IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Waiting on a page migration entry has used wait_on_page_locked() all along
since 2006: but you cannot safely wait_on_page_locked() without holding a
reference to the page, and that extra reference is enough to make
migrate_page_move_mapping() fail with -EAGAIN, when a racing task faults
on the entry before migrate_page_move_mapping() gets there.
And that failure is retried nine times, amplifying the pain when trying to
migrate a popular page. With a single persistent faulter, migration
sometimes succeeds; with two or three concurrent faulters, success becomes
much less likely (and the more the page was mapped, the worse the overhead
of unmapping and remapping it on each try).
This is especially a problem for memory offlining, where the outer level
retries forever (or until terminated from userspace), because a heavy
refault workload can trigger an endless loop of migration failures.
wait_on_page_locked() is the wrong tool for the job.
David Herrmann (but was he the first?) noticed this issue in 2014:
https://marc.info/?l=linux-mm&m=140110465608116&w=2
Tim Chen started a thread in August 2017 which appears relevant:
https://marc.info/?l=linux-mm&m=150275941014915&w=2 where Kan Liang went
on to implicate __migration_entry_wait():
https://marc.info/?l=linux-mm&m=150300268411980&w=2 and the thread ended
up with the v4.14 commits: 2554db9165 ("sched/wait: Break up long wake
list walk") 11a19c7b09 ("sched/wait: Introduce wakeup boomark in
wake_up_page_bit")
Baoquan He reported "Memory hotplug softlock issue" 14 November 2018:
https://marc.info/?l=linux-mm&m=154217936431300&w=2
We have all assumed that it is essential to hold a page reference while
waiting on a page lock: partly to guarantee that there is still a struct
page when MEMORY_HOTREMOVE is configured, but also to protect against
reuse of the struct page going to someone who then holds the page locked
indefinitely, when the waiter can reasonably expect timely unlocking.
But in fact, so long as wait_on_page_bit_common() does the put_page(), and
is careful not to rely on struct page contents thereafter, there is no
need to hold a reference to the page while waiting on it. That does mean
that this case cannot go back through the loop: but that's fine for the
page migration case, and even if used more widely, is limited by the "Stop
walking if it's locked" optimization in wake_page_function().
Add interface put_and_wait_on_page_locked() to do this, using "behavior"
enum in place of "lock" arg to wait_on_page_bit_common() to implement it.
No interruptible or killable variant needed yet, but they might follow: I
have a vague notion that reporting -EINTR should take precedence over
return from wait_on_page_bit_common() without knowing the page state, so
arrange it accordingly - but that may be nothing but pedantic.
__migration_entry_wait() still has to take a brief reference to the page,
prior to calling put_and_wait_on_page_locked(): but now that it is dropped
before waiting, the chance of impeding page migration is very much
reduced. Should we perhaps disable preemption across this?
shrink_page_list()'s __ClearPageLocked(): that was a surprise! This
survived a lot of testing before that showed up. PageWaiters may have
been set by wait_on_page_bit_common(), and the reference dropped, just
before shrink_page_list() succeeds in freezing its last page reference: in
such a case, unlock_page() must be used. Follow the suggestion from
Michal Hocko, just revert a978d6f521 ("mm: unlockless reclaim") now:
that optimization predates PageWaiters, and won't buy much these days; but
we can reinstate it for the !PageWaiters case if anyone notices.
It does raise the question: should vmscan.c's is_page_cache_freeable() and
__remove_mapping() now treat a PageWaiters page as if an extra reference
were held? Perhaps, but I don't think it matters much, since
shrink_page_list() already had to win its trylock_page(), so waiters are
not very common there: I noticed no difference when trying the bigger
change, and it's surely not needed while put_and_wait_on_page_locked() is
only used for page migration.
[willy@infradead.org: add put_and_wait_on_page_locked() kerneldoc]
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1811261121330.1116@eggly.anvils
Signed-off-by: Hugh Dickins <hughd@google.com>
Reported-by: Baoquan He <bhe@redhat.com>
Tested-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Herrmann <dh.herrmann@gmail.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Nick Piggin <npiggin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
totalram_pages and totalhigh_pages are made static inline function.
Main motivation was that managed_page_count_lock handling was complicating
things. It was discussed in length here,
https://lore.kernel.org/patchwork/patch/995739/#1181785 So it seemes
better to remove the lock and convert variables to atomic, with preventing
poteintial store-to-read tearing as a bonus.
[akpm@linux-foundation.org: coding style fixes]
Link: http://lkml.kernel.org/r/1542090790-21750-4-git-send-email-arunks@codeaurora.org
Signed-off-by: Arun KS <arunks@codeaurora.org>
Suggested-by: Michal Hocko <mhocko@suse.com>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When splitting a huge migrating PMD, we'll transfer all the existing PMD
bits and apply them again onto the small PTEs. However we are fetching
the bits unconditionally via pmd_soft_dirty(), pmd_write() or
pmd_yound() while actually they don't make sense at all when it's a
migration entry. Fix them up. Since at it, drop the ifdef together as
not needed.
Note that if my understanding is correct about the problem then if
without the patch there is chance to lose some of the dirty bits in the
migrating pmd pages (on x86_64 we're fetching bit 11 which is part of
swap offset instead of bit 2) and it could potentially corrupt the
memory of an userspace program which depends on the dirty bit.
Link: http://lkml.kernel.org/r/20181213051510.20306-1-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: <stable@vger.kernel.org> [4.14+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit 89c83fb539.
This should have been done as part of 2f0799a0ff ("mm, thp: restore
node-local hugepage allocations"). The movement of the thp allocation
policy from alloc_pages_vma() to alloc_hugepage_direct_gfpmask() was
intended to only set __GFP_THISNODE for mempolicies that are not
MPOL_BIND whereas the revert could set this regardless of mempolicy.
While the check for MPOL_BIND between alloc_hugepage_direct_gfpmask()
and alloc_pages_vma() was racy, that has since been removed since the
revert. What is left is the possibility to use __GFP_THISNODE in
policy_node() when it is unexpected because the special handling for
hugepages in alloc_pages_vma() was removed as part of the consolidation.
Secondly, prior to 89c83fb539, alloc_pages_vma() implemented a somewhat
different policy for hugepage allocations, which were allocated through
alloc_hugepage_vma(). For hugepage allocations, if the allocating
process's node is in the set of allowed nodes, allocate with
__GFP_THISNODE for that node (for MPOL_PREFERRED, use that node with
__GFP_THISNODE instead). This was changed for shmem_alloc_hugepage() to
allow fallback to other nodes in 89c83fb539 as it did for new_page() in
mm/mempolicy.c which is functionally different behavior and removes the
requirement to only allocate hugepages locally.
So this commit does a full revert of 89c83fb539 instead of the partial
revert that was done in 2f0799a0ff. The result is the same thp
allocation policy for 4.20 that was in 4.19.
Fixes: 89c83fb539 ("mm, thp: consolidate THP gfp handling into alloc_hugepage_direct_gfpmask")
Fixes: 2f0799a0ff ("mm, thp: restore node-local hugepage allocations")
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a full revert of ac5b2c1891 ("mm: thp: relax __GFP_THISNODE for
MADV_HUGEPAGE mappings") and a partial revert of 89c83fb539 ("mm, thp:
consolidate THP gfp handling into alloc_hugepage_direct_gfpmask").
By not setting __GFP_THISNODE, applications can allocate remote hugepages
when the local node is fragmented or low on memory when either the thp
defrag setting is "always" or the vma has been madvised with
MADV_HUGEPAGE.
Remote access to hugepages often has much higher latency than local pages
of the native page size. On Haswell, ac5b2c1891 was shown to have a
13.9% access regression after this commit for binaries that remap their
text segment to be backed by transparent hugepages.
The intent of ac5b2c1891 is to address an issue where a local node is
low on memory or fragmented such that a hugepage cannot be allocated. In
every scenario where this was described as a fix, there is abundant and
unfragmented remote memory available to allocate from, even with a greater
access latency.
If remote memory is also low or fragmented, not setting __GFP_THISNODE was
also measured on Haswell to have a 40% regression in allocation latency.
Restore __GFP_THISNODE for thp allocations.
Fixes: ac5b2c1891 ("mm: thp: relax __GFP_THISNODE for MADV_HUGEPAGE mappings")
Fixes: 89c83fb539 ("mm, thp: consolidate THP gfp handling into alloc_hugepage_direct_gfpmask")
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Huge tmpfs testing, on 32-bit kernel with lockdep enabled, showed that
__split_huge_page() was using i_size_read() while holding the irq-safe
lru_lock and page tree lock, but the 32-bit i_size_read() uses an
irq-unsafe seqlock which should not be nested inside them.
Instead, read the i_size earlier in split_huge_page_to_list(), and pass
the end offset down to __split_huge_page(): all while holding head page
lock, which is enough to prevent truncation of that extent before the
page tree lock has been taken.
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1811261520070.2275@eggly.anvils
Fixes: baa355fd33 ("thp: file pages support for split_huge_page()")
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: <stable@vger.kernel.org> [4.8+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Huge tmpfs stress testing has occasionally hit shmem_undo_range()'s
VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page).
Move the setting of mapping and index up before the page_ref_unfreeze()
in __split_huge_page_tail() to fix this: so that a page cache lookup
cannot get a reference while the tail's mapping and index are unstable.
In fact, might as well move them up before the smp_wmb(): I don't see an
actual need for that, but if I'm missing something, this way round is
safer than the other, and no less efficient.
You might argue that VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page) is
misplaced, and should be left until after the trylock_page(); but left as
is has not crashed since, and gives more stringent assurance.
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1811261516380.2275@eggly.anvils
Fixes: e9b61f1985 ("thp: reintroduce split_huge_page()")
Requires: 605ca5ede7 ("mm/huge_memory.c: reorder operations in __split_huge_page_tail()")
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: <stable@vger.kernel.org> [4.8+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The term "freeze" is used in several ways in the kernel, and in mm it
has the particular meaning of forcing page refcount temporarily to 0.
freeze_page() is just too confusing a name for a function that unmaps a
page: rename it unmap_page(), and rename unfreeze_page() remap_page().
Went to change the mention of freeze_page() added later in mm/rmap.c,
but found it to be incorrect: ordinary page reclaim reaches there too;
but the substance of the comment still seems correct, so edit it down.
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1811261514080.2275@eggly.anvils
Fixes: e9b61f1985 ("thp: reintroduce split_huge_page()")
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: <stable@vger.kernel.org> [4.8+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
THP allocation mode is quite complex and it depends on the defrag mode.
This complexity is hidden in alloc_hugepage_direct_gfpmask from a large
part currently. The NUMA special casing (namely __GFP_THISNODE) is
however independent and placed in alloc_pages_vma currently. This both
adds an unnecessary branch to all vma based page allocation requests and
it makes the code more complex unnecessarily as well. Not to mention
that e.g. shmem THP used to do the node reclaiming unconditionally
regardless of the defrag mode until recently. This was not only
unexpected behavior but it was also hardly a good default behavior and I
strongly suspect it was just a side effect of the code sharing more than
a deliberate decision which suggests that such a layering is wrong.
Get rid of the thp special casing from alloc_pages_vma and move the
logic to alloc_hugepage_direct_gfpmask. __GFP_THISNODE is applied to the
resulting gfp mask only when the direct reclaim is not requested and
when there is no explicit numa binding to preserve the current logic.
Please note that there's also a slight difference wrt MPOL_BIND now. The
previous code would avoid using __GFP_THISNODE if the local node was
outside of policy_nodemask(). After this patch __GFP_THISNODE is avoided
for all MPOL_BIND policies. So there's a difference that if local node
is actually allowed by the bind policy's nodemask, previously
__GFP_THISNODE would be added, but now it won't be. From the behavior
POV this is still correct because the policy nodemask is used.
Link: http://lkml.kernel.org/r/20180925120326.24392-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Stefan Priebe - Profihost AG <s.priebe@profihost.ag>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull XArray conversion from Matthew Wilcox:
"The XArray provides an improved interface to the radix tree data
structure, providing locking as part of the API, specifying GFP flags
at allocation time, eliminating preloading, less re-walking the tree,
more efficient iterations and not exposing RCU-protected pointers to
its users.
This patch set
1. Introduces the XArray implementation
2. Converts the pagecache to use it
3. Converts memremap to use it
The page cache is the most complex and important user of the radix
tree, so converting it was most important. Converting the memremap
code removes the only other user of the multiorder code, which allows
us to remove the radix tree code that supported it.
I have 40+ followup patches to convert many other users of the radix
tree over to the XArray, but I'd like to get this part in first. The
other conversions haven't been in linux-next and aren't suitable for
applying yet, but you can see them in the xarray-conv branch if you're
interested"
* 'xarray' of git://git.infradead.org/users/willy/linux-dax: (90 commits)
radix tree: Remove multiorder support
radix tree test: Convert multiorder tests to XArray
radix tree tests: Convert item_delete_rcu to XArray
radix tree tests: Convert item_kill_tree to XArray
radix tree tests: Move item_insert_order
radix tree test suite: Remove multiorder benchmarking
radix tree test suite: Remove __item_insert
memremap: Convert to XArray
xarray: Add range store functionality
xarray: Move multiorder_check to in-kernel tests
xarray: Move multiorder_shrink to kernel tests
xarray: Move multiorder account test in-kernel
radix tree test suite: Convert iteration test to XArray
radix tree test suite: Convert tag_tagged_items to XArray
radix tree: Remove radix_tree_clear_tags
radix tree: Remove radix_tree_maybe_preload_order
radix tree: Remove split/join code
radix tree: Remove radix_tree_update_node_t
page cache: Finish XArray conversion
dax: Convert page fault handlers to XArray
...
change_huge_pmd() after arming the numa/protnone pmd doesn't flush the TLB
right away. do_huge_pmd_numa_page() flushes the TLB before calling
migrate_misplaced_transhuge_page(). By the time do_huge_pmd_numa_page()
runs some CPU could still access the page through the TLB.
change_huge_pmd() before arming the numa/protnone transhuge pmd calls
mmu_notifier_invalidate_range_start(). So there's no need of
mmu_notifier_invalidate_range_start()/mmu_notifier_invalidate_range_only_end()
sequence in migrate_misplaced_transhuge_page() too, because by the time
migrate_misplaced_transhuge_page() runs, the pmd mapping has already been
invalidated in the secondary MMUs. It has to or if a secondary MMU can
still write to the page, the migrate_page_copy() would lose data.
However an explicit mmu_notifier_invalidate_range() is needed before
migrate_misplaced_transhuge_page() starts copying the data of the
transhuge page or the below can happen for MMU notifier users sharing the
primary MMU pagetables and only implementing ->invalidate_range:
CPU0 CPU1 GPU sharing linux pagetables using
only ->invalidate_range
----------- ------------ ---------
GPU secondary MMU writes to the page
mapped by the transhuge pmd
change_pmd_range()
mmu..._range_start()
->invalidate_range_start() noop
change_huge_pmd()
set_pmd_at(numa/protnone)
pmd_unlock()
do_huge_pmd_numa_page()
CPU TLB flush globally (1)
CPU cannot write to page
migrate_misplaced_transhuge_page()
GPU writes to the page...
migrate_page_copy()
...GPU stops writing to the page
CPU TLB flush (2)
mmu..._range_end() (3)
->invalidate_range_stop() noop
->invalidate_range()
GPU secondary MMU is invalidated
and cannot write to the page anymore
(too late)
Just like we need a CPU TLB flush (1) because the TLB flush (2) arrives
too late, we also need a mmu_notifier_invalidate_range() before calling
migrate_misplaced_transhuge_page(), because the ->invalidate_range() in
(3) also arrives too late.
This requirement is the result of the lazy optimization in
change_huge_pmd() that releases the pmd_lock without first flushing the
TLB and without first calling mmu_notifier_invalidate_range().
Even converting the removed mmu_notifier_invalidate_range_only_end() into
a mmu_notifier_invalidate_range_end() would not have been enough to fix
this, because it run after migrate_page_copy().
After the hugepage data copy is done migrate_misplaced_transhuge_page()
can proceed and call set_pmd_at without having to flush the TLB nor any
secondary MMUs because the secondary MMU invalidate, just like the CPU TLB
flush, has to happen before the migrate_page_copy() is called or it would
be a bug in the first place (and it was for drivers using
->invalidate_range()).
KVM is unaffected because it doesn't implement ->invalidate_range().
The standard PAGE_SIZEd migrate_misplaced_page is less accelerated and
uses the generic migrate_pages which transitions the pte from
numa/protnone to a migration entry in try_to_unmap_one() and flushes TLBs
and all mmu notifiers there before copying the page.
Link: http://lkml.kernel.org/r/20181013002430.698-3-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Aaron Tomlin <atomlin@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Getting pages from ZONE_DEVICE memory needs to check the backing device's
live-ness, which is tracked in the device's dev_pagemap metadata. This
metadata is stored in a radix tree and looking it up adds measurable
software overhead.
This patch avoids repeating this relatively costly operation when
dev_pagemap is used by caching the last dev_pagemap while getting user
pages. The gup_benchmark kernel self test reports this reduces time to
get user pages to as low as 1/3 of the previous time.
Link: http://lkml.kernel.org/r/20181012173040.15669-1-keith.busch@intel.com
Signed-off-by: Keith Busch <keith.busch@intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Refaults happen during transitions between workingsets as well as in-place
thrashing. Knowing the difference between the two has a range of
applications, including measuring the impact of memory shortage on the
system performance, as well as the ability to smarter balance pressure
between the filesystem cache and the swap-backed workingset.
During workingset transitions, inactive cache refaults and pushes out
established active cache. When that active cache isn't stale, however,
and also ends up refaulting, that's bonafide thrashing.
Introduce a new page flag that tells on eviction whether the page has been
active or not in its lifetime. This bit is then stored in the shadow
entry, to classify refaults as transitioning or thrashing.
How many page->flags does this leave us with on 32-bit?
20 bits are always page flags
21 if you have an MMU
23 with the zone bits for DMA, Normal, HighMem, Movable
29 with the sparsemem section bits
30 if PAE is enabled
31 with this patch.
So on 32-bit PAE, that leaves 1 bit for distinguishing two NUMA nodes. If
that's not enough, the system can switch to discontigmem and re-gain the 6
or 7 sparsemem section bits.
Link: http://lkml.kernel.org/r/20180828172258.3185-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Jann Horn points out that our TLB flushing was subtly wrong for the
mremap() case. What makes mremap() special is that we don't follow the
usual "add page to list of pages to be freed, then flush tlb, and then
free pages". No, mremap() obviously just _moves_ the page from one page
table location to another.
That matters, because mremap() thus doesn't directly control the
lifetime of the moved page with a freelist: instead, the lifetime of the
page is controlled by the page table locking, that serializes access to
the entry.
As a result, we need to flush the TLB not just before releasing the lock
for the source location (to avoid any concurrent accesses to the entry),
but also before we release the destination page table lock (to avoid the
TLB being flushed after somebody else has already done something to that
page).
This also makes the whole "need_flush" logic unnecessary, since we now
always end up flushing the TLB for every valid entry.
Reported-and-tested-by: Jann Horn <jannh@google.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Tested-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Inside set_pmd_migration_entry() we are holding page table locks and thus
we can not sleep so we can not call invalidate_range_start/end()
So remove call to mmu_notifier_invalidate_range_start/end() because they
are call inside the function calling set_pmd_migration_entry() (see
try_to_unmap_one()).
Link: http://lkml.kernel.org/r/20181012181056.7864-1-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reported-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Zi Yan <zi.yan@cs.rutgers.edu>
Acked-by: Michal Hocko <mhocko@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Nellans <dnellans@nvidia.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
A transparent huge page is represented by a single entry on an LRU list.
Therefore, we can only make unevictable an entire compound page, not
individual subpages.
If a user tries to mlock() part of a huge page, we want the rest of the
page to be reclaimable.
We handle this by keeping PTE-mapped huge pages on normal LRU lists: the
PMD on border of VM_LOCKED VMA will be split into PTE table.
Introduction of THP migration breaks[1] the rules around mlocking THP
pages. If we had a single PMD mapping of the page in mlocked VMA, the
page will get mlocked, regardless of PTE mappings of the page.
For tmpfs/shmem it's easy to fix by checking PageDoubleMap() in
remove_migration_pmd().
Anon THP pages can only be shared between processes via fork(). Mlocked
page can only be shared if parent mlocked it before forking, otherwise CoW
will be triggered on mlock().
For Anon-THP, we can fix the issue by munlocking the page on removing PTE
migration entry for the page. PTEs for the page will always come after
mlocked PMD: rmap walks VMAs from oldest to newest.
Test-case:
#include <unistd.h>
#include <sys/mman.h>
#include <sys/wait.h>
#include <linux/mempolicy.h>
#include <numaif.h>
int main(void)
{
unsigned long nodemask = 4;
void *addr;
addr = mmap((void *)0x20000000UL, 2UL << 20, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_LOCKED, -1, 0);
if (fork()) {
wait(NULL);
return 0;
}
mlock(addr, 4UL << 10);
mbind(addr, 2UL << 20, MPOL_PREFERRED | MPOL_F_RELATIVE_NODES,
&nodemask, 4, MPOL_MF_MOVE);
return 0;
}
[1] https://lkml.kernel.org/r/CAOMGZ=G52R-30rZvhGxEbkTw7rLLwBGadVYeo--iizcD3upL3A@mail.gmail.com
Link: http://lkml.kernel.org/r/20180917133816.43995-1-kirill.shutemov@linux.intel.com
Fixes: 616b837153 ("mm: thp: enable thp migration in generic path")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Vegard Nossum <vegard.nossum@oracle.com>
Reviewed-by: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org> [4.14+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
It looks like I missed the PUD path when doing VM_MIXEDMAP removal.
This can be triggered by:
1. Boot with memmap=4G!8G
2. build ndctl with destructive flag on
3. make TESTS=device-dax check
[ +0.000675] kernel BUG at mm/huge_memory.c:824!
Applying the same change that was applied to vmf_insert_pfn_pmd() in the
original patch.
Link: http://lkml.kernel.org/r/153565957352.35524.1005746906902065126.stgit@djiang5-desk3.ch.intel.com
Fixes: e1fb4a0864 ("dax: remove VM_MIXEDMAP for fsdax and device dax")
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Reported-by: Vishal Verma <vishal.l.verma@intel.com>
Tested-by: Vishal Verma <vishal.l.verma@intel.com>
Acked-by: Jeff Moyer <jmoyer@redhat.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* memory_failure() gets confused by dev_pagemap backed mappings. The
recovery code has specific enabling for several possible page states
that needs new enabling to handle poison in dax mappings. Teach
memory_failure() about ZONE_DEVICE pages.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE5DAy15EJMCV1R6v9YGjFFmlTOEoFAlt9ui8ACgkQYGjFFmlT
OEpNRw//XGj9s7sezfJFeol4psJlRUd935yii/gmJRgi/yPf2VxxQG9qyM6SMBUc
75jASfOL6FSsfxHz0kplyWzMDNdrTkNNAD+9rv80FmY7GqWgcas9DaJX7jZ994vI
5SRO7pfvNZcXlo7IhqZippDw3yxkIU9Ufi0YQKaEUm7GFieptvCZ0p9x3VYfdvwM
BExrxQe0X1XUF4xErp5P78+WUbKxP47DLcucRDig8Q7dmHELUdyNzo3E1SVoc7m+
3CmvyTj6XuFQgOZw7ZKun1BJYfx/eD5ZlRJLZbx6wJHRtTXv/Uea8mZ8mJ31ykN9
F7QVd0Pmlyxys8lcXfK+nvpL09QBE0/PhwWKjmZBoU8AdgP/ZvBXLDL/D6YuMTg6
T4wwtPNJorfV4lVD06OliFkVI4qbKbmNsfRq43Ns7PCaLueu4U/eMaSwSH99UMaZ
MGbO140XW2RZsHiU9yTRUmZq73AplePEjxtzR8oHmnjo45nPDPy8mucWPlkT9kXA
oUFMhgiviK7dOo19H4eaPJGqLmHM93+x5tpYxGqTr0dUOXUadKWxMsTnkID+8Yi7
/kzQWCFvySz3VhiEHGuWkW08GZT6aCcpkREDomnRh4MEnETlZI8bblcuXYOCLs6c
nNf1SIMtLdlsl7U1fEX89PNeQQ2y237vEDhFQZftaalPeu/JJV0=
=Ftop
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.19_dax-memory-failure' of gitolite.kernel.org:pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm memory-failure update from Dave Jiang:
"As it stands, memory_failure() gets thoroughly confused by dev_pagemap
backed mappings. The recovery code has specific enabling for several
possible page states and needs new enabling to handle poison in dax
mappings.
In order to support reliable reverse mapping of user space addresses:
1/ Add new locking in the memory_failure() rmap path to prevent races
that would typically be handled by the page lock.
2/ Since dev_pagemap pages are hidden from the page allocator and the
"compound page" accounting machinery, add a mechanism to determine
the size of the mapping that encompasses a given poisoned pfn.
3/ Given pmem errors can be repaired, change the speculatively
accessed poison protection, mce_unmap_kpfn(), to be reversible and
otherwise allow ongoing access from the kernel.
A side effect of this enabling is that MADV_HWPOISON becomes usable
for dax mappings, however the primary motivation is to allow the
system to survive userspace consumption of hardware-poison via dax.
Specifically the current behavior is:
mce: Uncorrected hardware memory error in user-access at af34214200
{1}[Hardware Error]: It has been corrected by h/w and requires no further action
mce: [Hardware Error]: Machine check events logged
{1}[Hardware Error]: event severity: corrected
Memory failure: 0xaf34214: reserved kernel page still referenced by 1 users
[..]
Memory failure: 0xaf34214: recovery action for reserved kernel page: Failed
mce: Memory error not recovered
<reboot>
...and with these changes:
Injecting memory failure for pfn 0x20cb00 at process virtual address 0x7f763dd00000
Memory failure: 0x20cb00: Killing dax-pmd:5421 due to hardware memory corruption
Memory failure: 0x20cb00: recovery action for dax page: Recovered
Given all the cross dependencies I propose taking this through
nvdimm.git with acks from Naoya, x86/core, x86/RAS, and of course dax
folks"
* tag 'libnvdimm-for-4.19_dax-memory-failure' of gitolite.kernel.org:pub/scm/linux/kernel/git/nvdimm/nvdimm:
libnvdimm, pmem: Restore page attributes when clearing errors
x86/memory_failure: Introduce {set, clear}_mce_nospec()
x86/mm/pat: Prepare {reserve, free}_memtype() for "decoy" addresses
mm, memory_failure: Teach memory_failure() about dev_pagemap pages
filesystem-dax: Introduce dax_lock_mapping_entry()
mm, memory_failure: Collect mapping size in collect_procs()
mm, madvise_inject_error: Let memory_failure() optionally take a page reference
mm, dev_pagemap: Do not clear ->mapping on final put
mm, madvise_inject_error: Disable MADV_SOFT_OFFLINE for ZONE_DEVICE pages
filesystem-dax: Set page->index
device-dax: Set page->index
device-dax: Enable page_mapping()
device-dax: Convert to vmf_insert_mixed and vm_fault_t
Use new return type vm_fault_t for fault handler. For now, this is just
documenting that the function returns a VM_FAULT value rather than an
errno. Once all instances are converted, vm_fault_t will become a
distinct type.
Ref-> commit 1c8f422059 ("mm: change return type to vm_fault_t")
The aim is to change the return type of finish_fault() and
handle_mm_fault() to vm_fault_t type. As part of that clean up return
type of all other recursively called functions have been changed to
vm_fault_t type.
The places from where handle_mm_fault() is getting invoked will be
change to vm_fault_t type but in a separate patch.
vmf_error() is the newly introduce inline function in 4.17-rc6.
[akpm@linux-foundation.org: don't shadow outer local `ret' in __do_huge_pmd_anonymous_page()]
Link: http://lkml.kernel.org/r/20180604171727.GA20279@jordon-HP-15-Notebook-PC
Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com>
Reviewed-by: Matthew Wilcox <mawilcox@microsoft.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Huge page helps to reduce TLB miss rate, but it has higher cache
footprint, sometimes this may cause some issue. For example, when
copying huge page on x86_64 platform, the cache footprint is 4M. But on
a Xeon E5 v3 2699 CPU, there are 18 cores, 36 threads, and only 45M LLC
(last level cache). That is, in average, there are 2.5M LLC for each
core and 1.25M LLC for each thread.
If the cache contention is heavy when copying the huge page, and we copy
the huge page from the begin to the end, it is possible that the begin
of huge page is evicted from the cache after we finishing copying the
end of the huge page. And it is possible for the application to access
the begin of the huge page after copying the huge page.
In c79b57e462 ("mm: hugetlb: clear target sub-page last when clearing
huge page"), to keep the cache lines of the target subpage hot, the
order to clear the subpages in the huge page in clear_huge_page() is
changed to clearing the subpage which is furthest from the target
subpage firstly, and the target subpage last. The similar order
changing helps huge page copying too. That is implemented in this
patch. Because we have put the order algorithm into a separate
function, the implementation is quite simple.
The patch is a generic optimization which should benefit quite some
workloads, not for a specific use case. To demonstrate the performance
benefit of the patch, we tested it with vm-scalability run on
transparent huge page.
With this patch, the throughput increases ~16.6% in vm-scalability
anon-cow-seq test case with 36 processes on a 2 socket Xeon E5 v3 2699
system (36 cores, 72 threads). The test case set
/sys/kernel/mm/transparent_hugepage/enabled to be always, mmap() a big
anonymous memory area and populate it, then forked 36 child processes,
each writes to the anonymous memory area from the begin to the end, so
cause copy on write. For each child process, other child processes
could be seen as other workloads which generate heavy cache pressure.
At the same time, the IPC (instruction per cycle) increased from 0.63 to
0.78, and the time spent in user space is reduced ~7.2%.
Link: http://lkml.kernel.org/r/20180524005851.4079-3-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@fb.com>
Cc: Christopher Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit eca56ff906 ("mm, shmem: add internal shmem resident
memory accounting"), MM_SHMEMPAGES is added to separate the shmem
accounting from regular files. So, all shmem pages should be accounted
to MM_SHMEMPAGES instead of MM_FILEPAGES.
And, normal 4K shmem pages have been accounted to MM_SHMEMPAGES, so
shmem thp pages should be not treated differently. Account them to
MM_SHMEMPAGES via mm_counter_file() since shmem pages are swap backed to
keep consistent with normal 4K shmem pages.
This will not change the rss counter of processes since shmem pages are
still a part of it.
The /proc/pid/status and /proc/pid/statm counters will however be more
accurate wrt shmem usage, as originally intended. And as eca56ff906
("mm, shmem: add internal shmem resident memory accounting") mentioned,
oom also could report more accurate "shmem-rss".
Link: http://lkml.kernel.org/r/1529442518-17398-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch is reworked from an earlier patch that Dan has posted:
https://patchwork.kernel.org/patch/10131727/
VM_MIXEDMAP is used by dax to direct mm paths like vm_normal_page() that
the memory page it is dealing with is not typical memory from the linear
map. The get_user_pages_fast() path, since it does not resolve the vma,
is already using {pte,pmd}_devmap() as a stand-in for VM_MIXEDMAP, so we
use that as a VM_MIXEDMAP replacement in some locations. In the cases
where there is no pte to consult we fallback to using vma_is_dax() to
detect the VM_MIXEDMAP special case.
Now that we have explicit driver pfn_t-flag opt-in/opt-out for
get_user_pages() support for DAX we can stop setting VM_MIXEDMAP. This
also means we no longer need to worry about safely manipulating vm_flags
in a future where we support dynamically changing the dax mode of a
file.
DAX should also now be supported with madvise_behavior(), vma_merge(),
and copy_page_range().
This patch has been tested against ndctl unit test. It has also been
tested against xfstests commit: 625515d using fake pmem created by
memmap and no additional issues have been observed.
Link: http://lkml.kernel.org/r/152847720311.55924.16999195879201817653.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAltU8z0eHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiG5X8H/2fJr7m3k242+t76
sitwvx1eoPqTgryW59dRKm9IuXAGA+AjauvHzaz1QxomeQa50JghGWefD0eiJfkA
1AphQ/24EOiAbbVk084dAI/C2p122dE4D5Fy7CrfLnuouyrbFaZI5STbnrRct7sR
9deeYW0GDHO1Uenp4WDCj0baaqJqaevZ+7GG09DnWpya2nQtSkGBjqn6GpYmrfOU
mqFuxAX8mEOW6cwK16y/vYtnVjuuMAiZ63/OJ8AQ6d6ArGLwAsdn7f8Fn4I4tEr2
L0d3CRLUyegms4++Dmlu05k64buQu46WlPhjCZc5/Ts4kjrNxBuHejj2/jeSnUSt
vJJlibI=
=42a5
-----END PGP SIGNATURE-----
Merge tag 'v4.18-rc6' into for-4.19/block2
Pull in 4.18-rc6 to get the NVMe core AEN change to avoid a
merge conflict down the line.
Signed-of-by: Jens Axboe <axboe@kernel.dk>
__split_huge_pmd_locked() must check if the cleared huge pmd was dirty,
and propagate that to PageDirty: otherwise, data may be lost when a huge
tmpfs page is modified then split then reclaimed.
How has this taken so long to be noticed? Because there was no problem
when the huge page is written by a write system call (shmem_write_end()
calls set_page_dirty()), nor when the page is allocated for a write fault
(fault_dirty_shared_page() calls set_page_dirty()); but when allocated for
a read fault (which MAP_POPULATE simulates), no set_page_dirty().
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1807111741430.1106@eggly.anvils
Fixes: d21b9e57c7 ("thp: handle file pages in split_huge_pmd()")
Signed-off-by: Hugh Dickins <hughd@google.com>
Reported-by: Ashwin Chaugule <ashwinch@google.com>
Reviewed-by: Yang Shi <yang.shi@linux.alibaba.com>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: <stable@vger.kernel.org> [4.8+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use new return type vm_fault_t for fault and huge_fault handler. For
now, this is just documenting that the function returns a VM_FAULT value
rather than an errno. Once all instances are converted, vm_fault_t will
become a distinct type.
Commit 1c8f422059 ("mm: change return type to vm_fault_t")
Previously vm_insert_mixed() returned an error code which driver mapped into
VM_FAULT_* type. The new function vmf_insert_mixed() will replace this
inefficiency by returning VM_FAULT_* type.
Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com>
Reviewed-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Memory allocations can induce swapping via kswapd or direct reclaim. If
we are having IO done for us by kswapd and don't actually go into direct
reclaim we may never get scheduled for throttling. So instead check to
see if our cgroup is congested, and if so schedule the throttling.
Before we return to user space the throttling stuff will only throttle
if we actually required it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Now that we can represent the location of 'deferred_list' in C instead of
comments, make use of that ability.
Link: http://lkml.kernel.org/r/20180518194519.3820-9-willy@infradead.org
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
including:
- Extensive RST conversions and organizational work in the
memory-management docs thanks to Mike Rapoport.
- An update of Documentation/features from Andrea Parri and a script to
keep it updated.
- Various LICENSES updates from Thomas, along with a script to check SPDX
tags.
- Work to fix dangling references to documentation files; this involved a
fair number of one-liner comment changes outside of Documentation/
...and the usual list of documentation improvements, typo fixes, etc.
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJbFTkKAAoJEI3ONVYwIuV6t24P/0K9qltHkLwsBo2fbGu/emem
mb1QrZCFZGebKVrCIvET3YcT0q0xPW+ZldwMQYEUeCcu/vD3cGHGXlDbVJCa1fFD
2OS10W/sEObPnREtlHO/zAzpapKP9DO1/f6NhO55iBJLGOCgoLL5xvSqgsI8MTGd
vcJDXLitkh4CJEcfNLkQt8dEZzq9Tb6wdSFIvZBBXRNon2ItVN92D5xoQ0wtB+qt
KmcGYofajK9bjtZpnC4iNg3i+zdwkd80bGTEN9f0hJTRZK5emCILk8fip8CMhRuB
iwmcqb2RnMLydNLyK9RSs6OS5z3G4fYu9llRtLlZBAupcjRVpalWaBGxLOVO6jBG
mvkqdKPMtxV4c7NvwKwFQL9dcjtxsxO4RDRYVWN82dS1L6WKKk8UvTuJUBLH0YA5
af7ZKn7mJVhJ1cxPblaEBOBM3oQuk57LLkjmcpMOXyJ/IOkTIuV1Ezht+XzFyFQv
VWSyekiKo+8D6WHACPTaWiizjW15e8CyP+WIhKzJyn7VQQrZwhsOS+R//ITsuvQ0
vRdZ20lwUeBhR+mnXd5NfIo2w7G+OiqiREVAgxjgRrS0PnkzWG7lzzcSVU8HTfT4
S7VXqval2a9Xg+N8aU2JUe49W858J8hKvIa98hBxGoZa84wxOGtEo7pIKhnMwMSe
Uhkh/1/bQMxsK3fBEF74
=I6FG
-----END PGP SIGNATURE-----
Merge tag 'docs-4.18' of git://git.lwn.net/linux
Pull documentation updates from Jonathan Corbet:
"There's been a fair amount of work in the docs tree this time around,
including:
- Extensive RST conversions and organizational work in the
memory-management docs thanks to Mike Rapoport.
- An update of Documentation/features from Andrea Parri and a script
to keep it updated.
- Various LICENSES updates from Thomas, along with a script to check
SPDX tags.
- Work to fix dangling references to documentation files; this
involved a fair number of one-liner comment changes outside of
Documentation/
... and the usual list of documentation improvements, typo fixes, etc"
* tag 'docs-4.18' of git://git.lwn.net/linux: (103 commits)
Documentation: document hung_task_panic kernel parameter
docs/admin-guide/mm: add high level concepts overview
docs/vm: move ksm and transhuge from "user" to "internals" section.
docs: Use the kerneldoc comments for memalloc_no*()
doc: document scope NOFS, NOIO APIs
docs: update kernel versions and dates in tables
docs/vm: transhuge: split userspace bits to admin-guide/mm/transhuge
docs/vm: transhuge: minor updates
docs/vm: transhuge: change sections order
Documentation: arm: clean up Marvell Berlin family info
Documentation: gpio: driver: Fix a typo and some odd grammar
docs: ranoops.rst: fix location of ramoops.txt
scripts/documentation-file-ref-check: rewrite it in perl with auto-fix mode
docs: uio-howto.rst: use a code block to solve a warning
mm, THP, doc: Add document for thp_swpout/thp_swpout_fallback
w1: w1_io.c: fix a kernel-doc warning
Documentation/process/posting: wrap text at 80 cols
docs: admin-guide: add cgroup-v2 documentation
Revert "Documentation/features/vm: Remove arch support status file for 'pte_special'"
Documentation: refcount-vs-atomic: Update reference to LKMM doc.
...
Swapping load on huge=always tmpfs (with khugepaged tuned up to be very
eager, but I'm not sure that is relevant) soon hung uninterruptibly,
waiting for page lock in shmem_getpage_gfp()'s find_lock_entry(), most
often when "cp -a" was trying to write to a smallish file. Debug showed
that the page in question was not locked, and page->mapping NULL by now,
but page->index consistent with having been in a huge page before.
Reproduced in minutes on a 4.15 kernel, even with 4.17's 605ca5ede7
("mm/huge_memory.c: reorder operations in __split_huge_page_tail()") added
in; but took hours to reproduce on a 4.17 kernel (no idea why).
The culprit proved to be the __ClearPageDirty() on tails beyond i_size in
__split_huge_page(): the non-atomic __bitoperation may have been safe when
4.8's baa355fd33 ("thp: file pages support for split_huge_page()")
introduced it, but liable to erase PageWaiters after 4.10's 6290602709
("mm: add PageWaiters indicating tasks are waiting for a page bit").
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1805291841070.3197@eggly.anvils
Fixes: 6290602709 ("mm: add PageWaiters indicating tasks are waiting for a page bit")
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAlrdQu4eHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGVjEIAJqS+sFJCAL8rNAv
tiVJHuAjogVdZGJJFBUWyb4yNZw7nRSKfitaSe875WdF55IGEhnMDbAGe7IMEb5j
1F8Ml2bzJzMWxfBWAzeU+wj6FaQksbIsI1gVM8tqk/Wtu121pB32VW8R82oHg+Hr
sjsFTKFicNsqih+7QTVujaRjSmabKf0/JdyYM6p1cqWrxZQ0pmFaGDu0rwet9PFx
lJsewOmnoZ0GV/Qzn40E304Xf+Vv2gVDVbC5wY86ejNigFt+5qN+gtDqDu7UkftR
ZfD4vJuiKCigNfUrpbJWfpbegBiQc0JMvjLWWhgo/AYdGhNGMlwjQanh2oZcXlrw
VmrNduo=
=/j3z
-----END PGP SIGNATURE-----
Merge tag 'v4.17-rc2' into docs-next
Merge -rc2 to pick up the changes to
Documentation/core-api/kernel-api.rst that hit mainline via the
networking tree. In their absence, subsequent patches cannot be
applied.
My testing for the latest kernel supporting thp migration showed an
infinite loop in offlining the memory block that is filled with shmem
thps. We can get out of the loop with a signal, but kernel should return
with failure in this case.
What happens in the loop is that scan_movable_pages() repeats returning
the same pfn without any progress. That's because page migration always
fails for shmem thps.
In memory offline code, memory blocks containing unmovable pages should be
prevented from being offline targets by has_unmovable_pages() inside
start_isolate_page_range(). So it's possible to change migratability for
non-anonymous thps to avoid the issue, but it introduces more complex and
thp-specific handling in migration code, so it might not good.
So this patch is suggesting to fix the issue by enabling thp migration for
shmem thp. Both of anon/shmem thp are migratable so we don't need
precheck about the type of thps.
Link: http://lkml.kernel.org/r/20180406030706.GA2434@hori1.linux.bs1.fc.nec.co.jp
Fixes: commit 72b39cfc4d ("mm, memory_hotplug: do not fail offlining too early")
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Zi Yan <zi.yan@sent.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mike Rapoport says:
These patches convert files in Documentation/vm to ReST format, add an
initial index and link it to the top level documentation.
There are no contents changes in the documentation, except few spelling
fixes. The relatively large diffstat stems from the indentation and
paragraph wrapping changes.
I've tried to keep the formatting as consistent as possible, but I could
miss some places that needed markup and add some markup where it was not
necessary.
[jc: significant conflicts in vm/hmm.rst]
Remove the address_space ->tree_lock and use the xa_lock newly added to
the radix_tree_root. Rename the address_space ->page_tree to ->i_pages,
since we don't really care that it's a tree.
[willy@infradead.org: fix nds32, fs/dax.c]
Link: http://lkml.kernel.org/r/20180406145415.GB20605@bombadil.infradead.orgLink: http://lkml.kernel.org/r/20180313132639.17387-9-willy@infradead.org
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Acked-by: Jeff Layton <jlayton@redhat.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
THP migration is hacked into the generic migration with rather
surprising semantic. The migration allocation callback is supposed to
check whether the THP can be migrated at once and if that is not the
case then it allocates a simple page to migrate. unmap_and_move then
fixes that up by spliting the THP into small pages while moving the head
page to the newly allocated order-0 page. Remaning pages are moved to
the LRU list by split_huge_page. The same happens if the THP allocation
fails. This is really ugly and error prone [1].
I also believe that split_huge_page to the LRU lists is inherently wrong
because all tail pages are not migrated. Some callers will just work
around that by retrying (e.g. memory hotplug). There are other pfn
walkers which are simply broken though. e.g. madvise_inject_error will
migrate head and then advances next pfn by the huge page size.
do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind),
will simply split the THP before migration if the THP migration is not
supported then falls back to single page migration but it doesn't handle
tail pages if the THP migration path is not able to allocate a fresh THP
so we end up with ENOMEM and fail the whole migration which is a
questionable behavior. Page compaction doesn't try to migrate large
pages so it should be immune.
This patch tries to unclutter the situation by moving the special THP
handling up to the migrate_pages layer where it actually belongs. We
simply split the THP page into the existing list if unmap_and_move fails
with ENOMEM and retry. So we will _always_ migrate all THP subpages and
specific migrate_pages users do not have to deal with this case in a
special way.
[1] http://lkml.kernel.org/r/20171121021855.50525-1-zi.yan@sent.com
Link: http://lkml.kernel.org/r/20180103082555.14592-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A THP memcg charge can trigger the oom killer since 2516035499 ("mm,
thp: remove __GFP_NORETRY from khugepaged and madvised allocations").
We have used an explicit __GFP_NORETRY previously which ruled the OOM
killer automagically.
Memcg charge path should be semantically compliant with the allocation
path and that means that if we do not trigger the OOM killer for costly
orders which should do the same in the memcg charge path as well.
Otherwise we are forcing callers to distinguish the two and use
different gfp masks which is both non-intuitive and bug prone. As soon
as we get a costly high order kmalloc user we even do not have any means
to tell the memcg specific gfp mask to prevent from OOM because the
charging is deep within guts of the slab allocator.
The unexpected memcg OOM on THP has already been fixed upstream by
9d3c3354bb ("mm, thp: do not cause memcg oom for thp") but this is a
one-off fix rather than a generic solution. Teach mem_cgroup_oom to
bail out on costly order requests to fix the THP issue as well as any
other costly OOM eligible allocations to be added in future.
Also revert 9d3c3354bb because special gfp for THP is no longer
needed.
Link: http://lkml.kernel.org/r/20180403193129.22146-1-mhocko@kernel.org
Fixes: 2516035499 ("mm, thp: remove __GFP_NORETRY from khugepaged and madvised allocations")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
THP split makes non-atomic change of tail page flags. This is almost ok
because tail pages are locked and isolated but this breaks recent
changes in page locking: non-atomic operation could clear bit
PG_waiters.
As a result concurrent sequence get_page_unless_zero() -> lock_page()
might block forever. Especially if this page was truncated later.
Fix is trivial: clone flags before unfreezing page reference counter.
This race exists since commit 6290602709 ("mm: add PageWaiters
indicating tasks are waiting for a page bit") while unsave unfreeze
itself was added in commit 8df651c705 ("thp: cleanup
split_huge_page()").
clear_compound_head() also must be called before unfreezing page
reference because after successful get_page_unless_zero() might follow
put_page() which needs correct compound_head().
And replace page_ref_inc()/page_ref_add() with page_ref_unfreeze() which
is made especially for that and has semantic of smp_store_release().
Link: http://lkml.kernel.org/r/151844393341.210639.13162088407980624477.stgit@buzz
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 2516035499 ("mm, thp: remove __GFP_NORETRY from khugepaged and
madvised allocations") changed the page allocator to no longer detect
thp allocations based on __GFP_NORETRY.
It did not, however, modify the mem cgroup try_charge() path to avoid
oom kill for either khugepaged collapsing or thp faulting. It is never
expected to oom kill a process to allocate a hugepage for thp; reclaim
is governed by the thp defrag mode and MADV_HUGEPAGE, but allocations
(and charging) should fallback instead of oom killing processes.
Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1803191409420.124411@chino.kir.corp.google.com
Fixes: 2516035499 ("mm, thp: remove __GFP_NORETRY from khugepaged and madvised allocations")
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
deferred_split_scan() gets called from reclaim path. Waiting for page
lock may lead to deadlock there.
Replace lock_page() with trylock_page() and skip the page if we failed
to lock it. We will get to the page on the next scan.
Link: http://lkml.kernel.org/r/20180315150747.31945-1-kirill.shutemov@linux.intel.com
Fixes: 9a982250f7 ("thp: introduce deferred_split_huge_page()")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of marking the pmd ready for split, invalidate the pmd. This
should take care of powerpc requirement. Only side effect is that we
mark the pmd invalid early. This can result in us blocking access to
the page a bit longer if we race against a thp split.
[kirill.shutemov@linux.intel.com: rebased, dirty THP once]
Link: http://lkml.kernel.org/r/20171213105756.69879-13-kirill.shutemov@linux.intel.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Daney <david.daney@cavium.com>
Cc: David Miller <davem@davemloft.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Nitin Gupta <nitin.m.gupta@oracle.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use the modifed pmdp_invalidate() that returns the previous value of pmd
to transfer dirty and accessed bits.
Link: http://lkml.kernel.org/r/20171213105756.69879-12-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Daney <david.daney@cavium.com>
Cc: David Miller <davem@davemloft.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Nitin Gupta <nitin.m.gupta@oracle.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pmd_trans_splitting() was removed after THP refcounting redesign,
therefore related comment should be updated.
Link: http://lkml.kernel.org/r/1512625745-59451-1-git-send-email-xieyisheng1@huawei.com
Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commits 5c9d2d5c26, c7da82b894, and e7fe7b5cae.
We'll probably need to revisit this, but basically we should not
complicate the get_user_pages_fast() case, and checking the actual page
table protection key bits will require more care anyway, since the
protection keys depend on the exact state of the VM in question.
Particularly when doing a "remote" page lookup (ie in somebody elses VM,
not your own), you need to be much more careful than this was. Dave
Hansen says:
"So, the underlying bug here is that we now a get_user_pages_remote()
and then go ahead and do the p*_access_permitted() checks against the
current PKRU. This was introduced recently with the addition of the
new p??_access_permitted() calls.
We have checks in the VMA path for the "remote" gups and we avoid
consulting PKRU for them. This got missed in the pkeys selftests
because I did a ptrace read, but not a *write*. I also didn't
explicitly test it against something where a COW needed to be done"
It's also not entirely clear that it makes sense to check the protection
key bits at this level at all. But one possible eventual solution is to
make the get_user_pages_fast() case just abort if it sees protection key
bits set, which makes us fall back to the regular get_user_pages() case,
which then has a vma and can do the check there if we want to.
We'll see.
Somewhat related to this all: what we _do_ want to do some day is to
check the PAGE_USER bit - it should obviously always be set for user
pages, but it would be a good check to have back. Because we have no
generic way to test for it, we lost it as part of moving over from the
architecture-specific x86 GUP implementation to the generic one in
commit e585513b76 ("x86/mm/gup: Switch GUP to the generic
get_user_page_fast() implementation").
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mergr misc fixes from Andrew Morton:
"28 fixes"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (28 commits)
fs/hugetlbfs/inode.c: change put_page/unlock_page order in hugetlbfs_fallocate()
mm/hugetlb: fix NULL-pointer dereference on 5-level paging machine
autofs: revert "autofs: fix AT_NO_AUTOMOUNT not being honored"
autofs: revert "autofs: take more care to not update last_used on path walk"
fs/fat/inode.c: fix sb_rdonly() change
mm, memcg: fix mem_cgroup_swapout() for THPs
mm: migrate: fix an incorrect call of prep_transhuge_page()
kmemleak: add scheduling point to kmemleak_scan()
scripts/bloat-o-meter: don't fail with division by 0
fs/mbcache.c: make count_objects() more robust
Revert "mm/page-writeback.c: print a warning if the vm dirtiness settings are illogical"
mm/madvise.c: fix madvise() infinite loop under special circumstances
exec: avoid RLIMIT_STACK races with prlimit()
IB/core: disable memory registration of filesystem-dax vmas
v4l2: disable filesystem-dax mapping support
mm: fail get_vaddr_frames() for filesystem-dax mappings
mm: introduce get_user_pages_longterm
device-dax: implement ->split() to catch invalid munmap attempts
mm, hugetlbfs: introduce ->split() to vm_operations_struct
scripts/faddr2line: extend usage on generic arch
...
The 'access_permitted' helper is used in the gup-fast path and goes
beyond the simple _PAGE_RW check to also:
- validate that the mapping is writable from a protection keys
standpoint
- validate that the pte has _PAGE_USER set since all fault paths where
pmd_write is must be referencing user-memory.
Link: http://lkml.kernel.org/r/151043111049.2842.15241454964150083466.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The 'access_permitted' helper is used in the gup-fast path and goes
beyond the simple _PAGE_RW check to also:
- validate that the mapping is writable from a protection keys
standpoint
- validate that the pte has _PAGE_USER set since all fault paths where
pud_write is must be referencing user-memory.
[dan.j.williams@intel.com: fix powerpc compile error]
Link: http://lkml.kernel.org/r/151129127237.37405.16073414520854722485.stgit@dwillia2-desk3.amr.corp.intel.com
Link: http://lkml.kernel.org/r/151043110453.2842.2166049702068628177.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit 152e93af3c.
It was a nice cleanup in theory, but as Nicolai Stange points out, we do
need to make the page dirty for the copy-on-write case even when we
didn't end up making it writable, since the dirty bit is what we use to
check that we've gone through a COW cycle.
Reported-by: Michal Hocko <mhocko@kernel.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we make page table entries dirty all the time regardless of
access type and don't even consider if the mapping is write-protected.
The reasoning is that we don't really need dirty tracking on THP and
making the entry dirty upfront may save some time on first write to the
page.
Unfortunately, such approach may result in false-positive
can_follow_write_pmd() for huge zero page or read-only shmem file.
Let's only make page dirty only if we about to write to the page anyway
(as we do for small pages).
I've restructured the code to make entry dirty inside
maybe_p[mu]d_mkwrite(). It also takes into account if the vma is
write-protected.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>