups except for the ones running low in the preferred first
reclaim pass, overreclaim of individual groups is eliminated as
well, resulting in much better overall workload performance.
- The original high boundary, the hard limit, is defined as a strict
limit that can not budge, even if the OOM killer has to be called.
But this generally goes against the goal of making the most out of
the available memory. The memory consumption of workloads varies
during runtime, and that requires users to overcommit. But doing
that with a strict upper limit requires either a fairly accurate
prediction of the working set size or adding slack to the limit.
Since working set size estimation is hard and error prone, and
getting it wrong results in OOM kills, most users tend to err on
the side of a looser limit and end up wasting precious resources.
The memory.high boundary on the other hand can be set much more
conservatively. When hit, it throttles allocations by forcing
them into direct reclaim to work off the excess, but it never
invokes the OOM killer. As a result, a high boundary that is
chosen too aggressively will not terminate the processes, but
instead it will lead to gradual performance degradation. The user
can monitor this and make corrections until the minimal memory
footprint that still gives acceptable performance is found.
In extreme cases, with many concurrent allocations and a complete
breakdown of reclaim progress within the group, the high boundary
can be exceeded. But even then it's mostly better to satisfy the
allocation from the slack available in other groups or the rest of
the system than killing the group. Otherwise, memory.max is there
to limit this type of spillover and ultimately contain buggy or
even malicious applications.
- The original control file names are unwieldy and inconsistent in
many different ways. For example, the upper boundary hit count is
exported in the memory.failcnt file, but an OOM event count has to
be manually counted by listening to memory.oom_control events, and
lower boundary / soft limit events have to be counted by first
setting a threshold for that value and then counting those events.
Also, usage and limit files encode their units in the filename.
That makes the filenames very long, even though this is not
information that a user needs to be reminded of every time they
type out those names.
To address these naming issues, as well as to signal clearly that
the new interface carries a new configuration model, the naming
conventions in it necessarily differ from the old interface.
- The original limit files indicate the state of an unset limit with
a very high number, and a configured limit can be unset by echoing
-1 into those files. But that very high number is implementation
and architecture dependent and not very descriptive. And while -1
can be understood as an underflow into the highest possible value,
-2 or -10M etc. do not work, so it's not inconsistent.
memory.low, memory.high, and memory.max will use the string
"infinity" to indicate and set the highest possible value.
[akpm@linux-foundation.org: use seq_puts() for basic strings]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The unified hierarchy interface for memory cgroups will no longer use "-1"
to mean maximum possible resource value. In preparation for this, make
the string an argument and let the caller supply it.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Especially on 32 bit kernels memory node ranges are printed with 32 bit
wide addresses only. Use u64 types and %llx specifiers to print full
width of addresses.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use BUILD_BUG_ON() to compile assert that memcg string tables are in sync
with corresponding enums. There aren't currently any issues with these
tables. This is just defensive.
Signed-off-by: Greg Thelen <gthelen@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit b2052564e6 ("mm: memcontrol: continue cache reclaim from
offlined groups") pages charged to a memory cgroup are not reparented when
the cgroup is removed. Instead, they are supposed to be reclaimed in a
regular way, along with pages accounted to online memory cgroups.
However, an lruvec of an offline memory cgroup will sooner or later get so
small that it will be scanned only at low scan priorities (see
get_scan_count()). Therefore, if there are enough reclaimable pages in
big lruvecs, pages accounted to offline memory cgroups will never be
scanned at all, wasting memory.
Fix this by unconditionally forcing scanning dead lruvecs from kswapd.
[akpm@linux-foundation.org: fix build]
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Although it was not called, destroy_compound_page() did some potentially
useful checks. Let's re-introduce them in free_pages_prepare(), where
they can be actually triggered when CONFIG_DEBUG_VM=y.
compound_order() assert is already in free_pages_prepare(). We have few
checks for tail pages left.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The only caller is __free_one_page(). By the time we should have
page->flags to be cleared already:
- for 0-order pages though PCP list:
free_hot_cold_page()
free_pages_prepare()
free_pages_check()
page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
<put the page to PCP list>
free_pcppages_bulk()
page = <withdraw pages from PCP list>
__free_one_page(page)
- for non-0-order pages:
__free_pages_ok()
free_pages_prepare()
free_pages_check()
page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
free_one_page()
__free_one_page()
So there's no way PageCompound() will return true in __free_one_page().
Let's remove dead destroy_compound_page() and put assert for page->flags
there instead.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
next_zones_zonelist() returns a zoneref pointer, as well as a zone pointer
via extra parameter. Since the latter can be trivially obtained by
dereferencing the former, the overhead of the extra parameter is
unjustified.
This patch thus removes the zone parameter from next_zones_zonelist().
Both callers happen to be in the same header file, so it's simple to add
the zoneref dereference inline. We save some bytes of code size.
add/remove: 0/0 grow/shrink: 0/3 up/down: 0/-105 (-105)
function old new delta
nr_free_zone_pages 129 115 -14
__alloc_pages_nodemask 2300 2285 -15
get_page_from_freelist 2652 2576 -76
add/remove: 0/0 grow/shrink: 1/0 up/down: 10/0 (10)
function old new delta
try_to_compact_pages 569 579 +10
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Expand the usage of the struct alloc_context introduced in the previous
patch also for calling try_to_compact_pages(), to reduce the number of its
parameters. Since the function is in different compilation unit, we need
to move alloc_context definition in the shared mm/internal.h header.
With this change we get simpler code and small savings of code size and stack
usage:
add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-27 (-27)
function old new delta
__alloc_pages_direct_compact 283 256 -27
add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-13 (-13)
function old new delta
try_to_compact_pages 582 569 -13
Stack usage of __alloc_pages_direct_compact goes from 24 to none (per
scripts/checkstack.pl).
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce struct alloc_context to accumulate the numerous parameters
passed between the alloc_pages* family of functions and
get_page_from_freelist(). This excludes gfp_flags and alloc_info, which
mutate too much along the way, and allocation order, which is conceptually
different.
The result is shorter function signatures, as well as overal code size and
stack usage reductions.
bloat-o-meter:
add/remove: 0/0 grow/shrink: 1/2 up/down: 127/-310 (-183)
function old new delta
get_page_from_freelist 2525 2652 +127
__alloc_pages_direct_compact 329 283 -46
__alloc_pages_nodemask 2564 2300 -264
checkstack.pl:
function old new
__alloc_pages_nodemask 248 200
get_page_from_freelist 168 184
__alloc_pages_direct_compact 40 24
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The possibility of replacing the numerous parameters of alloc_pages*
functions with a single structure has been discussed when Minchan proposed
to expand the x86 kernel stack [1]. This series implements the change,
along with few more cleanups/microoptimizations.
The series is based on next-20150108 and I used gcc 4.8.3 20140627 on
openSUSE 13.2 for compiling. Config includess NUMA and COMPACTION.
The core change is the introduction of a new struct alloc_context, which looks
like this:
struct alloc_context {
struct zonelist *zonelist;
nodemask_t *nodemask;
struct zone *preferred_zone;
int classzone_idx;
int migratetype;
enum zone_type high_zoneidx;
};
All the contents is mostly constant, except that __alloc_pages_slowpath()
changes preferred_zone, classzone_idx and potentially zonelist. But
that's not a problem in case control returns to retry_cpuset: in
__alloc_pages_nodemask(), those will be reset to initial values again
(although it's a bit subtle). On the other hand, gfp_flags and alloc_info
mutate so much that it doesn't make sense to put them into alloc_context.
Still, the result is one parameter instead of up to 7. This is all in
Patch 2.
Patch 3 is a step to expand alloc_context usage out of page_alloc.c
itself. The function try_to_compact_pages() can also much benefit from
the parameter reduction, but it means the struct definition has to be
moved to a shared header.
Patch 1 should IMHO be included even if the rest is deemed not useful
enough. It improves maintainability and also has some code/stack
reduction. Patch 4 is OTOH a tiny optimization.
Overall bloat-o-meter results:
add/remove: 0/0 grow/shrink: 0/4 up/down: 0/-460 (-460)
function old new delta
nr_free_zone_pages 129 115 -14
__alloc_pages_direct_compact 329 256 -73
get_page_from_freelist 2670 2576 -94
__alloc_pages_nodemask 2564 2285 -279
try_to_compact_pages 582 579 -3
Overall stack sizes per ./scripts/checkstack.pl:
old new delta
get_page_from_freelist: 184 184 0
__alloc_pages_nodemask 248 200 -48
__alloc_pages_direct_c 40 - -40
try_to_compact_pages 72 72 0
-88
[1] http://marc.info/?l=linux-mm&m=140142462528257&w=2
This patch (of 4):
prep_new_page() sets almost everything in the struct page of the page
being allocated, except page->pfmemalloc. This is not obvious and has at
least once led to a bug where page->pfmemalloc was forgotten to be set
correctly, see commit 8fb74b9fb2 ("mm: compaction: partially revert
capture of suitable high-order page").
This patch moves the pfmemalloc setting to prep_new_page(), which means it
needs to gain alloc_flags parameter. The call to prep_new_page is moved
from buffered_rmqueue() to get_page_from_freelist(), which also leads to
simpler code. An obsolete comment for buffered_rmqueue() is replaced.
In addition to better maintainability there is a small reduction of code
and stack usage for get_page_from_freelist(), which inlines the other
functions involved.
add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-145 (-145)
function old new delta
get_page_from_freelist 2670 2525 -145
Stack usage is reduced from 184 to 168 bytes.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If __unmap_hugepage_range() tries to unmap the address range over which
hugepage migration is on the way, we get the wrong page because pte_page()
doesn't work for migration entries. This patch simply clears the pte for
migration entries as we do for hwpoison entries.
Fixes: 290408d4a2 ("hugetlb: hugepage migration core")
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: <stable@vger.kernel.org> [2.6.36+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a race condition between hugepage migration and
change_protection(), where hugetlb_change_protection() doesn't care about
migration entries and wrongly overwrites them. That causes unexpected
results like kernel crash. HWPoison entries also can cause the same
problem.
This patch adds is_hugetlb_entry_(migration|hwpoisoned) check in this
function to do proper actions.
Fixes: 290408d4a2 ("hugetlb: hugepage migration core")
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: <stable@vger.kernel.org> [2.6.36+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When running the test which causes the race as shown in the previous patch,
we can hit the BUG "get_page() on refcount 0 page" in hugetlb_fault().
This race happens when pte turns into migration entry just after the first
check of is_hugetlb_entry_migration() in hugetlb_fault() passed with false.
To fix this, we need to check pte_present() again after huge_ptep_get().
This patch also reorders taking ptl and doing pte_page(), because
pte_page() should be done in ptl. Due to this reordering, we need use
trylock_page() in page != pagecache_page case to respect locking order.
Fixes: 66aebce747 ("hugetlb: fix race condition in hugetlb_fault()")
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: <stable@vger.kernel.org> [3.2+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have a race condition between move_pages() and freeing hugepages, where
move_pages() calls follow_page(FOLL_GET) for hugepages internally and
tries to get its refcount without preventing concurrent freeing. This
race crashes the kernel, so this patch fixes it by moving FOLL_GET code
for hugepages into follow_huge_pmd() with taking the page table lock.
This patch intentionally removes page==NULL check after pte_page.
This is justified because pte_page() never returns NULL for any
architectures or configurations.
This patch changes the behavior of follow_huge_pmd() for tail pages and
then tail pages can be pinned/returned. So the caller must be changed to
properly handle the returned tail pages.
We could have a choice to add the similar locking to
follow_huge_(addr|pud) for consistency, but it's not necessary because
currently these functions don't support FOLL_GET flag, so let's leave it
for future development.
Here is the reproducer:
$ cat movepages.c
#include <stdio.h>
#include <stdlib.h>
#include <numaif.h>
#define ADDR_INPUT 0x700000000000UL
#define HPS 0x200000
#define PS 0x1000
int main(int argc, char *argv[]) {
int i;
int nr_hp = strtol(argv[1], NULL, 0);
int nr_p = nr_hp * HPS / PS;
int ret;
void **addrs;
int *status;
int *nodes;
pid_t pid;
pid = strtol(argv[2], NULL, 0);
addrs = malloc(sizeof(char *) * nr_p + 1);
status = malloc(sizeof(char *) * nr_p + 1);
nodes = malloc(sizeof(char *) * nr_p + 1);
while (1) {
for (i = 0; i < nr_p; i++) {
addrs[i] = (void *)ADDR_INPUT + i * PS;
nodes[i] = 1;
status[i] = 0;
}
ret = numa_move_pages(pid, nr_p, addrs, nodes, status,
MPOL_MF_MOVE_ALL);
if (ret == -1)
err("move_pages");
for (i = 0; i < nr_p; i++) {
addrs[i] = (void *)ADDR_INPUT + i * PS;
nodes[i] = 0;
status[i] = 0;
}
ret = numa_move_pages(pid, nr_p, addrs, nodes, status,
MPOL_MF_MOVE_ALL);
if (ret == -1)
err("move_pages");
}
return 0;
}
$ cat hugepage.c
#include <stdio.h>
#include <sys/mman.h>
#include <string.h>
#define ADDR_INPUT 0x700000000000UL
#define HPS 0x200000
int main(int argc, char *argv[]) {
int nr_hp = strtol(argv[1], NULL, 0);
char *p;
while (1) {
p = mmap((void *)ADDR_INPUT, nr_hp * HPS, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB, -1, 0);
if (p != (void *)ADDR_INPUT) {
perror("mmap");
break;
}
memset(p, 0, nr_hp * HPS);
munmap(p, nr_hp * HPS);
}
}
$ sysctl vm.nr_hugepages=40
$ ./hugepage 10 &
$ ./movepages 10 $(pgrep -f hugepage)
Fixes: e632a938d9 ("mm: migrate: add hugepage migration code to move_pages()")
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Hugh Dickins <hughd@google.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: <stable@vger.kernel.org> [3.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Migrating hugepages and hwpoisoned hugepages are considered as non-present
hugepages, and they are referenced via migration entries and hwpoison
entries in their page table slots.
This behavior causes race condition because pmd_huge() doesn't tell
non-huge pages from migrating/hwpoisoned hugepages. follow_page_mask() is
one example where the kernel would call follow_page_pte() for such
hugepage while this function is supposed to handle only normal pages.
To avoid this, this patch makes pmd_huge() return true when pmd_none() is
true *and* pmd_present() is false. We don't have to worry about mixing up
non-present pmd entry with normal pmd (pointing to leaf level pte entry)
because pmd_present() is true in normal pmd.
The same race condition could happen in (x86-specific) gup_pmd_range(),
where this patch simply adds pmd_present() check instead of pmd_huge().
This is because gup_pmd_range() is fast path. If we have non-present
hugepage in this function, we will go into gup_huge_pmd(), then return 0
at flag mask check, and finally fall back to the slow path.
Fixes: 290408d4a2 ("hugetlb: hugepage migration core")
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: <stable@vger.kernel.org> [2.6.36+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we have many duplicates in definitions around
follow_huge_addr(), follow_huge_pmd(), and follow_huge_pud(), so this
patch tries to remove the m. The basic idea is to put the default
implementation for these functions in mm/hugetlb.c as weak symbols
(regardless of CONFIG_ARCH_WANT_GENERAL_HUGETL B), and to implement
arch-specific code only when the arch needs it.
For follow_huge_addr(), only powerpc and ia64 have their own
implementation, and in all other architectures this function just returns
ERR_PTR(-EINVAL). So this patch sets returning ERR_PTR(-EINVAL) as
default.
As for follow_huge_(pmd|pud)(), if (pmd|pud)_huge() is implemented to
always return 0 in your architecture (like in ia64 or sparc,) it's never
called (the callsite is optimized away) no matter how implemented it is.
So in such architectures, we don't need arch-specific implementation.
In some architecture (like mips, s390 and tile,) their current
arch-specific follow_huge_(pmd|pud)() are effectively identical with the
common code, so this patch lets these architecture use the common code.
One exception is metag, where pmd_huge() could return non-zero but it
expects follow_huge_pmd() to always return NULL. This means that we need
arch-specific implementation which returns NULL. This behavior looks
strange to me (because non-zero pmd_huge() implies that the architecture
supports PMD-based hugepage, so follow_huge_pmd() can/should return some
relevant value,) but that's beyond this cleanup patch, so let's keep it.
Justification of non-trivial changes:
- in s390, follow_huge_pmd() checks !MACHINE_HAS_HPAGE at first, and this
patch removes the check. This is OK because we can assume MACHINE_HAS_HPAGE
is true when follow_huge_pmd() can be called (note that pmd_huge() has
the same check and always returns 0 for !MACHINE_HAS_HPAGE.)
- in s390 and mips, we use HPAGE_MASK instead of PMD_MASK as done in common
code. This patch forces these archs use PMD_MASK, but it's OK because
they are identical in both archs.
In s390, both of HPAGE_SHIFT and PMD_SHIFT are 20.
In mips, HPAGE_SHIFT is defined as (PAGE_SHIFT + PAGE_SHIFT - 3) and
PMD_SHIFT is define as (PAGE_SHIFT + PAGE_SHIFT + PTE_ORDER - 3), but
PTE_ORDER is always 0, so these are identical.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Steve Capper <steve.capper@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kswapd in balance_pgdate() currently uses wake_up() on processes waiting
in throttle_direct_reclaim(), which only wakes up a single process. This
might leave processes waiting for longer than necessary, until the check
is reached in the next loop iteration. Processes might also be left
waiting if zone was fully balanced in single iteration. Note that the
comment in balance_pgdat() also says "Wake them", so waking up a single
process does not seem intentional.
Thus, replace wake_up() with wake_up_all().
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now kmemcheck_pagealloc_alloc() is only called by __alloc_pages_slowpath().
__alloc_pages_nodemask()
__alloc_pages_slowpath()
kmemcheck_pagealloc_alloc()
And the page will not be tracked by kmemcheck in the following path.
__alloc_pages_nodemask()
get_page_from_freelist()
So move kmemcheck_pagealloc_alloc() into __alloc_pages_nodemask(),
like this:
__alloc_pages_nodemask()
...
get_page_from_freelist()
if (!page)
__alloc_pages_slowpath()
kmemcheck_pagealloc_alloc()
...
Signed-off-by: Xishi Qiu <qiuxishi@huawei.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Li Zefan <lizefan@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__alloc_pages_nodemask() strips __GFP_IO when retrying the page
allocation. But it does this by altering the function-wide variable
gfp_mask. This will cause subsequent allocation attempts to inadvertently
use the modified gfp_mask.
Also, pass the correct mask (the mask we actually used) into
trace_mm_page_alloc().
Cc: Ming Lei <ming.lei@canonical.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The complexity of memcg page stat synchronization is currently leaking
into the callsites, forcing them to keep track of the move_lock state and
the IRQ flags. Simplify the API by tracking it in the memcg.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The body of this function was removed by commit 0a31bc97c8 ("mm:
memcontrol: rewrite uncharge API").
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
OOM killer tries to exclude tasks which do not have mm_struct associated
because killing such a task wouldn't help much. The OOM victim gets
TIF_MEMDIE set to disable OOM killer while the current victim releases the
memory and then enables the OOM killer again by dropping the flag.
oom_kill_process is currently prone to a race condition when the OOM
victim is already exiting and TIF_MEMDIE is set after the task releases
its address space. This might theoretically lead to OOM livelock if the
OOM victim blocks on an allocation later during exiting because it
wouldn't kill any other process and the exiting one won't be able to exit.
The situation is highly unlikely because the OOM victim is expected to
release some memory which should help to sort out OOM situation.
Fix this by checking task->mm and setting TIF_MEMDIE flag under task_lock
which will serialize the OOM killer with exit_mm which sets task->mm to
NULL. Setting the flag for current is not necessary because check and set
is not racy.
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
out_of_memory() doesn't trigger the OOM killer if the current task is
already exiting or it has fatal signals pending, and gives the task
access to memory reserves instead. However, doing so is wrong if
out_of_memory() is called by an allocation (e.g. from exit_task_work())
after the current task has already released its memory and cleared
TIF_MEMDIE at exit_mm(). If we again set TIF_MEMDIE to post-exit_mm()
current task, the OOM killer will be blocked by the task sitting in the
final schedule() waiting for its parent to reap it. It will trigger an
OOM livelock if its parent is unable to reap it due to doing an
allocation and waiting for the OOM killer to kill it.
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add KPF_ZERO_PAGE flag for zero_page, so that userspace processes can
detect zero_page in /proc/kpageflags, and then do memory analysis more
accurately.
Signed-off-by: Yalin Wang <yalin.wang@sonymobile.com>
Acked-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull trivial tree changes from Jiri Kosina:
"Patches from trivial.git that keep the world turning around.
Mostly documentation and comment fixes, and a two corner-case code
fixes from Alan Cox"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial:
kexec, Kconfig: spell "architecture" properly
mm: fix cleancache debugfs directory path
blackfin: mach-common: ints-priority: remove unused function
doubletalk: probe failure causes OOPS
ARM: cache-l2x0.c: Make it clear that cache-l2x0 handles L310 cache controller
msdos_fs.h: fix 'fields' in comment
scsi: aic7xxx: fix comment
ARM: l2c: fix comment
ibmraid: fix writeable attribute with no store method
dynamic_debug: fix comment
doc: usbmon: fix spelling s/unpriviledged/unprivileged/
x86: init_mem_mapping(): use capital BIOS in comment
Merge misc updates from Andrew Morton:
"Bite-sized chunks this time, to avoid the MTA ratelimiting woes.
- fs/notify updates
- ocfs2
- some of MM"
That laconic "some MM" is mainly the removal of remap_file_pages(),
which is a big simplification of the VM, and which gets rid of a *lot*
of random cruft and special cases because we no longer support the
non-linear mappings that it used.
From a user interface perspective, nothing has changed, because the
remap_file_pages() syscall still exists, it's just done by emulating the
old behavior by creating a lot of individual small mappings instead of
one non-linear one.
The emulation is slower than the old "native" non-linear mappings, but
nobody really uses or cares about remap_file_pages(), and simplifying
the VM is a big advantage.
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (78 commits)
memcg: zap memcg_slab_caches and memcg_slab_mutex
memcg: zap memcg_name argument of memcg_create_kmem_cache
memcg: zap __memcg_{charge,uncharge}_slab
mm/page_alloc.c: place zone_id check before VM_BUG_ON_PAGE check
mm: hugetlb: fix type of hugetlb_treat_as_movable variable
mm, hugetlb: remove unnecessary lower bound on sysctl handlers"?
mm: memory: merge shared-writable dirtying branches in do_wp_page()
mm: memory: remove ->vm_file check on shared writable vmas
xtensa: drop _PAGE_FILE and pte_file()-related helpers
x86: drop _PAGE_FILE and pte_file()-related helpers
unicore32: drop pte_file()-related helpers
um: drop _PAGE_FILE and pte_file()-related helpers
tile: drop pte_file()-related helpers
sparc: drop pte_file()-related helpers
sh: drop _PAGE_FILE and pte_file()-related helpers
score: drop _PAGE_FILE and pte_file()-related helpers
s390: drop pte_file()-related helpers
parisc: drop _PAGE_FILE and pte_file()-related helpers
openrisc: drop _PAGE_FILE and pte_file()-related helpers
nios2: drop _PAGE_FILE and pte_file()-related helpers
...
mem_cgroup->memcg_slab_caches is a list of kmem caches corresponding to
the given cgroup. Currently, it is only used on css free in order to
destroy all caches corresponding to the memory cgroup being freed. The
list is protected by memcg_slab_mutex. The mutex is also used to protect
kmem_cache->memcg_params->memcg_caches arrays and synchronizes
kmem_cache_destroy vs memcg_unregister_all_caches.
However, we can perfectly get on without these two. To destroy all caches
corresponding to a memory cgroup, we can walk over the global list of kmem
caches, slab_caches, and we can do all the synchronization stuff using the
slab_mutex instead of the memcg_slab_mutex. This patch therefore gets rid
of the memcg_slab_caches and memcg_slab_mutex.
Apart from this nice cleanup, it also:
- assures that rcu_barrier() is called once at max when a root cache is
destroyed or a memory cgroup is freed, no matter how many caches have
SLAB_DESTROY_BY_RCU flag set;
- fixes the race between kmem_cache_destroy and kmem_cache_create that
exists, because memcg_cleanup_cache_params, which is called from
kmem_cache_destroy after checking that kmem_cache->refcount=0,
releases the slab_mutex, which gives kmem_cache_create a chance to
make an alias to a cache doomed to be destroyed.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of passing the name of the memory cgroup which the cache is
created for in the memcg_name_argument, let's obtain it immediately in
memcg_create_kmem_cache.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
They are simple wrappers around memcg_{charge,uncharge}_kmem, so let's
zap them and call these functions directly.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the freeing page and its buddy page are not at the same zone, the
current holding zone->lock for the freeing page cann't prevent buddy page
getting allocated, this could trigger VM_BUG_ON_PAGE in page_is_buddy() at
a very tiny chance, such as:
cpu 0: cpu 1:
hold zone_1 lock
check page and it buddy
PageBuddy(buddy) is true hold zone_2 lock
page_order(buddy) == order is true alloc buddy
trigger VM_BUG_ON_PAGE(page_count(buddy) != 0)
zone_1->lock prevents the freeing page getting allocated
zone_2->lock prevents the buddy page getting allocated
they are not the same zone->lock.
If we can't remove the zone_id check statement, it's better handle this
rare race. This patch fixes this by placing the zone_id check before the
VM_BUG_ON_PAGE check.
Signed-off-by: Weijie Yang <weijie.yang@samsung.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Whether there is a vm_ops->page_mkwrite or not, the page dirtying is
pretty much the same. Make sure the page references are the same in both
cases, then merge the two branches.
It's tempting to go even further and page-lock the !page_mkwrite case, to
get it in line with everybody else setting the page table and thus further
simplify the model. But that's not quite compelling enough to justify
dropping the pte lock, then relocking and verifying the entry for
filesystems without ->page_mkwrite, which notably includes tmpfs. Leave
it for now and lock the page late in the !page_mkwrite case.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Shared anonymous mmaps are implemented with shmem files, so all VMAs with
shared writable semantics also have an underlying backing file.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
One bit in ->vm_flags is unused now!
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After removing vma->shared.nonlinear we have only one member of
vma->shared union, which doesn't make much sense.
This patch drops the union and move struct vma->shared.linear to
vma->shared.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We don't create non-linear mappings anymore. Let's drop code which
handles them in rmap.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We don't create non-linear mappings anymore. Let's drop code which
handles them on page fault.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>