IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
commit f351574172 upstream.
Provide a function, kmemdup_nul(), that will create a NUL-terminated string
from an unterminated character array where the length is known in advance.
This is better than kstrndup() in situations where we already know the
string length as the strnlen() in kstrndup() is superfluous.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit af27d9403f upstream.
We get a warning about some slow configurations in randconfig kernels:
mm/memory.c:83:2: error: #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. [-Werror=cpp]
The warning is reasonable by itself, but gets in the way of randconfig
build testing, so I'm hiding it whenever CONFIG_COMPILE_TEST is set.
The warning was added in 2013 in commit 75980e97da ("mm: fold
page->_last_nid into page->flags where possible").
Cc: stable@vger.kernel.org
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b050e3769c upstream.
Since commit 97a16fc82a ("mm, page_alloc: only enforce watermarks for
order-0 allocations"), __zone_watermark_ok() check for high-order
allocations will shortcut per-migratetype free list checks for
ALLOC_HARDER allocations, and return true as long as there's free page
of any migratetype. The intention is that ALLOC_HARDER can allocate
from MIGRATE_HIGHATOMIC free lists, while normal allocations can't.
However, as a side effect, the watermark check will then also return
true when there are pages only on the MIGRATE_ISOLATE list, or (prior to
CMA conversion to ZONE_MOVABLE) on the MIGRATE_CMA list. Since the
allocation cannot actually obtain isolated pages, and might not be able
to obtain CMA pages, this can result in a false positive.
The condition should be rare and perhaps the outcome is not a fatal one.
Still, it's better if the watermark check is correct. There also
shouldn't be a performance tradeoff here.
Link: http://lkml.kernel.org/r/20171102125001.23708-1-vbabka@suse.cz
Fixes: 97a16fc82a ("mm, page_alloc: only enforce watermarks for order-0 allocations")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e048cb32f6 upstream.
The align_offset parameter is used by bitmap_find_next_zero_area_off()
to represent the offset of map's base from the previous alignment
boundary; the function ensures that the returned index, plus the
align_offset, honors the specified align_mask.
The logic introduced by commit b5be83e308 ("mm: cma: align to physical
address, not CMA region position") has the cma driver calculate the
offset to the *next* alignment boundary. In most cases, the base
alignment is greater than that specified when making allocations,
resulting in a zero offset whether we align up or down. In the example
given with the commit, the base alignment (8MB) was half the requested
alignment (16MB) so the math also happened to work since the offset is
8MB in both directions. However, when requesting allocations with an
alignment greater than twice that of the base, the returned index would
not be correctly aligned.
Also, the align_order arguments of cma_bitmap_aligned_mask() and
cma_bitmap_aligned_offset() should not be negative so the argument type
was made unsigned.
Fixes: b5be83e308 ("mm: cma: align to physical address, not CMA region position")
Link: http://lkml.kernel.org/r/20170628170742.2895-1-opendmb@gmail.com
Signed-off-by: Angus Clark <angus@angusclark.org>
Signed-off-by: Doug Berger <opendmb@gmail.com>
Acked-by: Gregory Fong <gregory.0xf0@gmail.com>
Cc: Doug Berger <opendmb@gmail.com>
Cc: Angus Clark <angus@angusclark.org>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Lucas Stach <l.stach@pengutronix.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Shiraz Hashim <shashim@codeaurora.org>
Cc: Jaewon Kim <jaewon31.kim@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 18365225f0 upstream.
Laurent Dufour has noticed that hwpoinsoned pages are kept charged. In
his particular case he has hit a bad_page("page still charged to
cgroup") when onlining a hwpoison page. While this looks like something
that shouldn't happen in the first place because onlining hwpages and
returning them to the page allocator makes only little sense it shows a
real problem.
hwpoison pages do not get freed usually so we do not uncharge them (at
least not since commit 0a31bc97c8 ("mm: memcontrol: rewrite uncharge
API")). Each charge pins memcg (since e8ea14cc6e ("mm: memcontrol:
take a css reference for each charged page")) as well and so the
mem_cgroup and the associated state will never go away. Fix this leak
by forcibly uncharging a LRU hwpoisoned page in delete_from_lru_cache().
We also have to tweak uncharge_list because it cannot rely on zero ref
count for these pages.
[akpm@linux-foundation.org: coding-style fixes]
Fixes: 0a31bc97c8 ("mm: memcontrol: rewrite uncharge API")
Link: http://lkml.kernel.org/r/20170502185507.GB19165@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Tested-by: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Reviewed-by: Balbir Singh <bsingharora@gmail.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 561b5e0709 upstream.
Commit 1be7107fbe ("mm: larger stack guard gap, between vmas") has
introduced a regression in some rust and Java environments which are
trying to implement their own stack guard page. They are punching a new
MAP_FIXED mapping inside the existing stack Vma.
This will confuse expand_{downwards,upwards} into thinking that the
stack expansion would in fact get us too close to an existing non-stack
vma which is a correct behavior wrt safety. It is a real regression on
the other hand.
Let's work around the problem by considering PROT_NONE mapping as a part
of the stack. This is a gros hack but overflowing to such a mapping
would trap anyway an we only can hope that usespace knows what it is
doing and handle it propely.
Fixes: 1be7107fbe ("mm: larger stack guard gap, between vmas")
Link: http://lkml.kernel.org/r/20170705182849.GA18027@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Debugged-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Ben Hutchings <ben@decadent.org.uk>
Cc: Willy Tarreau <w@1wt.eu>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit fd5bb66cd9 upstream.
Change the zpool/compressor param callback function to release the
zswap_pools_lock spinlock before calling param_set_charp, since that
function may sleep when it calls kmalloc with GFP_KERNEL.
While this problem has existed for a while, I wasn't able to trigger it
using a tight loop changing either/both the zpool and compressor params; I
think it's very unlikely to be an issue on the stable kernels, especially
since most zswap users will change the compressor and/or zpool from sysfs
only one time each boot - or zero times, if they add the params to the
kernel boot.
Fixes: c99b42c352 ("zswap: use charp for zswap param strings")
Link: http://lkml.kernel.org/r/20170126155821.4545-1-ddstreet@ieee.org
Signed-off-by: Dan Streetman <dan.streetman@canonical.com>
Reported-by: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 200867af4d upstream.
Add a work_struct to struct zswap_pool, and change __zswap_pool_empty to
use the workqueue instead of using call_rcu().
When zswap destroys a pool no longer in use, it uses call_rcu() to
perform the destruction/freeing. Since that executes in softirq
context, it must not sleep. However, actually destroying the pool
involves freeing the per-cpu compressors (which requires locking the
cpu_add_remove_lock mutex) and freeing the zpool, for which the
implementation may sleep (e.g. zsmalloc calls kmem_cache_destroy, which
locks the slab_mutex). So if either mutex is currently taken, or any
other part of the compressor or zpool implementation sleeps, it will
result in a BUG().
It's not easy to reproduce this when changing zswap's params normally.
In testing with a loaded system, this does not fail:
$ cd /sys/module/zswap/parameters
$ echo lz4 > compressor ; echo zsmalloc > zpool
nor does this:
$ while true ; do
> echo lzo > compressor ; echo zbud > zpool
> sleep 1
> echo lz4 > compressor ; echo zsmalloc > zpool
> sleep 1
> done
although it's still possible either of those might fail, depending on
whether anything else besides zswap has locked the mutexes.
However, changing a parameter with no delay immediately causes the
schedule while atomic BUG:
$ while true ; do
> echo lzo > compressor ; echo lz4 > compressor
> done
This is essentially the same as Yu Zhao's proposed patch to zsmalloc,
but moved to zswap, to cover compressor and zpool freeing.
Fixes: f1c54846ee ("zswap: dynamic pool creation")
Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Reported-by: Yu Zhao <yuzhao@google.com>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Dan Streetman <dan.streetman@canonical.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d59b1087a9 upstream.
Calculation of dirty_ratelimit sometimes is not correct. E.g. initial
values of dirty_ratelimit == INIT_BW and step == 0, lead to the
following result:
UBSAN: Undefined behaviour in ../mm/page-writeback.c:1286:7
shift exponent 25600 is too large for 64-bit type 'long unsigned int'
The fix is straightforward - make step 0 if the shift exponent is too
big.
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andy Shevchenko <andy.shevchenko@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e1409c325f upstream.
pageblock_pfn_to_page() is used to check there is valid pfn and all
pages in the pageblock is in a single zone. If there is a hole in the
pageblock, passing arbitrary position to pageblock_pfn_to_page() could
cause to skip whole pageblock scanning, instead of just skipping the
hole page. For deterministic behaviour, it's better to always pass
pageblock aligned range to pageblock_pfn_to_page(). It will also help
further optimization on pageblock_pfn_to_page() in the following patch.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 623446e4dc upstream.
free_pfn and compact_cached_free_pfn are the pointer that remember
restart position of freepage scanner. When they are reset or invalid,
we set them to zone_end_pfn because freepage scanner works in reverse
direction. But, because zone range is defined as [zone_start_pfn,
zone_end_pfn), zone_end_pfn is invalid to access. Therefore, we should
not store it to free_pfn and compact_cached_free_pfn. Instead, we need
to store zone_end_pfn - 1 to them. There is one more thing we should
consider. Freepage scanner scan reversely by pageblock unit. If
free_pfn and compact_cached_free_pfn are set to middle of pageblock, it
regards that sitiation as that it already scans front part of pageblock
so we lose opportunity to scan there. To fix-up, this patch do
round_down() to guarantee that reset position will be pageblock aligned.
Note that thanks to the current pageblock_pfn_to_page() implementation,
actual access to zone_end_pfn doesn't happen until now. But, following
patch will change pageblock_pfn_to_page() so this patch is needed from
now on.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The kaiser update made an interesting choice, never to free any shadow
page tables. Contention on global spinlock was worrying, particularly
with it held across page table scans when freeing. Something had to be
done: I was going to add refcounting; but simply never to free them is
an appealing choice, minimizing contention without complicating the code
(the more a page table is found already, the less the spinlock is used).
But leaking pages in this way is also a worry: can we get away with it?
At the very least, we need a count to show how bad it actually gets:
in principle, one might end up wasting about 1/256 of memory that way
(1/512 for when direct-mapped pages have to be user-mapped, plus 1/512
for when they are user-mapped from the vmalloc area on another occasion
(but we don't have vmalloc'ed stacks, so only large ldts are vmalloc'ed).
Add per-cpu stat NR_KAISERTABLE: including 256 at startup for the
shared pgd entries, and 1 for each intermediate page table added
thereafter for user-mapping - but leave out the 1 per mm, for its
shadow pgd, because that distracts from the monotonic increase.
Shown in /proc/vmstat as nr_overhead (0 if kaiser not enabled).
In practice, it doesn't look so bad so far: more like 1/12000 after
nine hours of gtests below; and movable pageblock segregation should
tend to cluster the kaiser tables into a subset of the address space
(if not, they will be bad for compaction too). But production may
tell a different story: keep an eye on this number, and bring back
lighter freeing if it gets out of control (maybe a shrinker).
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 858eaaa711 upstream.
The recently introduced batched invalidations mechanism uses its own
mechanism for shootdown. However, it does wrong accounting of
interrupts (e.g., inc_irq_stat is called for local invalidations),
trace-points (e.g., TLB_REMOTE_SHOOTDOWN for local invalidations) and
may break some platforms as it bypasses the invalidation mechanisms of
Xen and SGI UV.
This patch reuses the existing TLB flushing mechnaisms instead. We use
NULL as mm to indicate a global invalidation is required.
Fixes 72b252aed5 ("mm: send one IPI per CPU to TLB flush all entries after unmapping pages")
Signed-off-by: Nadav Amit <namit@vmware.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a8f9736645 upstream.
Currently, we unconditionally make page table dirty in touch_pmd().
It may result in false-positive can_follow_write_pmd().
We may avoid the situation, if we would only make the page table entry
dirty if caller asks for write access -- FOLL_WRITE.
The patch also changes touch_pud() in the same way.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[Salvatore Bonaccorso: backport for 3.16:
- Adjust context
- Drop specific part for PUD-sized transparent hugepages. Support
for PUD-sized transparent hugepages was added in v4.11-rc1
]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Backport of the upstream commit f86e427197 ("mm: check the return
value of lookup_page_ext for all call sites") is wrong for hwpoison
pages. I have accidentally negated the condition for bailout. This
basically disables hwpoison pages tracking while the code still
might crash on unusual configurations when struct pages do not have
page_ext allocated. The fix is trivial to invert the condition.
Reported-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 373c4557d2 upstream.
This matters at least for the mincore syscall, which will otherwise copy
uninitialized memory from the page allocator to userspace. It is
probably also a correctness error for /proc/$pid/pagemap, but I haven't
tested that.
Removing the `walk->hugetlb_entry` condition in walk_hugetlb_range() has
no effect because the caller already checks for that.
This only reports holes in hugetlb ranges to callers who have specified
a hugetlb_entry callback.
This issue was found using an AFL-based fuzzer.
v2:
- don't crash on ->pte_hole==NULL (Andrew Morton)
- add Cc stable (Andrew Morton)
Changed for 4.4/4.9 stable backport:
- fix up conflict in the huge_pte_offset() call
Fixes: 1e25a271c8 ("mincore: apply page table walker on do_mincore()")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e492080e64 upstream.
online_page_ext() and page_ext_init() allocate page_ext for each
section, but they do not allocate if the first PFN is !pfn_present(pfn)
or !pfn_valid(pfn). Then section->page_ext remains as NULL.
lookup_page_ext checks NULL only if CONFIG_DEBUG_VM is enabled. For a
valid PFN, __set_page_owner will try to get page_ext through
lookup_page_ext. Without CONFIG_DEBUG_VM lookup_page_ext will misuse
NULL pointer as value 0. This incurrs invalid address access.
This is the panic example when PFN 0x100000 is not valid but PFN
0x13FC00 is being used for page_ext. section->page_ext is NULL,
get_entry returned invalid page_ext address as 0x1DFA000 for a PFN
0x13FC00.
To avoid this panic, CONFIG_DEBUG_VM should be removed so that page_ext
will be checked at all times.
Unable to handle kernel paging request at virtual address 01dfa014
------------[ cut here ]------------
Kernel BUG at ffffff80082371e0 [verbose debug info unavailable]
Internal error: Oops: 96000045 [#1] PREEMPT SMP
Modules linked in:
PC is at __set_page_owner+0x48/0x78
LR is at __set_page_owner+0x44/0x78
__set_page_owner+0x48/0x78
get_page_from_freelist+0x880/0x8e8
__alloc_pages_nodemask+0x14c/0xc48
__do_page_cache_readahead+0xdc/0x264
filemap_fault+0x2ac/0x550
ext4_filemap_fault+0x3c/0x58
__do_fault+0x80/0x120
handle_mm_fault+0x704/0xbb0
do_page_fault+0x2e8/0x394
do_mem_abort+0x88/0x124
Pre-4.7 kernels also need commit f86e427197 ("mm: check the return
value of lookup_page_ext for all call sites").
Link: http://lkml.kernel.org/r/20171107094131.14621-1-jaewon31.kim@samsung.com
Fixes: eefa864b70 ("mm/page_ext: resurrect struct page extending code for debugging")
Signed-off-by: Jaewon Kim <jaewon31.kim@samsung.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d135e57502 upstream.
In reset_deferred_meminit() we determine number of pages that must not
be deferred. We initialize pages for at least 2G of memory, but also
pages for reserved memory in this node.
The reserved memory is determined in this function:
memblock_reserved_memory_within(), which operates over physical
addresses, and returns size in bytes. However, reset_deferred_meminit()
assumes that that this function operates with pfns, and returns page
count.
The result is that in the best case machine boots slower than expected
due to initializing more pages than needed in single thread, and in the
worst case panics because fewer than needed pages are initialized early.
Link: http://lkml.kernel.org/r/20171021011707.15191-1-pasha.tatashin@oracle.com
Fixes: 864b9a393d ("mm: consider memblock reservations for deferred memory initialization sizing")
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4855e4a7f2 upstream.
There is race between page freeing and unreserved highatomic.
CPU 0 CPU 1
free_hot_cold_page
mt = get_pfnblock_migratetype
set_pcppage_migratetype(page, mt)
unreserve_highatomic_pageblock
spin_lock_irqsave(&zone->lock)
move_freepages_block
set_pageblock_migratetype(page)
spin_unlock_irqrestore(&zone->lock)
free_pcppages_bulk
__free_one_page(mt) <- mt is stale
By above race, a page on CPU 0 could go non-highorderatomic free list
since the pageblock's type is changed. By that, unreserve logic of
highorderatomic can decrease reserved count on a same pageblock severak
times and then it will make mismatch between nr_reserved_highatomic and
the number of reserved pageblock.
So, this patch verifies whether the pageblock is highatomic or not and
decrease the count only if the pageblock is highatomic.
Link: http://lkml.kernel.org/r/1476259429-18279-3-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sangseok Lee <sangseok.lee@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Miles Chen <miles.chen@mediatek.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 197e7e5213 upstream.
The 'move_paghes()' system call was introduced long long ago with the
same permission checks as for sending a signal (except using
CAP_SYS_NICE instead of CAP_SYS_KILL for the overriding capability).
That turns out to not be a great choice - while the system call really
only moves physical page allocations around (and you need other
capabilities to do a lot of it), you can check the return value to map
out some the virtual address choices and defeat ASLR of a binary that
still shares your uid.
So change the access checks to the more common 'ptrace_may_access()'
model instead.
This tightens the access checks for the uid, and also effectively
changes the CAP_SYS_NICE check to CAP_SYS_PTRACE, but it's unlikely that
anybody really _uses_ this legacy system call any more (we hav ebetter
NUMA placement models these days), so I expect nobody to notice.
Famous last words.
Reported-by: Otto Ebeling <otto.ebeling@iki.fi>
Acked-by: Eric W. Biederman <ebiederm@xmission.com>
Cc: Willy Tarreau <w@1wt.eu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 73223e4e2e upstream.
I hit a use after free issue when executing trinity and repoduced it
with KASAN enabled. The related call trace is as follows.
BUG: KASan: use after free in SyS_get_mempolicy+0x3c8/0x960 at addr ffff8801f582d766
Read of size 2 by task syz-executor1/798
INFO: Allocated in mpol_new.part.2+0x74/0x160 age=3 cpu=1 pid=799
__slab_alloc+0x768/0x970
kmem_cache_alloc+0x2e7/0x450
mpol_new.part.2+0x74/0x160
mpol_new+0x66/0x80
SyS_mbind+0x267/0x9f0
system_call_fastpath+0x16/0x1b
INFO: Freed in __mpol_put+0x2b/0x40 age=4 cpu=1 pid=799
__slab_free+0x495/0x8e0
kmem_cache_free+0x2f3/0x4c0
__mpol_put+0x2b/0x40
SyS_mbind+0x383/0x9f0
system_call_fastpath+0x16/0x1b
INFO: Slab 0xffffea0009cb8dc0 objects=23 used=8 fp=0xffff8801f582de40 flags=0x200000000004080
INFO: Object 0xffff8801f582d760 @offset=5984 fp=0xffff8801f582d600
Bytes b4 ffff8801f582d750: ae 01 ff ff 00 00 00 00 5a 5a 5a 5a 5a 5a 5a 5a ........ZZZZZZZZ
Object ffff8801f582d760: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
Object ffff8801f582d770: 6b 6b 6b 6b 6b 6b 6b a5 kkkkkkk.
Redzone ffff8801f582d778: bb bb bb bb bb bb bb bb ........
Padding ffff8801f582d8b8: 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZ
Memory state around the buggy address:
ffff8801f582d600: fb fb fb fc fc fc fc fc fc fc fc fc fc fc fc fc
ffff8801f582d680: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
>ffff8801f582d700: fc fc fc fc fc fc fc fc fc fc fc fc fb fb fb fc
!shared memory policy is not protected against parallel removal by other
thread which is normally protected by the mmap_sem. do_get_mempolicy,
however, drops the lock midway while we can still access it later.
Early premature up_read is a historical artifact from times when
put_user was called in this path see https://lwn.net/Articles/124754/
but that is gone since 8bccd85ffb ("[PATCH] Implement sys_* do_*
layering in the memory policy layer."). but when we have the the
current mempolicy ref count model. The issue was introduced
accordingly.
Fix the issue by removing the premature release.
Link: http://lkml.kernel.org/r/1502950924-27521-1-git-send-email-zhongjiang@huawei.com
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 75dddef325 upstream.
The RDMA subsystem can generate several thousand of these messages per
second eventually leading to a kernel crash. Ratelimit these messages
to prevent this crash.
Doug said:
"I've been carrying a version of this for several kernel versions. I
don't remember when they started, but we have one (and only one) class
of machines: Dell PE R730xd, that generate these errors. When it
happens, without a rate limit, we get rcu timeouts and kernel oopses.
With the rate limit, we just get a lot of annoying kernel messages but
the machine continues on, recovers, and eventually the memory
operations all succeed"
And:
"> Well... why are all these EBUSY's occurring? It sounds inefficient
> (at least) but if it is expected, normal and unavoidable then
> perhaps we should just remove that message altogether?
I don't have an answer to that question. To be honest, I haven't
looked real hard. We never had this at all, then it started out of the
blue, but only on our Dell 730xd machines (and it hits all of them),
but no other classes or brands of machines. And we have our 730xd
machines loaded up with different brands and models of cards (for
instance one dedicated to mlx4 hardware, one for qib, one for mlx5, an
ocrdma/cxgb4 combo, etc), so the fact that it hit all of the machines
meant it wasn't tied to any particular brand/model of RDMA hardware.
To me, it always smelled of a hardware oddity specific to maybe the
CPUs or mainboard chipsets in these machines, so given that I'm not an
mm expert anyway, I never chased it down.
A few other relevant details: it showed up somewhere around 4.8/4.9 or
thereabouts. It never happened before, but the prinkt has been there
since the 3.18 days, so possibly the test to trigger this message was
changed, or something else in the allocator changed such that the
situation started happening on these machines?
And, like I said, it is specific to our 730xd machines (but they are
all identical, so that could mean it's something like their specific
ram configuration is causing the allocator to hit this on these
machine but not on other machines in the cluster, I don't want to say
it's necessarily the model of chipset or CPU, there are other bits of
identicalness between these machines)"
Link: http://lkml.kernel.org/r/499c0f6cc10d6eb829a67f2a4d75b4228a9b356e.1501695897.git.jtoppins@redhat.com
Signed-off-by: Jonathan Toppins <jtoppins@redhat.com>
Reviewed-by: Doug Ledford <dledford@redhat.com>
Tested-by: Doug Ledford <dledford@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3ea277194d upstream.
Stable note for 4.4: The upstream patch patches madvise(MADV_FREE) but 4.4
does not have support for that feature. The changelog is left
as-is but the hunk related to madvise is omitted from the backport.
Nadav Amit identified a theoritical race between page reclaim and
mprotect due to TLB flushes being batched outside of the PTL being held.
He described the race as follows:
CPU0 CPU1
---- ----
user accesses memory using RW PTE
[PTE now cached in TLB]
try_to_unmap_one()
==> ptep_get_and_clear()
==> set_tlb_ubc_flush_pending()
mprotect(addr, PROT_READ)
==> change_pte_range()
==> [ PTE non-present - no flush ]
user writes using cached RW PTE
...
try_to_unmap_flush()
The same type of race exists for reads when protecting for PROT_NONE and
also exists for operations that can leave an old TLB entry behind such
as munmap, mremap and madvise.
For some operations like mprotect, it's not necessarily a data integrity
issue but it is a correctness issue as there is a window where an
mprotect that limits access still allows access. For munmap, it's
potentially a data integrity issue although the race is massive as an
munmap, mmap and return to userspace must all complete between the
window when reclaim drops the PTL and flushes the TLB. However, it's
theoritically possible so handle this issue by flushing the mm if
reclaim is potentially currently batching TLB flushes.
Other instances where a flush is required for a present pte should be ok
as either the page lock is held preventing parallel reclaim or a page
reference count is elevated preventing a parallel free leading to
corruption. In the case of page_mkclean there isn't an obvious path
that userspace could take advantage of without using the operations that
are guarded by this patch. Other users such as gup as a race with
reclaim looks just at PTEs. huge page variants should be ok as they
don't race with reclaim. mincore only looks at PTEs. userfault also
should be ok as if a parallel reclaim takes place, it will either fault
the page back in or read some of the data before the flush occurs
triggering a fault.
Note that a variant of this patch was acked by Andy Lutomirski but this
was for the x86 parts on top of his PCID work which didn't make the 4.13
merge window as expected. His ack is dropped from this version and
there will be a follow-on patch on top of PCID that will include his
ack.
[akpm@linux-foundation.org: tweak comments]
[akpm@linux-foundation.org: fix spello]
Link: http://lkml.kernel.org/r/20170717155523.emckq2esjro6hf3z@suse.de
Reported-by: Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit adb1fe9ae2 upstream.
Linus suggested we try to remove some of the low-hanging fruit related
to kernel address exposure in dmesg. The only leaks I see on my local
system are:
Freeing SMP alternatives memory: 32K (ffffffff9e309000 - ffffffff9e311000)
Freeing initrd memory: 10588K (ffffa0b736b42000 - ffffa0b737599000)
Freeing unused kernel memory: 3592K (ffffffff9df87000 - ffffffff9e309000)
Freeing unused kernel memory: 1352K (ffffa0b7288ae000 - ffffa0b728a00000)
Freeing unused kernel memory: 632K (ffffa0b728d62000 - ffffa0b728e00000)
Linus says:
"I suspect we should just remove [the addresses in the 'Freeing'
messages]. I'm sure they are useful in theory, but I suspect they
were more useful back when the whole "free init memory" was
originally done.
These days, if we have a use-after-free, I suspect the init-mem
situation is the easiest situation by far. Compared to all the dynamic
allocations which are much more likely to show it anyway. So having
debug output for that case is likely not all that productive."
With this patch the freeing messages now look like this:
Freeing SMP alternatives memory: 32K
Freeing initrd memory: 10588K
Freeing unused kernel memory: 3592K
Freeing unused kernel memory: 1352K
Freeing unused kernel memory: 632K
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/6836ff90c45b71d38e5d4405aec56fa9e5d1d4b2.1477405374.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Kees Cook <keescook@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 37511fb5c9 upstream.
Jörn Engel noticed that the expand_upwards() function might not return
-ENOMEM in case the requested address is (unsigned long)-PAGE_SIZE and
if the architecture didn't defined TASK_SIZE as multiple of PAGE_SIZE.
Affected architectures are arm, frv, m68k, blackfin, h8300 and xtensa
which all define TASK_SIZE as 0xffffffff, but since none of those have
an upwards-growing stack we currently have no actual issue.
Nevertheless let's fix this just in case any of the architectures with
an upward-growing stack (currently parisc, metag and partly ia64) define
TASK_SIZE similar.
Link: http://lkml.kernel.org/r/20170702192452.GA11868@p100.box
Fixes: bd726c90b6 ("Allow stack to grow up to address space limit")
Signed-off-by: Helge Deller <deller@gmx.de>
Reported-by: Jörn Engel <joern@purestorage.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[Not upstream as that would take 34+ patches]
We've got reported a BUG in do_try_to_free_pages():
BUG: unable to handle kernel paging request at ffff8ffffff28990
IP: [<ffffffff8119abe0>] do_try_to_free_pages+0x140/0x490
PGD 0
Oops: 0000 [#1] SMP
megaraid_sas sg scsi_mod efivarfs autofs4
Supported: No, Unsupported modules are loaded
Workqueue: kacpi_hotplug acpi_hotplug_work_fn
task: ffff88ffd0d4c540 ti: ffff88ffd0e48000 task.ti: ffff88ffd0e48000
RIP: 0010:[<ffffffff8119abe0>] [<ffffffff8119abe0>] do_try_to_free_pages+0x140/0x490
RSP: 0018:ffff88ffd0e4ba60 EFLAGS: 00010206
RAX: 000006fffffff900 RBX: 00000000ffffffff RCX: ffff88fffff29000
RDX: 000000ffffffff00 RSI: 0000000000000003 RDI: 00000000024200c8
RBP: 0000000001320122 R08: 0000000000000000 R09: ffff88ffd0e4bbac
R10: 0000000000000000 R11: 0000000000000000 R12: ffff88ffd0e4bae0
R13: 0000000000000e00 R14: ffff88fffff2a500 R15: ffff88fffff2b300
FS: 0000000000000000(0000) GS:ffff88ffe6440000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffff8ffffff28990 CR3: 0000000001c0a000 CR4: 00000000003406e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Stack:
00000002db570a80 024200c80000001e ffff88fffff2b300 0000000000000000
ffff88fffffd5700 ffff88ffd0d4c540 ffff88ffd0d4c540 ffffffff0000000c
0000000000000000 0000000000000040 00000000024200c8 ffff88ffd0e4bae0
Call Trace:
[<ffffffff8119afea>] try_to_free_pages+0xba/0x170
[<ffffffff8118cf2f>] __alloc_pages_nodemask+0x53f/0xb20
[<ffffffff811d39ff>] alloc_pages_current+0x7f/0x100
[<ffffffff811e2232>] migrate_pages+0x202/0x710
[<ffffffff815dadaa>] __offline_pages.constprop.23+0x4ba/0x790
[<ffffffff81463263>] memory_subsys_offline+0x43/0x70
[<ffffffff8144cbed>] device_offline+0x7d/0xa0
[<ffffffff81392fa2>] acpi_bus_offline+0xa5/0xef
[<ffffffff81394a77>] acpi_device_hotplug+0x21b/0x41f
[<ffffffff8138dab7>] acpi_hotplug_work_fn+0x1a/0x23
[<ffffffff81093cee>] process_one_work+0x14e/0x410
[<ffffffff81094546>] worker_thread+0x116/0x490
[<ffffffff810999ed>] kthread+0xbd/0xe0
[<ffffffff815e4e7f>] ret_from_fork+0x3f/0x70
This translates to the loop in shrink_zone():
classzone_idx = requested_highidx;
while (!populated_zone(zone->zone_pgdat->node_zones +
classzone_idx))
classzone_idx--;
where no zone is populated, so classzone_idx becomes -1 (in RBX).
Added debugging output reveals that we enter the function with
sc->gfp_mask == GFP_NOFS|__GFP_NOFAIL|__GFP_HARDWALL|__GFP_MOVABLE
requested_highidx = gfp_zone(sc->gfp_mask) == 2 (ZONE_NORMAL)
Inside the for loop, however:
gfp_zone(sc->gfp_mask) == 3 (ZONE_MOVABLE)
This means we have gone through this branch:
if (buffer_heads_over_limit)
sc->gfp_mask |= __GFP_HIGHMEM;
This changes the gfp_zone() result, but requested_highidx remains unchanged.
On nodes where the only populated zone is movable, the inner while loop will
check only lower zones, which are not populated, and underflow classzone_idx.
To sum up, the bug occurs in configurations with ZONE_MOVABLE (such as when
booted with the movable_node parameter) and only in situations when
buffer_heads_over_limit is true, and there's an allocation with __GFP_MOVABLE
and without __GFP_HIGHMEM performing direct reclaim.
This patch makes sure that classzone_idx starts with the correct zone.
Mainline has been affected in versions 4.6 and 4.7, but the culprit commit has
been also included in stable trees.
In mainline, this has been fixed accidentally as part of 34-patch series (plus
follow-up fixes) "Move LRU page reclaim from zones to nodes", which makes the
mainline commit unsuitable for stable backport, unfortunately.
Fixes: 7bf52fb891 ("mm: vmscan: reclaim highmem zone if buffer_heads is over limit")
Obsoleted-by: b2e18757f2 ("mm, vmscan: begin reclaiming pages on a per-node basis")
Debugged-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3c226c637b upstream.
In do_huge_pmd_numa_page(), we attempt to handle a migrating thp pmd by
waiting until the pmd is unlocked before we return and retry. However,
we can race with migrate_misplaced_transhuge_page():
// do_huge_pmd_numa_page // migrate_misplaced_transhuge_page()
// Holds 0 refs on page // Holds 2 refs on page
vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
/* ... */
if (pmd_trans_migrating(*vmf->pmd)) {
page = pmd_page(*vmf->pmd);
spin_unlock(vmf->ptl);
ptl = pmd_lock(mm, pmd);
if (page_count(page) != 2)) {
/* roll back */
}
/* ... */
mlock_migrate_page(new_page, page);
/* ... */
spin_unlock(ptl);
put_page(page);
put_page(page); // page freed here
wait_on_page_locked(page);
goto out;
}
This can result in the freed page having its waiters flag set
unexpectedly, which trips the PAGE_FLAGS_CHECK_AT_PREP checks in the
page alloc/free functions. This has been observed on arm64 KVM guests.
We can avoid this by having do_huge_pmd_numa_page() take a reference on
the page before dropping the pmd lock, mirroring what we do in
__migration_entry_wait().
When we hit the race, migrate_misplaced_transhuge_page() will see the
reference and abort the migration, as it may do today in other cases.
Fixes: b8916634b7 ("mm: Prevent parallel splits during THP migration")
Link: http://lkml.kernel.org/r/1497349722-6731-2-git-send-email-will.deacon@arm.com
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Acked-by: Steve Capper <steve.capper@arm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f4cb767d76 upstream.
Trinity gets kernel BUG at mm/mmap.c:1963! in about 3 minutes of
mmap testing. That's the VM_BUG_ON(gap_end < gap_start) at the
end of unmapped_area_topdown(). Linus points out how MAP_FIXED
(which does not have to respect our stack guard gap intentions)
could result in gap_end below gap_start there. Fix that, and
the similar case in its alternative, unmapped_area().
Fixes: 1be7107fbe ("mm: larger stack guard gap, between vmas")
Reported-by: Dave Jones <davej@codemonkey.org.uk>
Debugged-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit bd726c90b6 upstream.
Fix expand_upwards() on architectures with an upward-growing stack (parisc,
metag and partly IA-64) to allow the stack to reliably grow exactly up to
the address space limit given by TASK_SIZE.
Signed-off-by: Helge Deller <deller@gmx.de>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1be7107fbe upstream.
Stack guard page is a useful feature to reduce a risk of stack smashing
into a different mapping. We have been using a single page gap which
is sufficient to prevent having stack adjacent to a different mapping.
But this seems to be insufficient in the light of the stack usage in
userspace. E.g. glibc uses as large as 64kB alloca() in many commonly
used functions. Others use constructs liks gid_t buffer[NGROUPS_MAX]
which is 256kB or stack strings with MAX_ARG_STRLEN.
This will become especially dangerous for suid binaries and the default
no limit for the stack size limit because those applications can be
tricked to consume a large portion of the stack and a single glibc call
could jump over the guard page. These attacks are not theoretical,
unfortunatelly.
Make those attacks less probable by increasing the stack guard gap
to 1MB (on systems with 4k pages; but make it depend on the page size
because systems with larger base pages might cap stack allocations in
the PAGE_SIZE units) which should cover larger alloca() and VLA stack
allocations. It is obviously not a full fix because the problem is
somehow inherent, but it should reduce attack space a lot.
One could argue that the gap size should be configurable from userspace,
but that can be done later when somebody finds that the new 1MB is wrong
for some special case applications. For now, add a kernel command line
option (stack_guard_gap) to specify the stack gap size (in page units).
Implementation wise, first delete all the old code for stack guard page:
because although we could get away with accounting one extra page in a
stack vma, accounting a larger gap can break userspace - case in point,
a program run with "ulimit -S -v 20000" failed when the 1MB gap was
counted for RLIMIT_AS; similar problems could come with RLIMIT_MLOCK
and strict non-overcommit mode.
Instead of keeping gap inside the stack vma, maintain the stack guard
gap as a gap between vmas: using vm_start_gap() in place of vm_start
(or vm_end_gap() in place of vm_end if VM_GROWSUP) in just those few
places which need to respect the gap - mainly arch_get_unmapped_area(),
and and the vma tree's subtree_gap support for that.
Original-patch-by: Oleg Nesterov <oleg@redhat.com>
Original-patch-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[wt: backport to 4.11: adjust context]
[wt: backport to 4.9: adjust context ; kernel doc was not in admin-guide]
[wt: backport to 4.4: adjust context ; drop ppc hugetlb_radix changes]
Signed-off-by: Willy Tarreau <w@1wt.eu>
[gkh: minor build fixes for 4.4]
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7258ae5c5a upstream.
memory_failure() chooses a recovery action function based on the page
flags. For huge pages it uses the tail page flags which don't have
anything interesting set, resulting in:
> Memory failure: 0x9be3b4: Unknown page state
> Memory failure: 0x9be3b4: recovery action for unknown page: Failed
Instead, save a copy of the head page's flags if this is a huge page,
this means if there are no relevant flags for this tail page, we use the
head pages flags instead. This results in the me_huge_page() recovery
action being called:
> Memory failure: 0x9b7969: recovery action for huge page: Delayed
For hugepages that have not yet been allocated, this allows the hugepage
to be dequeued.
Fixes: 524fca1e73 ("HWPOISON: fix misjudgement of page_action() for errors on mlocked pages")
Link: http://lkml.kernel.org/r/20170524130204.21845-1-james.morse@arm.com
Signed-off-by: James Morse <james.morse@arm.com>
Tested-by: Punit Agrawal <punit.agrawal@arm.com>
Acked-by: Punit Agrawal <punit.agrawal@arm.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 864b9a393d upstream.
We have seen an early OOM killer invocation on ppc64 systems with
crashkernel=4096M:
kthreadd invoked oom-killer: gfp_mask=0x16040c0(GFP_KERNEL|__GFP_COMP|__GFP_NOTRACK), nodemask=7, order=0, oom_score_adj=0
kthreadd cpuset=/ mems_allowed=7
CPU: 0 PID: 2 Comm: kthreadd Not tainted 4.4.68-1.gd7fe927-default #1
Call Trace:
dump_stack+0xb0/0xf0 (unreliable)
dump_header+0xb0/0x258
out_of_memory+0x5f0/0x640
__alloc_pages_nodemask+0xa8c/0xc80
kmem_getpages+0x84/0x1a0
fallback_alloc+0x2a4/0x320
kmem_cache_alloc_node+0xc0/0x2e0
copy_process.isra.25+0x260/0x1b30
_do_fork+0x94/0x470
kernel_thread+0x48/0x60
kthreadd+0x264/0x330
ret_from_kernel_thread+0x5c/0xa4
Mem-Info:
active_anon:0 inactive_anon:0 isolated_anon:0
active_file:0 inactive_file:0 isolated_file:0
unevictable:0 dirty:0 writeback:0 unstable:0
slab_reclaimable:5 slab_unreclaimable:73
mapped:0 shmem:0 pagetables:0 bounce:0
free:0 free_pcp:0 free_cma:0
Node 7 DMA free:0kB min:0kB low:0kB high:0kB active_anon:0kB inactive_anon:0kB active_file:0kB inactive_file:0kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:52428800kB managed:110016kB mlocked:0kB dirty:0kB writeback:0kB mapped:0kB shmem:0kB slab_reclaimable:320kB slab_unreclaimable:4672kB kernel_stack:1152kB pagetables:0kB unstable:0kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? yes
lowmem_reserve[]: 0 0 0 0
Node 7 DMA: 0*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB 0*8192kB 0*16384kB = 0kB
0 total pagecache pages
0 pages in swap cache
Swap cache stats: add 0, delete 0, find 0/0
Free swap = 0kB
Total swap = 0kB
819200 pages RAM
0 pages HighMem/MovableOnly
817481 pages reserved
0 pages cma reserved
0 pages hwpoisoned
the reason is that the managed memory is too low (only 110MB) while the
rest of the the 50GB is still waiting for the deferred intialization to
be done. update_defer_init estimates the initial memoty to initialize
to 2GB at least but it doesn't consider any memory allocated in that
range. In this particular case we've had
Reserving 4096MB of memory at 128MB for crashkernel (System RAM: 51200MB)
so the low 2GB is mostly depleted.
Fix this by considering memblock allocations in the initial static
initialization estimation. Move the max_initialise to
reset_deferred_meminit and implement a simple memblock_reserved_memory
helper which iterates all reserved blocks and sums the size of all that
start below the given address. The cumulative size is than added on top
of the initial estimation. This is still not ideal because
reset_deferred_meminit doesn't consider holes and so reservation might
be above the initial estimation whihch we ignore but let's make the
logic simpler until we really need to handle more complicated cases.
Fixes: 3a80a7fa79 ("mm: meminit: initialise a subset of struct pages if CONFIG_DEFERRED_STRUCT_PAGE_INIT is set")
Link: http://lkml.kernel.org/r/20170531104010.GI27783@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Tested-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 70feee0e1e upstream.
Kefeng reported that when running the follow test, the mlock count in
meminfo will increase permanently:
[1] testcase
linux:~ # cat test_mlockal
grep Mlocked /proc/meminfo
for j in `seq 0 10`
do
for i in `seq 4 15`
do
./p_mlockall >> log &
done
sleep 0.2
done
# wait some time to let mlock counter decrease and 5s may not enough
sleep 5
grep Mlocked /proc/meminfo
linux:~ # cat p_mlockall.c
#include <sys/mman.h>
#include <stdlib.h>
#include <stdio.h>
#define SPACE_LEN 4096
int main(int argc, char ** argv)
{
int ret;
void *adr = malloc(SPACE_LEN);
if (!adr)
return -1;
ret = mlockall(MCL_CURRENT | MCL_FUTURE);
printf("mlcokall ret = %d\n", ret);
ret = munlockall();
printf("munlcokall ret = %d\n", ret);
free(adr);
return 0;
}
In __munlock_pagevec() we should decrement NR_MLOCK for each page where
we clear the PageMlocked flag. Commit 1ebb7cc6a5 ("mm: munlock: batch
NR_MLOCK zone state updates") has introduced a bug where we don't
decrement NR_MLOCK for pages where we clear the flag, but fail to
isolate them from the lru list (e.g. when the pages are on some other
cpu's percpu pagevec). Since PageMlocked stays cleared, the NR_MLOCK
accounting gets permanently disrupted by this.
Fix it by counting the number of page whose PageMlock flag is cleared.
Fixes: 1ebb7cc6a5 (" mm: munlock: batch NR_MLOCK zone state updates")
Link: http://lkml.kernel.org/r/1495678405-54569-1-git-send-email-xieyisheng1@huawei.com
Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com>
Reported-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Tested-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joern Engel <joern@logfs.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michel Lespinasse <walken@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: zhongjiang <zhongjiang@huawei.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>