IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEESH4wyp42V4tXvYsjUqAMR0iAlPIFAmORzikACgkQUqAMR0iA
lPKF/g/7Bmcao3rJkZjEagsYY+s7rGhaFaSbML8FDdyE3UzeXLJOnNxBLrD0JIe9
XFW7+DMqr2uRxsab5C7APy0mrIWp/zCGyJ8CmBILnrPDNcAQ27OhFzxv6WlMUmEc
xEjGHrk5dFV96s63gyHGLkKGOZMd/cfcpy/QDOyg0vfF8EZCiPywWMbQQ2Ij8E50
N6UL70ExkoLjT9tzb8NXQiaDqHxqNRvd15aIomDjRrce7eeaL4TaZIT7fKnEcULz
0Lmdo8RUknonCI7Y00RWdVXMqqPD2JsKz3+fh0vBnXEN+aItwyxis/YajtN+m6l7
jhPGt7hNhCKG17auK0/6XVJ3717QwjI3+xLXCvayA8jyewMK14PgzX70hCws0eXM
+5M+IeXI4ze5qsq+ln9Dt8zfC+5HGmwXODUtaYTBWhB4nVWdL/CZ+nTv349zt+Uc
VIi/QcPQ4vq6EfsxUZR2r6Y12+sSH40iLIROUfqSchtujbLo7qxSNF5x7x9+rtff
nWuXo5OsjGE7TZDwn3kr0zSuJ+w/pkWMYQ7jch+A2WqUMYyGC86sL3At7ocL+Esq
34uvzwEgWnNySV8cLiMh34kBmgBwhAP34RhV0RS9iCv8kev2DV7pLQTs9V3QAjw9
EZnFDHATUdikgugaFKCeDV86R3wFgnRWWOdlRrRi6aAzFDqNcYk=
=1PTZ
-----END PGP SIGNATURE-----
Merge tag 'printk-for-6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/printk/linux
Pull printk updates from Petr Mladek:
- Add NMI-safe SRCU reader API. It uses atomic_inc() instead of
this_cpu_inc() on strong load-store architectures.
- Introduce new console_list_lock to synchronize a manipulation of the
list of registered consoles and their flags.
This is a first step in removing the big-kernel-lock-like behavior of
console_lock(). This semaphore still serializes console->write()
calbacks against:
- each other. It primary prevents potential races between early
and proper console drivers using the same device.
- suspend()/resume() callbacks and init() operations in some
drivers.
- various other operations in the tty/vt and framebufer
susbsystems. It is likely that console_lock() serializes even
operations that are not directly conflicting with the
console->write() callbacks here. This is the most complicated
big-kernel-lock aspect of the console_lock() that will be hard
to untangle.
- Introduce new console_srcu lock that is used to safely iterate and
access the registered console drivers under SRCU read lock.
This is a prerequisite for introducing atomic console drivers and
console kthreads. It will reduce the complexity of serialization
against normal consoles and console_lock(). Also it should remove the
risk of deadlock during critical situations, like Oops or panic, when
only atomic consoles are registered.
- Check whether the console is registered instead of enabled on many
locations. It was a historical leftover.
- Cleanly force a preferred console in xenfb code instead of a dirty
hack.
- A lot of code and comment clean ups and improvements.
* tag 'printk-for-6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/printk/linux: (47 commits)
printk: htmldocs: add missing description
tty: serial: sh-sci: use setup() callback for early console
printk: relieve console_lock of list synchronization duties
tty: serial: kgdboc: use console_list_lock to trap exit
tty: serial: kgdboc: synchronize tty_find_polling_driver() and register_console()
tty: serial: kgdboc: use console_list_lock for list traversal
tty: serial: kgdboc: use srcu console list iterator
proc: consoles: use console_list_lock for list iteration
tty: tty_io: use console_list_lock for list synchronization
printk, xen: fbfront: create/use safe function for forcing preferred
netconsole: avoid CON_ENABLED misuse to track registration
usb: early: xhci-dbc: use console_is_registered()
tty: serial: xilinx_uartps: use console_is_registered()
tty: serial: samsung_tty: use console_is_registered()
tty: serial: pic32_uart: use console_is_registered()
tty: serial: earlycon: use console_is_registered()
tty: hvc: use console_is_registered()
efi: earlycon: use console_is_registered()
tty: nfcon: use console_is_registered()
serial_core: replace uart_console_enabled() with uart_console_registered()
...
- Reporting improvements and return path fixes (Guilherme G. Piccoli,
Wang Yufen, Kees Cook).
- Clean up kmsg_bytes module parameter usage (Guilherme G. Piccoli).
- Add Guilherme to pstore MAINTAINERS entry.
- Choose friendlier allocation flags (Qiujun Huang, Stephen Boyd).
-----BEGIN PGP SIGNATURE-----
iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAmOOi3cWHGtlZXNjb29r
QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJm8QD/901WcETCGFZlkWKsXLym8123rr
Y87WifzKuI3cTf1oYTtG7zrYBTWMaFYEiPZBltcy0nEbLlUs0YtYukNlkykEt9S4
CWmyxV7DDFn2sZ/HluPhKvsIZlzcHtW1o5dzxoJadRMN06pjnAFZOHkktpuVniVN
0IXDOOTTEEBxh11BjbD7UrilnYR6BA9kXGKcZTd6Oo/GmO8EkpzXGnVxLRr6U1/i
qwxhOZGgVzhFuCogQvOo1VQ0DcJ8l5u3h1UIS3b9vQD/oZlpe4brVGCoD5CGugwQ
1IpqqiBsLrsXIBtqbtg02MMgSy1bELgyLgb5jHRClfuuEiwcxw1GvAy6JzS78Uye
5g3eiKh3oVkF9/TojSVMAzD3ObAukH4hBo4y98Jy+X2PYvSzUn/WpW0itnxFIaou
MqZZeYn2Xz7AMXQ5N3WF3fJLjscKoCT2D0WyyiNOqoWAaYSHeZcILXUGltT+Zjtz
vyvEhLlzQ+avh6Tx0NOKrnIA91nemuW0TYjtGlKx4X8uBvEmt+cFaKd0oZ2M8grB
l+B2iRxVMlIrMk63mzy+qISVzLN73XCdmhcpPw60Gqin7TyIOGJ6JvZ3viq9Col7
os5ii4MZyoerDM0bsdmPQlUq8bn0DMDUV+4kGAiZwczPkB1oigxn37ksDHMNbwRu
jrFtb+v5Vazmb5Lafg==
=EsLr
-----END PGP SIGNATURE-----
Merge tag 'pstore-v6.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull pstore updates from Kees Cook:
"A small collection of bug fixes, refactorings, and general
improvements:
- Reporting improvements and return path fixes (Guilherme G. Piccoli,
Wang Yufen, Kees Cook)
- Clean up kmsg_bytes module parameter usage (Guilherme G. Piccoli)
- Add Guilherme to pstore MAINTAINERS entry
- Choose friendlier allocation flags (Qiujun Huang, Stephen Boyd)"
* tag 'pstore-v6.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
pstore: Avoid kcore oops by vmap()ing with VM_IOREMAP
pstore/ram: Fix error return code in ramoops_probe()
pstore: Alert on backend write error
MAINTAINERS: Update pstore maintainers
pstore/ram: Set freed addresses to NULL
pstore/ram: Move internal definitions out of kernel-wide include
pstore/ram: Move pmsg init earlier
pstore/ram: Consolidate kfree() paths
efi: pstore: Follow convention for the efi-pstore backend name
pstore: Inform unregistered backend names as well
pstore: Expose kmsg_bytes as a module parameter
pstore: Improve error reporting in case of backend overlap
pstore/zone: Use GFP_ATOMIC to allocate zone buffer
The CON_ENABLED status of a console is a runtime setting that does not
involve the console driver. Drivers must not assume that if the console
is disabled then proper hardware management is not needed. For the EFI
earlycon case, it is about remapping/unmapping memory for the
framebuffer.
Use console_is_registered() instead of checking CON_ENABLED.
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20221116162152.193147-25-john.ogness@linutronix.de
Ampere Altra machines are reported to misbehave when the SetTime() EFI
runtime service is called after ExitBootServices() but before calling
SetVirtualAddressMap(). Given that the latter is horrid, pointless and
explicitly documented as optional by the EFI spec, we no longer invoke
it at boot if the configured size of the VA space guarantees that the
EFI runtime memory regions can remain mapped 1:1 like they are at boot
time.
On Ampere Altra machines, this results in SetTime() calls issued by the
rtc-efi driver triggering synchronous exceptions during boot. We can
now recover from those without bringing down the system entirely, due to
commit 23715a26c8d81291 ("arm64: efi: Recover from synchronous
exceptions occurring in firmware"). However, it would be better to avoid
the issue entirely, given that the firmware appears to remain in a funny
state after this.
So attempt to identify these machines based on the 'family' field in the
type #1 SMBIOS record, and call SetVirtualAddressMap() unconditionally
in that case.
Tested-by: Alexandru Elisei <alexandru.elisei@gmail.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Commit 8a254d90a775 ("efi: efivars: Fix variable writes without
query_variable_store()") addressed an issue that was introduced during
the EFI variable store refactor, where alternative implementations of
the efivars layer that lacked query_variable_store() would no longer
work.
Unfortunately, there is another case to consider here, which was missed:
if the efivars layer is backed by the EFI runtime services as usual, but
the EFI implementation predates the introduction of QueryVariableInfo(),
we will return EFI_UNSUPPORTED, and this is no longer being dealt with
correctly.
So let's fix this, and while at it, clean up the code a bit, by merging
the check_var_size() routines as well as their callers.
Cc: <stable@vger.kernel.org> # v6.0
Fixes: bbc6d2c6ef22 ("efi: vars: Switch to new wrapper layer")
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Tested-by: Aditya Garg <gargaditya08@live.com>
EFI runtime services data is guaranteed to be preserved by the OS,
making it a suitable candidate for the EFI random seed table, which may
be passed to kexec kernels as well (after refreshing the seed), and so
we need to ensure that the memory is preserved without support from the
OS itself.
However, runtime services data is intended for allocations that are
relevant to the implementations of the runtime services themselves, and
so they are unmapped from the kernel linear map, and mapped into the EFI
page tables that are active while runtime service invocations are in
progress. None of this is needed for the RNG seed.
So let's switch to EFI 'ACPI reclaim' memory: in spite of the name,
there is nothing exclusively ACPI about it, it is simply a type of
allocation that carries firmware provided data which may or may not be
relevant to the OS, and it is left up to the OS to decide whether to
reclaim it after having consumed its contents.
Given that in Linux, we never reclaim these allocations, it is a good
choice for the EFI RNG seed, as the allocation is guaranteed to survive
kexec reboots.
One additional reason for changing this now is to align it with the
upcoming recommendation for EFI bootloader provided RNG seeds, which
must not use EFI runtime services code/data allocations.
Cc: <stable@vger.kernel.org> # v4.14+
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Ilias Apalodimas <ilias.apalodimas@linaro.org>
We no longer need at least 64 bytes of random seed to permit the early
crng init to complete. The RNG is now based on Blake2s, so reduce the
EFI seed size to the Blake2s hash size, which is sufficient for our
purposes.
While at it, drop the READ_ONCE(), which was supposed to prevent size
from being evaluated after seed was unmapped. However, this cannot
actually happen, so READ_ONCE() is unnecessary here.
Cc: <stable@vger.kernel.org> # v4.14+
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Jason A. Donenfeld <Jason@zx2c4.com>
Acked-by: Ilias Apalodimas <ilias.apalodimas@linaro.org>
memblock_reserve() expects a physical address, but the address being
passed for the TPM final events log is what was returned from
early_memremap(). This results in something like the following:
[ 0.000000] memblock_reserve: [0xffffffffff2c0000-0xffffffffff2c00e4] efi_tpm_eventlog_init+0x324/0x370
Pass the address from efi like what is done for the TPM events log.
Fixes: c46f3405692d ("tpm: Reserve the TPM final events table")
Cc: Matthew Garrett <mjg59@google.com>
Cc: Jarkko Sakkinen <jarkko@kernel.org>
Cc: Bartosz Szczepanek <bsz@semihalf.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Jerry Snitselaar <jsnitsel@redhat.com>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The generic EFI stub can be instructed to avoid SetVirtualAddressMap(),
and simply run with the firmware's 1:1 mapping. In this case, it
populates the virtual address fields of the runtime regions in the
memory map with the physical address of each region, so that the mapping
code has to be none the wiser. Only if SetVirtualAddressMap() fails, the
virtual addresses are wiped and the kernel code knows that the regions
cannot be mapped.
However, wiping amounts to setting it to zero, and if a runtime region
happens to live at physical address 0, its valid 1:1 mapped virtual
address could be mistaken for a wiped field, resulting on loss of access
to the EFI services at runtime.
So let's only assume that VA == 0 means 'no runtime services' if the
region in question does not live at PA 0x0.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The linker script symbol definition that captures the size of the
compressed payload inside the zboot decompressor (which is exposed via
the image header) refers to '.' for the end of the region, which does
not give the correct result as the expression is not placed at the end
of the payload. So use the symbol name explicitly.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
To stop the bots from sending sparse warnings to me and the list about
efi_main() not having a prototype, decorate it with asmlinkage so that
it is clear that it is called from assembly, and therefore needs to
remain external, even if it is never declared in a header file.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Commit bbc6d2c6ef22 ("efi: vars: Switch to new wrapper layer")
refactored the efivars layer so that the 'business logic' related to
which UEFI variables affect the boot flow in which way could be moved
out of it, and into the efivarfs driver.
This inadvertently broke setting variables on firmware implementations
that lack the QueryVariableInfo() boot service, because we no longer
tolerate a EFI_UNSUPPORTED result from check_var_size() when calling
efivar_entry_set_get_size(), which now ends up calling check_var_size()
a second time inadvertently.
If QueryVariableInfo() is missing, we support writes of up to 64k -
let's move that logic into check_var_size(), and drop the redundant
call.
Cc: <stable@vger.kernel.org> # v6.0
Fixes: bbc6d2c6ef22 ("efi: vars: Switch to new wrapper layer")
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Amadeusz reports KASAN use-after-free errors introduced by commit
3881ee0b1edc ("efi: avoid efivars layer when loading SSDTs from
variables"). The problem appears to be that the memory that holds the
new ACPI table is now freed unconditionally, instead of only when the
ACPI core reported a failure to load the table.
So let's fix this, by omitting the kfree() on success.
Cc: <stable@vger.kernel.org> # v6.0
Link: https://lore.kernel.org/all/a101a10a-4fbb-5fae-2e3c-76cf96ed8fbd@linux.intel.com/
Fixes: 3881ee0b1edc ("efi: avoid efivars layer when loading SSDTs from variables")
Reported-by: Amadeusz Sławiński <amadeuszx.slawinski@linux.intel.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The zboot decompressor series introduced a feature to sign the PE/COFF
kernel image for secure boot as part of the kernel build. This was
necessary because there are actually two images that need to be signed:
the kernel with the EFI stub attached, and the decompressor application.
This is a bit of a burden, because it means that the images must be
signed on the the same system that performs the build, and this is not
realistic for distros.
During the next cycle, we will introduce changes to the zboot code so
that the inner image no longer needs to be signed. This means that the
outer PE/COFF image can be handled as usual, and be signed later in the
release process.
Let's remove the associated Kconfig options now so that they don't end
up in a LTS release while already being deprecated.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
For some reason, the efi-pstore backend name (exposed through the
pstore infrastructure) is hardcoded as "efi", whereas all the other
backends follow a kind of convention in using the module name.
Let's do it here as well, to make user's life easier (they might
use this info for unloading the module backend, for example).
Cc: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Guilherme G. Piccoli <gpiccoli@igalia.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20221006224212.569555-8-gpiccoli@igalia.com
linux-next for a couple of months without, to my knowledge, any negative
reports (or any positive ones, come to that).
- Also the Maple Tree from Liam R. Howlett. An overlapping range-based
tree for vmas. It it apparently slight more efficient in its own right,
but is mainly targeted at enabling work to reduce mmap_lock contention.
Liam has identified a number of other tree users in the kernel which
could be beneficially onverted to mapletrees.
Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat
(https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com).
This has yet to be addressed due to Liam's unfortunately timed
vacation. He is now back and we'll get this fixed up.
- Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses
clang-generated instrumentation to detect used-unintialized bugs down to
the single bit level.
KMSAN keeps finding bugs. New ones, as well as the legacy ones.
- Yang Shi adds a userspace mechanism (madvise) to induce a collapse of
memory into THPs.
- Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to support
file/shmem-backed pages.
- userfaultfd updates from Axel Rasmussen
- zsmalloc cleanups from Alexey Romanov
- cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and memory-failure
- Huang Ying adds enhancements to NUMA balancing memory tiering mode's
page promotion, with a new way of detecting hot pages.
- memcg updates from Shakeel Butt: charging optimizations and reduced
memory consumption.
- memcg cleanups from Kairui Song.
- memcg fixes and cleanups from Johannes Weiner.
- Vishal Moola provides more folio conversions
- Zhang Yi removed ll_rw_block() :(
- migration enhancements from Peter Xu
- migration error-path bugfixes from Huang Ying
- Aneesh Kumar added ability for a device driver to alter the memory
tiering promotion paths. For optimizations by PMEM drivers, DRM
drivers, etc.
- vma merging improvements from Jakub Matěn.
- NUMA hinting cleanups from David Hildenbrand.
- xu xin added aditional userspace visibility into KSM merging activity.
- THP & KSM code consolidation from Qi Zheng.
- more folio work from Matthew Wilcox.
- KASAN updates from Andrey Konovalov.
- DAMON cleanups from Kaixu Xia.
- DAMON work from SeongJae Park: fixes, cleanups.
- hugetlb sysfs cleanups from Muchun Song.
- Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core.
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY0HaPgAKCRDdBJ7gKXxA
joPjAQDZ5LlRCMWZ1oxLP2NOTp6nm63q9PWcGnmY50FjD/dNlwEAnx7OejCLWGWf
bbTuk6U2+TKgJa4X7+pbbejeoqnt5QU=
=xfWx
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Yu Zhao's Multi-Gen LRU patches are here. They've been under test in
linux-next for a couple of months without, to my knowledge, any
negative reports (or any positive ones, come to that).
- Also the Maple Tree from Liam Howlett. An overlapping range-based
tree for vmas. It it apparently slightly more efficient in its own
right, but is mainly targeted at enabling work to reduce mmap_lock
contention.
Liam has identified a number of other tree users in the kernel which
could be beneficially onverted to mapletrees.
Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat
at [1]. This has yet to be addressed due to Liam's unfortunately
timed vacation. He is now back and we'll get this fixed up.
- Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses
clang-generated instrumentation to detect used-unintialized bugs down
to the single bit level.
KMSAN keeps finding bugs. New ones, as well as the legacy ones.
- Yang Shi adds a userspace mechanism (madvise) to induce a collapse of
memory into THPs.
- Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to
support file/shmem-backed pages.
- userfaultfd updates from Axel Rasmussen
- zsmalloc cleanups from Alexey Romanov
- cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and
memory-failure
- Huang Ying adds enhancements to NUMA balancing memory tiering mode's
page promotion, with a new way of detecting hot pages.
- memcg updates from Shakeel Butt: charging optimizations and reduced
memory consumption.
- memcg cleanups from Kairui Song.
- memcg fixes and cleanups from Johannes Weiner.
- Vishal Moola provides more folio conversions
- Zhang Yi removed ll_rw_block() :(
- migration enhancements from Peter Xu
- migration error-path bugfixes from Huang Ying
- Aneesh Kumar added ability for a device driver to alter the memory
tiering promotion paths. For optimizations by PMEM drivers, DRM
drivers, etc.
- vma merging improvements from Jakub Matěn.
- NUMA hinting cleanups from David Hildenbrand.
- xu xin added aditional userspace visibility into KSM merging
activity.
- THP & KSM code consolidation from Qi Zheng.
- more folio work from Matthew Wilcox.
- KASAN updates from Andrey Konovalov.
- DAMON cleanups from Kaixu Xia.
- DAMON work from SeongJae Park: fixes, cleanups.
- hugetlb sysfs cleanups from Muchun Song.
- Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core.
Link: https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com [1]
* tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (555 commits)
hugetlb: allocate vma lock for all sharable vmas
hugetlb: take hugetlb vma_lock when clearing vma_lock->vma pointer
hugetlb: fix vma lock handling during split vma and range unmapping
mglru: mm/vmscan.c: fix imprecise comments
mm/mglru: don't sync disk for each aging cycle
mm: memcontrol: drop dead CONFIG_MEMCG_SWAP config symbol
mm: memcontrol: use do_memsw_account() in a few more places
mm: memcontrol: deprecate swapaccounting=0 mode
mm: memcontrol: don't allocate cgroup swap arrays when memcg is disabled
mm/secretmem: remove reduntant return value
mm/hugetlb: add available_huge_pages() func
mm: remove unused inline functions from include/linux/mm_inline.h
selftests/vm: add selftest for MADV_COLLAPSE of uffd-minor memory
selftests/vm: add file/shmem MADV_COLLAPSE selftest for cleared pmd
selftests/vm: add thp collapse shmem testing
selftests/vm: add thp collapse file and tmpfs testing
selftests/vm: modularize thp collapse memory operations
selftests/vm: dedup THP helpers
mm/khugepaged: add tracepoint to hpage_collapse_scan_file()
mm/madvise: add file and shmem support to MADV_COLLAPSE
...
- implement EFI boot support for LoongArch
- implement generic EFI compressed boot support for arm64, RISC-V and
LoongArch, none of which implement a decompressor today
- measure the kernel command line into the TPM if measured boot is in
effect
- refactor the EFI stub code in order to isolate DT dependencies for
architectures other than x86
- avoid calling SetVirtualAddressMap() on arm64 if the configured size
of the VA space guarantees that doing so is unnecessary
- move some ARM specific code out of the generic EFI source files
- unmap kernel code from the x86 mixed mode 1:1 page tables
-----BEGIN PGP SIGNATURE-----
iQGzBAABCgAdFiEE+9lifEBpyUIVN1cpw08iOZLZjyQFAmM5mfEACgkQw08iOZLZ
jySnJwv9G2nBheSlK9bbWKvCpnDvVIExtlL+mg1wB64oxPrGiWRgjxeyA9+92bT0
Y6jYfKbGOGKnxkEJQl19ik6C3JfEwtGm4SnOVp4+osFeDRB7lFemfcIYN5dqz111
wkZA/Y15rnz3tZeGaXnq2jMoFuccQDXPJtOlqbdVqFQ5Py6YT92uMyuI079pN0T+
GSu7VVOX+SBsv4nGaUKIpSVwAP0gXkS/7s7CTf47QiR2+j8WMTlQEYZVjOKZjMJZ
/7hXY2/mduxnuVuT7cfx0mpZKEryUREJoBL5nDzjTnlhLb5X8cHKiaE1lx0aJ//G
JYTR8lDklJZl/7RUw/IW/YodcKcofr3F36NMzWB5vzM+KHOOpv4qEZhoGnaXv94u
auqhzYA83heaRjz7OISlk6kgFxdlIRE1VdrkEBXSlQeCQUv1woS+ZNVGYcKqgR0B
48b31Ogm2A0pAuba89+U9lz/n33lhIDtYvJqLO6AAPLGiVacD9ZdapN5kMftVg/1
SfhFqNzy
=d8Ps
-----END PGP SIGNATURE-----
Merge tag 'efi-next-for-v6.1' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi
Pull EFI updates from Ard Biesheuvel:
"A bit more going on than usual in the EFI subsystem. The main driver
for this has been the introduction of the LoonArch architecture last
cycle, which inspired some cleanup and refactoring of the EFI code.
Another driver for EFI changes this cycle and in the future is
confidential compute.
The LoongArch architecture does not use either struct bootparams or DT
natively [yet], and so passing information between the EFI stub and
the core kernel using either of those is undesirable. And in general,
overloading DT has been a source of issues on arm64, so using DT for
this on new architectures is a to avoid for the time being (even if we
might converge on something DT based for non-x86 architectures in the
future). For this reason, in addition to the patch that enables EFI
boot for LoongArch, there are a number of refactoring patches applied
on top of which separate the DT bits from the generic EFI stub bits.
These changes are on a separate topich branch that has been shared
with the LoongArch maintainers, who will include it in their pull
request as well. This is not ideal, but the best way to manage the
conflicts without stalling LoongArch for another cycle.
Another development inspired by LoongArch is the newly added support
for EFI based decompressors. Instead of adding yet another
arch-specific incarnation of this pattern for LoongArch, we are
introducing an EFI app based on the existing EFI libstub
infrastructure that encapulates the decompression code we use on other
architectures, but in a way that is fully generic. This has been
developed and tested in collaboration with distro and systemd folks,
who are eager to start using this for systemd-boot and also for arm64
secure boot on Fedora. Note that the EFI zimage files this introduces
can also be decompressed by non-EFI bootloaders if needed, as the
image header describes the location of the payload inside the image,
and the type of compression that was used. (Note that Fedora's arm64
GRUB is buggy [0] so you'll need a recent version or switch to
systemd-boot in order to use this.)
Finally, we are adding TPM measurement of the kernel command line
provided by EFI. There is an oversight in the TCG spec which results
in a blind spot for command line arguments passed to loaded images,
which means that either the loader or the stub needs to take the
measurement. Given the combinatorial explosion I am anticipating when
it comes to firmware/bootloader stacks and firmware based attestation
protocols (SEV-SNP, TDX, DICE, DRTM), it is good to set a baseline now
when it comes to EFI measured boot, which is that the kernel measures
the initrd and command line. Intermediate loaders can measure
additional assets if needed, but with the baseline in place, we can
deploy measured boot in a meaningful way even if you boot into Linux
straight from the EFI firmware.
Summary:
- implement EFI boot support for LoongArch
- implement generic EFI compressed boot support for arm64, RISC-V and
LoongArch, none of which implement a decompressor today
- measure the kernel command line into the TPM if measured boot is in
effect
- refactor the EFI stub code in order to isolate DT dependencies for
architectures other than x86
- avoid calling SetVirtualAddressMap() on arm64 if the configured
size of the VA space guarantees that doing so is unnecessary
- move some ARM specific code out of the generic EFI source files
- unmap kernel code from the x86 mixed mode 1:1 page tables"
* tag 'efi-next-for-v6.1' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi: (24 commits)
efi/arm64: libstub: avoid SetVirtualAddressMap() when possible
efi: zboot: create MemoryMapped() device path for the parent if needed
efi: libstub: fix up the last remaining open coded boot service call
efi/arm: libstub: move ARM specific code out of generic routines
efi/libstub: measure EFI LoadOptions
efi/libstub: refactor the initrd measuring functions
efi/loongarch: libstub: remove dependency on flattened DT
efi: libstub: install boot-time memory map as config table
efi: libstub: remove DT dependency from generic stub
efi: libstub: unify initrd loading between architectures
efi: libstub: remove pointless goto kludge
efi: libstub: simplify efi_get_memory_map() and struct efi_boot_memmap
efi: libstub: avoid efi_get_memory_map() for allocating the virt map
efi: libstub: drop pointless get_memory_map() call
efi: libstub: fix type confusion for load_options_size
arm64: efi: enable generic EFI compressed boot
loongarch: efi: enable generic EFI compressed boot
riscv: efi: enable generic EFI compressed boot
efi/libstub: implement generic EFI zboot
efi/libstub: move efi_system_table global var into separate object
...
- arm64 perf: DDR PMU driver for Alibaba's T-Head Yitian 710 SoC, SVE
vector granule register added to the user regs together with SVE perf
extensions documentation.
- SVE updates: add HWCAP for SVE EBF16, update the SVE ABI documentation
to match the actual kernel behaviour (zeroing the registers on syscall
rather than "zeroed or preserved" previously).
- More conversions to automatic system registers generation.
- vDSO: use self-synchronising virtual counter access in gettimeofday()
if the architecture supports it.
- arm64 stacktrace cleanups and improvements.
- arm64 atomics improvements: always inline assembly, remove LL/SC
trampolines.
- Improve the reporting of EL1 exceptions: rework BTI and FPAC exception
handling, better EL1 undefs reporting.
- Cortex-A510 erratum 2658417: remove BF16 support due to incorrect
result.
- arm64 defconfig updates: build CoreSight as a module, enable options
necessary for docker, memory hotplug/hotremove, enable all PMUs
provided by Arm.
- arm64 ptrace() support for TPIDR2_EL0 (register provided with the SME
extensions).
- arm64 ftraces updates/fixes: fix module PLTs with mcount, remove
unused function.
- kselftest updates for arm64: simple HWCAP validation, FP stress test
improvements, validation of ZA regs in signal handlers, include larger
SVE and SME vector lengths in signal tests, various cleanups.
- arm64 alternatives (code patching) improvements to robustness and
consistency: replace cpucap static branches with equivalent
alternatives, associate callback alternatives with a cpucap.
- Miscellaneous updates: optimise kprobe performance of patching
single-step slots, simplify uaccess_mask_ptr(), move MTE registers
initialisation to C, support huge vmalloc() mappings, run softirqs on
the per-CPU IRQ stack, compat (arm32) misalignment fixups for
multiword accesses.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmM9W4cACgkQa9axLQDI
XvEy3w/+LJ3KCFowWiz5gTAWikjv+UVssHjLMJixn47V7hsEFQ26Xnam/438rTMI
kE95u6DHUpw2SMIxKzFRO7oI5cQtP+cWGwTtOUnjVO+U1oN+HqDOIbO9DbylWDcU
eeeqMMmawMfTPuZrYklpOhXscsorbrKIvYBg7wHYOcwBYV3EPhWr89lwMvTVRuyJ
qpX628KlkGMaBcONNhv3nS3qZcAOs0oHQCAVS4C8czLDL+vtJlumXUS3xr1Mqm72
xtFe7sje8Djr2kZ8mzh0GbFiZEBoBD3F/l7ayq8gVRaVpToUt8sk36Stjs4LojF1
6imuAfji/5TItkScq5KhGqj6MIugwp/eUVbRN74OLNTYx7msF1ZADNFQ+Q0UuY0H
SYK13KvmOji0xjS8qAfhqrwNB79sk3fb+zF9LjETbdz4ZJCgg9gcFbSUTY0DvMfS
MXZk/jVeB07olA8xYbjh0BRt4UV9xU628FPQzK5k7e4Nzl4jSvgtJZCZanfuVtjy
/ZS1vbN8o7tQLBAlVnw+Exi/VedkKxkkMgm8tPKsMgERTFDx0Pc4Gs72hRpDnPWT
MRbeCCGleAf3JQ5vF0coBDNOCEVvweQgShHOyHTz0GyhWXLCFx3RJICo5I4EIpps
LLUk4JK0fO3LVrf1AEpu5ZP4+Sact0zfsH3gB7qyLPYFDmjDXD8=
=jl3Z
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- arm64 perf: DDR PMU driver for Alibaba's T-Head Yitian 710 SoC, SVE
vector granule register added to the user regs together with SVE perf
extensions documentation.
- SVE updates: add HWCAP for SVE EBF16, update the SVE ABI
documentation to match the actual kernel behaviour (zeroing the
registers on syscall rather than "zeroed or preserved" previously).
- More conversions to automatic system registers generation.
- vDSO: use self-synchronising virtual counter access in gettimeofday()
if the architecture supports it.
- arm64 stacktrace cleanups and improvements.
- arm64 atomics improvements: always inline assembly, remove LL/SC
trampolines.
- Improve the reporting of EL1 exceptions: rework BTI and FPAC
exception handling, better EL1 undefs reporting.
- Cortex-A510 erratum 2658417: remove BF16 support due to incorrect
result.
- arm64 defconfig updates: build CoreSight as a module, enable options
necessary for docker, memory hotplug/hotremove, enable all PMUs
provided by Arm.
- arm64 ptrace() support for TPIDR2_EL0 (register provided with the SME
extensions).
- arm64 ftraces updates/fixes: fix module PLTs with mcount, remove
unused function.
- kselftest updates for arm64: simple HWCAP validation, FP stress test
improvements, validation of ZA regs in signal handlers, include
larger SVE and SME vector lengths in signal tests, various cleanups.
- arm64 alternatives (code patching) improvements to robustness and
consistency: replace cpucap static branches with equivalent
alternatives, associate callback alternatives with a cpucap.
- Miscellaneous updates: optimise kprobe performance of patching
single-step slots, simplify uaccess_mask_ptr(), move MTE registers
initialisation to C, support huge vmalloc() mappings, run softirqs on
the per-CPU IRQ stack, compat (arm32) misalignment fixups for
multiword accesses.
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (126 commits)
arm64: alternatives: Use vdso/bits.h instead of linux/bits.h
arm64/kprobe: Optimize the performance of patching single-step slot
arm64: defconfig: Add Coresight as module
kselftest/arm64: Handle EINTR while reading data from children
kselftest/arm64: Flag fp-stress as exiting when we begin finishing up
kselftest/arm64: Don't repeat termination handler for fp-stress
ARM64: reloc_test: add __init/__exit annotations to module init/exit funcs
arm64/mm: fold check for KFENCE into can_set_direct_map()
arm64: ftrace: fix module PLTs with mcount
arm64: module: Remove unused plt_entry_is_initialized()
arm64: module: Make plt_equals_entry() static
arm64: fix the build with binutils 2.27
kselftest/arm64: Don't enable v8.5 for MTE selftest builds
arm64: uaccess: simplify uaccess_mask_ptr()
arm64: asm/perf_regs.h: Avoid C++-style comment in UAPI header
kselftest/arm64: Fix typo in hwcap check
arm64: mte: move register initialization to C
arm64: mm: handle ARM64_KERNEL_USES_PMD_MAPS in vmemmap_populate()
arm64: dma: Drop cache invalidation from arch_dma_prep_coherent()
arm64/sve: Add Perf extensions documentation
...
This replaces the prior support for Clang's standard Control Flow
Integrity (CFI) instrumentation, which has required a lot of special
conditions (e.g. LTO) and work-arounds. The current implementation
("Kernel CFI") is specific to C, directly designed for the Linux kernel,
and takes advantage of architectural features like x86's IBT. This
series retains arm64 support and adds x86 support. Additional "generic"
architectural support is expected soon:
https://github.com/samitolvanen/llvm-project/commits/kcfi_generic
- treewide: Remove old CFI support details
- arm64: Replace Clang CFI support with Clang KCFI support
- x86: Introduce Clang KCFI support
-----BEGIN PGP SIGNATURE-----
iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAmM4aAUWHGtlZXNjb29r
QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJkgWD/4mUgb7xewNIG/+fuipGd620Iao
K0T8q4BNxLNRltOxNc3Q0WMDCggX0qJGCeds7EdFQJQOGxWcbifM8MAS4idAGM0G
fc3Gxl1imC/oF6goCAbQgndA6jYFIWXGsv8LsRjAXRidWLFr3GFAqVqYJyokSySr
8zMQsEDuF4I1gQnOhEWdtPZbV3MQ4ZjfFzpv+33agbq6Gb72vKvDh3G6g2VXlxjt
1qnMtS+eEpbBU65cJkOi4MSLgymWbnIAeTMb0dbsV4kJ08YoTl8uz1B+weeH6GgT
WP73ZJ4nqh1kkkT9EqS9oKozNB9fObhvCokEuAjuQ7i1eCEZsbShvRc0iL7OKTGG
UfuTJa5qQ4h7Z0JS35FCSJETa+fcG0lTyEd133nLXLMZP9K2antf+A6O//fd0J1V
Jg4VN7DQmZ+UNGOzRkL6dTtQUy4PkxhniIloaClfSYXxhNirA+v//sHTnTK3z2Bl
6qceYqmFmns2Laual7+lvnZgt6egMBcmAL/MOdbU74+KIR9Xw76wxQjifktHX+WF
FEUQkUJDB5XcUyKlbvHoqobRMxvEZ8RIlC5DIkgFiPRE3TI0MqfzNSFnQ/6+lFNg
Y0AS9HYJmcj8sVzAJ7ji24WPFCXzsbFn6baJa9usDNbWyQZokYeiv7ZPNPHPDVrv
YEBP6aYko0lVSUS9qw==
=Li4D
-----END PGP SIGNATURE-----
Merge tag 'kcfi-v6.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull kcfi updates from Kees Cook:
"This replaces the prior support for Clang's standard Control Flow
Integrity (CFI) instrumentation, which has required a lot of special
conditions (e.g. LTO) and work-arounds.
The new implementation ("Kernel CFI") is specific to C, directly
designed for the Linux kernel, and takes advantage of architectural
features like x86's IBT. This series retains arm64 support and adds
x86 support.
GCC support is expected in the future[1], and additional "generic"
architectural support is expected soon[2].
Summary:
- treewide: Remove old CFI support details
- arm64: Replace Clang CFI support with Clang KCFI support
- x86: Introduce Clang KCFI support"
Link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=107048 [1]
Link: https://github.com/samitolvanen/llvm-project/commits/kcfi_generic [2]
* tag 'kcfi-v6.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (22 commits)
x86: Add support for CONFIG_CFI_CLANG
x86/purgatory: Disable CFI
x86: Add types to indirectly called assembly functions
x86/tools/relocs: Ignore __kcfi_typeid_ relocations
kallsyms: Drop CONFIG_CFI_CLANG workarounds
objtool: Disable CFI warnings
objtool: Preserve special st_shndx indexes in elf_update_symbol
treewide: Drop __cficanonical
treewide: Drop WARN_ON_FUNCTION_MISMATCH
treewide: Drop function_nocfi
init: Drop __nocfi from __init
arm64: Drop unneeded __nocfi attributes
arm64: Add CFI error handling
arm64: Add types to indirect called assembly functions
psci: Fix the function type for psci_initcall_t
lkdtm: Emit an indirect call for CFI tests
cfi: Add type helper macros
cfi: Switch to -fsanitize=kcfi
cfi: Drop __CFI_ADDRESSABLE
cfi: Remove CONFIG_CFI_CLANG_SHADOW
...
- Reimplement acpi_get_pci_dev() using the list of physical devices
associated with the given ACPI device object (Rafael Wysocki).
- Rename ACPI device object reference counting functions (Rafael
Wysocki).
- Rearrange ACPI device object initialization code (Rafael Wysocki).
- Drop parent field from struct acpi_device (Rafael Wysocki).
- Extend the the int3472-tps68470 driver to support multiple consumers
of a single TPS68470 along with the requisite framework-level
support (Daniel Scally).
- Filter out non-memory resources in is_memory(), add a helper
function to find all memory type resources of an ACPI device object
and use that function in 3 places (Heikki Krogerus).
- Add IRQ override quirks for Asus Vivobook K3402ZA/K3502ZA and ASUS
model S5402ZA (Tamim Khan, Kellen Renshaw).
- Fix acpi_dev_state_d0() kerneldoc (Sakari Ailus).
- Fix up suspend-to-idle support on ASUS Rembrandt laptops (Mario
Limonciello).
- Clean up ACPI platform devices support code (Andy Shevchenko, John
Garry).
- Clean up ACPI bus management code (Andy Shevchenko, ye xingchen).
- Add support for multiple DMA windows with different offsets to the
ACPI device enumeration code and use it on LoongArch (Jianmin Lv).
- Clean up the ACPI LPSS (Intel SoC) driver (Andy Shevchenko).
- Add a quirk for Dell Inspiron 14 2-in-1 for StorageD3Enable (Mario
Limonciello).
- Drop unused dev_fmt() and redundant 'HMAT' prefix from the HMAT
parsing code (Liu Shixin).
- Make ACPI FPDT parsing code avoid calling acpi_os_map_memory() on
invalid physical addresses (Hans de Goede).
- Silence missing-declarations warning related to Apple device
properties management (Lukas Wunner).
- Disable frequency invariance in the CPPC library if registers used
by cppc_get_perf_ctrs() are accessed via PCC (Jeremy Linton).
- Add ACPI disabled check to acpi_cpc_valid() (Perry Yuan).
- Fix Tx acknowledge in the PCC address space handler (Huisong Li).
- Use wait_for_completion_timeout() for PCC mailbox operations (Huisong
Li).
- Release resources on PCC address space setup failure path (Rafael
Mendonca).
- Remove unneeded result variables from APEI code (ye xingchen).
- Print total number of records found during BERT log parsing (Dmitry
Monakhov).
- Drop support for 3 _OSI strings that should not be necessary any
more and update documentation on custom _OSI strings so that adding
new ones is not encouraged any more (Mario Limonciello).
- Drop unneeded result variable from ec_write() (ye xingchen).
- Remove the leftover struct acpi_ac_bl from the ACPI AC driver (Hanjun
Guo).
- Reorder symbols to get rid of a few forward declarations in the ACPI
fan driver (Uwe Kleine-König).
- Add Toshiba Satellite/Portege Z830 ACPI backlight quirk (Arvid
Norlander).
- Add ARM DMA-330 controller to the supported list in the ACPI AMBA
driver (Vijayenthiran Subramaniam).
- Drop references to non-functional 01.org/linux-acpi web site from
MAINTAINERS and Kconfig help texts (Rafael Wysocki).
- Replace strlcpy() with unused retval with strscpy() in the ACPI
support code (Wolfram Sang).
- Do not initialize ret in main() in the pfrut utility (Shi junming).
- Drop useless ACPI DSDT override documentation (Rafael Wysocki).
- Fix a few typos and wording mistakes in the ACPI device enumeration
documentation (Jean Delvare).
- Introduce acpi_dev_uid_to_integer() to convert a _UID string into an
integer value (Andy Shevchenko).
- Use acpi_dev_uid_to_integer() in several places to unify _UID
handling (Andy Shevchenko).
- Drop unused pnpid32_to_pnpid() declaration from PNP code (Gaosheng
Cui).
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAmM7OhkSHHJqd0Byand5
c29ja2kubmV0AAoJEILEb/54YlRx/TkQALQ4TN451dPSj9jcYSNY6qZ/9b4P9Iym
TmRf3wO3+IVZQ8JajeKKRuVKNsW3sC0RcFkJJVmgZkydJBr1Uui2L0ZLzi8axGNy
RlbZm5NyBeFnlP0fA8Gb2iRMXVAUcRIx+RvZCulxxFmgQ8UhoU4wlVZWlEcko4TQ
hGp++lJYcRHR1NbVLSXZhFvzopKLdhGL6vB1Awsjb/I7TVqn23+k4jVRV1DYkIQ7
qgFM+Z7osRVZiVQbaPoOgdykeSa43qXu7Vgs7F/QeJuIiUYx59xDh0/WCJBxnuDM
cHGiaNnvuJghKmCg43X8+joaHEH/jCFyvBVGfiSzRvjz03WOPRs1XztwdEiCi+py
RcZGzrPaXmkCjNeytPRooiifyqm95HT7aMBN/aTvKBXDaGRrfPheXF+i2idl24HM
NrHqMaa0+5qoDGHLUEaf5znlCHfS+3lwq6+lGVrq/UGf6B3cP+9HwOyevEW493JX
4nuv69Y517moR9W3mBU8sAn5mUjshcka7pghRj7QnuoqRqWLbU3lIz8oUDHr84cI
ixpIPvt2KlZ5UjnN9aqu/6k70JkJvy4SrKjnx4iqu03ePmMrRc0Hcpy7+VMlgumD
tgN9aW+YDgy0/Z5QmO1MOvFodVmA5sX6+gnX1neAjuDdIo3LkJptlkO1fCx2jfQu
cgPQk1CtPOos
=xyUK
-----END PGP SIGNATURE-----
Merge tag 'acpi-6.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI updates from Rafael Wysocki:
"ACPI and PNP updates for 6.1-rc1.
These rearrange the ACPI device object initialization code (to get rid
of a redundant parent pointer from struct acpi_device among other
things), unify the _UID handling, drop support for some _OSI strings
that should not be necessary any more, add new IDs to support more
hardware and some more quirks, fix a few issues and clean up code all
over.
Specifics:
- Reimplement acpi_get_pci_dev() using the list of physical devices
associated with the given ACPI device object (Rafael Wysocki)
- Rename ACPI device object reference counting functions (Rafael
Wysocki)
- Rearrange ACPI device object initialization code (Rafael Wysocki)
- Drop parent field from struct acpi_device (Rafael Wysocki)
- Extend the the int3472-tps68470 driver to support multiple
consumers of a single TPS68470 along with the requisite
framework-level support (Daniel Scally)
- Filter out non-memory resources in is_memory(), add a helper
function to find all memory type resources of an ACPI device object
and use that function in 3 places (Heikki Krogerus)
- Add IRQ override quirks for Asus Vivobook K3402ZA/K3502ZA and ASUS
model S5402ZA (Tamim Khan, Kellen Renshaw)
- Fix acpi_dev_state_d0() kerneldoc (Sakari Ailus)
- Fix up suspend-to-idle support on ASUS Rembrandt laptops (Mario
Limonciello)
- Clean up ACPI platform devices support code (Andy Shevchenko, John
Garry)
- Clean up ACPI bus management code (Andy Shevchenko, ye xingchen)
- Add support for multiple DMA windows with different offsets to the
ACPI device enumeration code and use it on LoongArch (Jianmin Lv)
- Clean up the ACPI LPSS (Intel SoC) driver (Andy Shevchenko)
- Add a quirk for Dell Inspiron 14 2-in-1 for StorageD3Enable (Mario
Limonciello)
- Drop unused dev_fmt() and redundant 'HMAT' prefix from the HMAT
parsing code (Liu Shixin)
- Make ACPI FPDT parsing code avoid calling acpi_os_map_memory() on
invalid physical addresses (Hans de Goede)
- Silence missing-declarations warning related to Apple device
properties management (Lukas Wunner)
- Disable frequency invariance in the CPPC library if registers used
by cppc_get_perf_ctrs() are accessed via PCC (Jeremy Linton)
- Add ACPI disabled check to acpi_cpc_valid() (Perry Yuan)
- Fix Tx acknowledge in the PCC address space handler (Huisong Li)
- Use wait_for_completion_timeout() for PCC mailbox operations
(Huisong Li)
- Release resources on PCC address space setup failure path (Rafael
Mendonca)
- Remove unneeded result variables from APEI code (ye xingchen)
- Print total number of records found during BERT log parsing (Dmitry
Monakhov)
- Drop support for 3 _OSI strings that should not be necessary any
more and update documentation on custom _OSI strings so that adding
new ones is not encouraged any more (Mario Limonciello)
- Drop unneeded result variable from ec_write() (ye xingchen)
- Remove the leftover struct acpi_ac_bl from the ACPI AC driver
(Hanjun Guo)
- Reorder symbols to get rid of a few forward declarations in the
ACPI fan driver (Uwe Kleine-König)
- Add Toshiba Satellite/Portege Z830 ACPI backlight quirk (Arvid
Norlander)
- Add ARM DMA-330 controller to the supported list in the ACPI AMBA
driver (Vijayenthiran Subramaniam)
- Drop references to non-functional 01.org/linux-acpi web site from
MAINTAINERS and Kconfig help texts (Rafael Wysocki)
- Replace strlcpy() with unused retval with strscpy() in the ACPI
support code (Wolfram Sang)
- Do not initialize ret in main() in the pfrut utility (Shi junming)
- Drop useless ACPI DSDT override documentation (Rafael Wysocki)
- Fix a few typos and wording mistakes in the ACPI device enumeration
documentation (Jean Delvare)
- Introduce acpi_dev_uid_to_integer() to convert a _UID string into
an integer value (Andy Shevchenko)
- Use acpi_dev_uid_to_integer() in several places to unify _UID
handling (Andy Shevchenko)
- Drop unused pnpid32_to_pnpid() declaration from PNP code (Gaosheng
Cui)"
* tag 'acpi-6.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (79 commits)
ACPI: LPSS: Deduplicate skipping device in acpi_lpss_create_device()
ACPI: LPSS: Replace loop with first entry retrieval
ACPI: x86: s2idle: Add another ID to s2idle_dmi_table
ACPI: x86: s2idle: Fix a NULL pointer dereference
MAINTAINERS: Drop records pointing to 01.org/linux-acpi
ACPI: Kconfig: Drop link to https://01.org/linux-acpi
ACPI: docs: Drop useless DSDT override documentation
ACPI: DPTF: Drop stale link from Kconfig help
ACPI: x86: s2idle: Add a quirk for ASUSTeK COMPUTER INC. ROG Flow X13
ACPI: x86: s2idle: Add a quirk for Lenovo Slim 7 Pro 14ARH7
ACPI: x86: s2idle: Add a quirk for ASUS ROG Zephyrus G14
ACPI: x86: s2idle: Add a quirk for ASUS TUF Gaming A17 FA707RE
ACPI: x86: s2idle: Add module parameter to prefer Microsoft GUID
ACPI: x86: s2idle: If a new AMD _HID is missing assume Rembrandt
ACPI: x86: s2idle: Move _HID handling for AMD systems into structures
platform/x86: int3472: Add board data for Surface Go2 IR camera
platform/x86: int3472: Support multiple gpio lookups in board data
platform/x86: int3472: Support multiple clock consumers
ACPI: bus: Add iterator for dependent devices
ACPI: scan: Add acpi_dev_get_next_consumer_dev()
...
EFI's SetVirtualAddressMap() runtime service is a horrid hack that we'd
like to avoid using, if possible. For 64-bit architectures such as
arm64, the user and kernel mappings are entirely disjoint, and given
that we use the user region for mapping the UEFI runtime regions when
running under the OS, we don't rely on SetVirtualAddressMap() in the
conventional way, i.e., to permit kernel mappings of the OS to coexist
with kernel region mappings of the firmware regions. This means that, in
principle, we should be able to avoid SetVirtualAddressMap() altogether,
and simply use the 1:1 mapping that UEFI uses at boot time. (Note that
omitting SetVirtualAddressMap() is explicitly permitted by the UEFI
spec).
However, there is a corner case on arm64, which, if configured for
3-level paging (or 2-level paging when using 64k pages), may not be able
to cover the entire range of firmware mappings (which might contain both
memory and MMIO peripheral mappings).
So let's avoid SetVirtualAddressMap() on arm64, but only if the VA space
is guaranteed to be of sufficient size.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
LoadImage() is supposed to install an instance of the protocol
EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL onto the loaded image's handle so
that the program can figure out where it was loaded from. The reference
implementation even does this (with a NULL protocol pointer) if the call
to LoadImage() used the source buffer and size arguments, and passed
NULL for the image device path. Hand rolled implementations of LoadImage
may behave differently, though, and so it is better to tolerate
situations where the protocol is missing. And actually, concatenating an
Offset() node to a NULL device path (as we do currently) is not great
either.
So in cases where the protocol is absent, or when it points to NULL,
construct a MemoryMapped() device node as the base node that describes
the parent image's footprint in memory.
Cc: Daan De Meyer <daandemeyer@fb.com>
Cc: Jeremy Linton <jeremy.linton@arm.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
We use a macro efi_bs_call() to call boot services, which is more
concise, and on x86, it encapsulates the mixed mode handling. This code
does not run in mixed mode, but let's switch to the macro for general
tidiness.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Move some code that is only reachable when IS_ENABLED(CONFIG_ARM) into
the ARM EFI arch code.
Cc: Russell King <linux@armlinux.org.uk>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The EFI TCG spec, in §10.2.6 "Measuring UEFI Variables and UEFI GPT
Data", only reasons about the load options passed to a loaded image in
the context of boot options booted directly from the BDS, which are
measured into PCR #5 along with the rest of the Boot#### EFI variable.
However, the UEFI spec mentions the following in the documentation of
the LoadImage() boot service and the EFI_LOADED_IMAGE protocol:
The caller may fill in the image’s "load options" data, or add
additional protocol support to the handle before passing control to
the newly loaded image by calling EFI_BOOT_SERVICES.StartImage().
The typical boot sequence for Linux EFI systems is to load GRUB via a
boot option from the BDS, which [hopefully] calls LoadImage to load the
kernel image, passing the kernel command line via the mechanism
described above. This means that we cannot rely on the firmware
implementing TCG measured boot to ensure that the kernel command line
gets measured before the image is started, so the EFI stub will have to
take care of this itself.
Given that PCR #5 has an official use in the TCG measured boot spec,
let's avoid it in this case. Instead, add a measurement in PCR #9 (which
we already use for our initrd) and extend it with the LoadOptions
measurements
Co-developed-by: Ilias Apalodimas <ilias.apalodimas@linaro.org>
Signed-off-by: Ilias Apalodimas <ilias.apalodimas@linaro.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Currently, from the efi-stub, we are only measuring the loaded initrd,
using the TCG2 measured boot protocols. A following patch is
introducing measurements of additional components, such as the kernel
command line. On top of that, we will shortly have to support other
types of measured boot that don't expose the TCG2 protocols.
So let's prepare for that, by rejigging the efi_measure_initrd() routine
into something that we should be able to reuse for measuring other
assets, and which can be extended later to support other measured boot
protocols.
Co-developed-by: Ilias Apalodimas <ilias.apalodimas@linaro.org>
Signed-off-by: Ilias Apalodimas <ilias.apalodimas@linaro.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
This is necessary because the EFI libstub refactoring patches are mostly
directed at enabling LoongArch to wire up generic EFI boot support
without being forced to consume DT properties that conflict with
information that EFI also provides, e.g., memory map and reservations,
etc.
-----BEGIN PGP SIGNATURE-----
iQGzBAABCgAdFiEE+9lifEBpyUIVN1cpw08iOZLZjyQFAmMy3RMACgkQw08iOZLZ
jyTTEwwAxIsv4t82EIj0D2Ml37TjmuB1cenbKHqq8c6cK/2xPGk1Hprd0KbpXuWh
hF88DoBeDyZ68RTmncEzwSCu5ZSIlQwPNATaAGn4qIYi6uHpHufM6IUDspYrXJnO
5K6HE0Rc5PKIDVJdA2dqnXLIxrVe5IG1UTHwzqJAi6/eTal5S22Y7lCALa0MjeAZ
fsGEOztztrdoRRY0+H3VStg4oVbMGmMH24N3ODtM5yNS7qqmfKrEvAfGkTC+6wGG
O8klUF9EcluvGNiLT2c2YeCKsqTVKun0K1TYvY8ATjAONqj8zImja9g1wTjtZOgz
rnfS0RGmbrv9X5jkaC7k8KkCGfMWwcuQTnKNYmuzt51bzNQw7tJWltfVMFR3pqN8
+1594fBxLT0llnS9P9qXpZLfjvxhqeQuNMkOQr+gG1E+2h1N9CJQxhhLKLtesLMp
Pm6RHlpc8CrYrmHDL6oPHEg6oYTNe3NmuIVUB71wsl8czGMrU11JpxG/Q4iOtZOB
vA5hkpn2
=IlXm
-----END PGP SIGNATURE-----
Merge tag 'efi-loongarch-for-v6.1-2' into HEAD
Second shared stable tag between EFI and LoongArch trees
This is necessary because the EFI libstub refactoring patches are mostly
directed at enabling LoongArch to wire up generic EFI boot support
without being forced to consume DT properties that conflict with
information that EFI also provides, e.g., memory map and reservations,
etc.
LoongArch does not use FDT or DT natively [yet], and the only reason it
currently uses it is so that it can reuse the existing EFI stub code.
Overloading the DT with data passed between the EFI stub and the core
kernel has been a source of problems: there is the overlap between
information provided by EFI which DT can also provide (initrd base/size,
command line, memory descriptions), requiring us to reason about which
is which and what to prioritize. It has also resulted in ABI leaks,
i.e., internal ABI being promoted to external ABI inadvertently because
the bootloader can set the EFI stub's DT properties as well (e.g.,
"kaslr-seed"). This has become especially problematic with boot
environments that want to pretend that EFI boot is being done (to access
ACPI and SMBIOS tables, for instance) but have no ability to execute the
EFI stub, and so the environment that the EFI stub creates is emulated
[poorly, in some cases].
Another downside of treating DT like this is that the DT binary that the
kernel receives is different from the one created by the firmware, which
is undesirable in the context of secure and measured boot.
Given that LoongArch support in Linux is brand new, we can avoid these
pitfalls, and treat the DT strictly as a hardware description, and use a
separate handover method between the EFI stub and the kernel. Now that
initrd loading and passing the EFI memory map have been refactored into
pure EFI routines that use EFI configuration tables, the only thing we
need to pass directly is the kernel command line (even if we could pass
this via a config table as well, it is used extremely early, so passing
it directly is preferred in this case.)
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Huacai Chen <chenhuacai@loongson.cn>
Expose the EFI boot time memory map to the kernel via a configuration
table. This is arch agnostic and enables future changes that remove the
dependency on DT on architectures that don't otherwise rely on it.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Refactor the generic EFI stub entry code so that all the dependencies on
device tree are abstracted and hidden behind a generic efi_boot_kernel()
routine that can also be implemented in other ways. This allows users of
the generic stub to avoid using FDT for passing information to the core
kernel.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Use a EFI configuration table to pass the initrd to the core kernel,
instead of per-arch methods. This cleans up the code considerably, and
should make it easier for architectures to get rid of their reliance on
DT for doing EFI boot in the future.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Remove the RB tree and start using the maple tree for vm_area_struct
tracking.
Drop validate_mm() calls in expand_upwards() and expand_downwards() as the
lock is not held.
Link: https://lkml.kernel.org/r/20220906194824.2110408-18-Liam.Howlett@oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Tested-by: Yu Zhao <yuzhao@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: SeongJae Park <sj@kernel.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Start tracking the VMAs with the new maple tree structure in parallel with
the rb_tree. Add debug and trace events for maple tree operations and
duplicate the rb_tree that is created on forks into the maple tree.
The maple tree is added to the mm_struct including the mm_init struct,
added support in required mm/mmap functions, added tracking in kernel/fork
for process forking, and used to find the unmapped_area and checked
against what the rbtree finds.
This also moves the mmap_lock() in exit_mmap() since the oom reaper call
does walk the VMAs. Otherwise lockdep will be unhappy if oom happens.
When splitting a vma fails due to allocations of the maple tree nodes,
the error path in __split_vma() calls new->vm_ops->close(new). The page
accounting for hugetlb is actually in the close() operation, so it
accounts for the removal of 1/2 of the VMA which was not adjusted. This
results in a negative exit value. To avoid the negative charge, set
vm_start = vm_end and vm_pgoff = 0.
There is also a potential accounting issue in special mappings from
insert_vm_struct() failing to allocate, so reverse the charge there in
the failure scenario.
Link: https://lkml.kernel.org/r/20220906194824.2110408-9-Liam.Howlett@oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Tested-by: Yu Zhao <yuzhao@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: SeongJae Park <sj@kernel.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Currently, struct efi_boot_memmap is a struct that is passed around
between callers of efi_get_memory_map() and the users of the resulting
data, and which carries pointers to various variables whose values are
provided by the EFI GetMemoryMap() boot service.
This is overly complex, and it is much easier to carry these values in
the struct itself. So turn the struct into one that carries these data
items directly, including a flex array for the variable number of EFI
memory descriptors that the boot service may return.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The virt map is a set of efi_memory_desc_t descriptors that are passed
to SetVirtualAddressMap() to inform the firmware about the desired
virtual mapping of the regions marked as EFI_MEMORY_RUNTIME. The only
reason we currently call the efi_get_memory_map() helper is that it
gives us an allocation that is guaranteed to be of sufficient size.
However, efi_get_memory_map() has grown some additional complexity over
the years, and today, we're actually better off calling the EFI boot
service directly with a zero size, which tells us how much memory should
be enough for the virt map.
While at it, avoid creating the VA map allocation if we will not be
using it anyway, i.e., if efi_novamap is true.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
In preparation for removing CC_FLAGS_CFI from CC_FLAGS_LTO, explicitly
filter out CC_FLAGS_CFI in all the makefiles where we currently filter
out CC_FLAGS_LTO.
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Tested-by: Kees Cook <keescook@chromium.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20220908215504.3686827-2-samitolvanen@google.com
We currently check the MokSBState variable to decide whether we should
treat UEFI secure boot as being disabled, even if the firmware thinks
otherwise. This is used by shim to indicate that it is not checking
signatures on boot images. In the kernel, we use this to relax lockdown
policies.
However, in cases where shim is not even being used, we don't want this
variable to interfere with lockdown, given that the variable may be
non-volatile and therefore persist across a reboot. This means setting
it once will persistently disable lockdown checks on a given system.
So switch to the mirrored version of this variable, called MokSBStateRT,
which is supposed to be volatile, and this is something we can check.
Cc: <stable@vger.kernel.org> # v4.19+
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Ilias Apalodimas <ilias.apalodimas@linaro.org>
Reviewed-by: Peter Jones <pjones@redhat.com>
When booting the x86 kernel via EFI using the LoadImage/StartImage boot
services [as opposed to the deprecated EFI handover protocol], the setup
header is taken from the image directly, and given that EFI's LoadImage
has no Linux/x86 specific knowledge regarding struct bootparams or
struct setup_header, any absolute addresses in the setup header must
originate from the file and not from a prior loading stage.
Since we cannot generally predict where LoadImage() decides to load an
image (*), such absolute addresses must be treated as suspect: even if a
prior boot stage intended to make them point somewhere inside the
[signed] image, there is no way to validate that, and if they point at
an arbitrary location in memory, the setup_data nodes will not be
covered by any signatures or TPM measurements either, and could be made
to contain an arbitrary sequence of SETUP_xxx nodes, which could
interfere quite badly with the early x86 boot sequence.
(*) Note that, while LoadImage() does take a buffer/size tuple in
addition to a device path, which can be used to provide the image
contents directly, it will re-allocate such images, as the memory
footprint of an image is generally larger than the PE/COFF file
representation.
Cc: <stable@vger.kernel.org> # v5.10+
Link: https://lore.kernel.org/all/20220904165321.1140894-1-Jason@zx2c4.com/
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Jason A. Donenfeld <Jason@zx2c4.com>
Currently, the non-x86 stub code calls get_memory_map() redundantly,
given that the data it returns is never used anywhere. So drop the call.
Cc: <stable@vger.kernel.org> # v4.14+
Fixes: 24d7c494ce46 ("efi/arm-stub: Round up FDT allocation to mapping size")
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
There is a single kmalloc in this driver, and it's not currently
guarded against allocation failure. Do it here by just bailing-out
the reboot handler, in case this tentative allocation fails.
Fixes: 416581e48679 ("efi: efibc: avoid efivar API for setting variables")
Signed-off-by: Guilherme G. Piccoli <gpiccoli@igalia.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Even though it is unlikely to ever make a difference, let's use u32
consistently for the size of the load_options provided by the firmware
(aka the command line)
While at it, do some general cleanup too: use efi_char16_t, avoid using
options_chars in places where it really means options_size, etc.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Implement a minimal EFI app that decompresses the real kernel image and
launches it using the firmware's LoadImage and StartImage boot services.
This removes the need for any arch-specific hacks.
Note that on systems that have UEFI secure boot policies enabled,
LoadImage/StartImage require images to be signed, or their hashes known
a priori, in order to be permitted to boot.
There are various possible strategies to work around this requirement,
but they all rely either on overriding internal PI/DXE protocols (which
are not part of the EFI spec) or omitting the firmware provided
LoadImage() and StartImage() boot services, which is also undesirable,
given that they encapsulate platform specific policies related to secure
boot and measured boot, but also related to memory permissions (whether
or not and which types of heap allocations have both write and execute
permissions.)
The only generic and truly portable way around this is to simply sign
both the inner and the outer image with the same key/cert pair, so this
is what is implemented here.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
ACPI utils provide acpi_dev_uid_to_integer() helper to extract _UID as
an integer. Use it instead of custom approach.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Reviewed-by: Hans de Goede <hdegoede@redhat.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
To avoid pulling in the wrong object when using the libstub static
library to build the decompressor, define efi_system_table in a separate
compilation unit.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
The stub is used in different execution environments, but on arm64,
RISC-V and LoongArch, we still use the core kernel's implementation of
memcpy and memset, as they are just a branch instruction away, and can
generally be reused even from code such as the EFI stub that runs in a
completely different address space.
KAsan complicates this slightly, resulting in the need for some hacks to
expose the uninstrumented, __ prefixed versions as the normal ones, as
the latter are instrumented to include the KAsan checks, which only work
in the core kernel.
Unfortunately, #define'ing memcpy to __memcpy when building C code does
not guarantee that no explicit memcpy() calls will be emitted. And with
the upcoming zboot support, which consists of a separate binary which
therefore needs its own implementation of memcpy/memset anyway, it's
better to provide one explicitly instead of linking to the existing one.
Given that EFI exposes implementations of memmove() and memset() via the
boot services table, let's wire those up in the appropriate way, and
drop the references to the core kernel ones.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Define the correct prototypes for the load_image, start_image and
unload_image boot service pointers so we can call them from the EFI
zboot code.
Also add some prototypes related to installation and deinstallation of
protocols in to the EFI protocol database, including some definitions
related to device paths.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Normally we include the full register name in the defines for fields within
registers but this has not been followed for ID registers. In preparation
for automatic generation of defines add the _EL1s into the defines for
ID_AA64MMFR0_EL1 to follow the convention. No functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-5-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
A race condition may occur if the user calls close() on another thread
during a write() operation on the device node of the efi capsule.
This is a race condition that occurs between the efi_capsule_write() and
efi_capsule_flush() functions of efi_capsule_fops, which ultimately
results in UAF.
So, the page freeing process is modified to be done in
efi_capsule_release() instead of efi_capsule_flush().
Cc: <stable@vger.kernel.org> # v4.9+
Signed-off-by: Hyunwoo Kim <imv4bel@gmail.com>
Link: https://lore.kernel.org/all/20220907102920.GA88602@ubuntu/
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>