Commit Graph

1351 Commits

Author SHA1 Message Date
Honglei Wang
b213b54fbf mm/memcontrol.c: fix parameter description mismatch
There are a couple of places where parameter description and function
name do not match the actual code.  Fix it.

Link: http://lkml.kernel.org/r/1520843448-17347-1-git-send-email-honglei.wang@oracle.com
Signed-off-by: Honglei Wang <honglei.wang@oracle.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-03-28 13:42:05 -10:00
Linus Torvalds
a9a08845e9 vfs: do bulk POLL* -> EPOLL* replacement
This is the mindless scripted replacement of kernel use of POLL*
variables as described by Al, done by this script:

    for V in IN OUT PRI ERR RDNORM RDBAND WRNORM WRBAND HUP RDHUP NVAL MSG; do
        L=`git grep -l -w POLL$V | grep -v '^t' | grep -v /um/ | grep -v '^sa' | grep -v '/poll.h$'|grep -v '^D'`
        for f in $L; do sed -i "-es/^\([^\"]*\)\(\<POLL$V\>\)/\\1E\\2/" $f; done
    done

with de-mangling cleanups yet to come.

NOTE! On almost all architectures, the EPOLL* constants have the same
values as the POLL* constants do.  But they keyword here is "almost".
For various bad reasons they aren't the same, and epoll() doesn't
actually work quite correctly in some cases due to this on Sparc et al.

The next patch from Al will sort out the final differences, and we
should be all done.

Scripted-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-11 14:34:03 -08:00
Mike Rapoport
f144c390f9 mm: docs: fix parameter names mismatch
There are several places where parameter descriptions do no match the
actual code.  Fix it.

Link: http://lkml.kernel.org/r/1516700871-22279-3-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06 18:32:48 -08:00
Mike Rapoport
b7701a5f2e mm: docs: fixup punctuation
so that kernel-doc will properly recognize the parameter and function
descriptions.

Link: http://lkml.kernel.org/r/1516700871-22279-2-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06 18:32:48 -08:00
Roman Gushchin
edbe69ef2c Revert "defer call to mem_cgroup_sk_alloc()"
This patch effectively reverts commit 9f1c2674b3 ("net: memcontrol:
defer call to mem_cgroup_sk_alloc()").

Moving mem_cgroup_sk_alloc() to the inet_csk_accept() completely breaks
memcg socket memory accounting, as packets received before memcg
pointer initialization are not accounted and are causing refcounting
underflow on socket release.

Actually the free-after-use problem was fixed by
commit c0576e3975 ("net: call cgroup_sk_alloc() earlier in
sk_clone_lock()") for the cgroup pointer.

So, let's revert it and call mem_cgroup_sk_alloc() just before
cgroup_sk_alloc(). This is safe, as we hold a reference to the socket
we're cloning, and it holds a reference to the memcg.

Also, let's drop BUG_ON(mem_cgroup_is_root()) check from
mem_cgroup_sk_alloc(). I see no reasons why bumping the root
memcg counter is a good reason to panic, and there are no realistic
ways to hit it.

Signed-off-by: Roman Gushchin <guro@fb.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-02-02 19:49:31 -05:00
Andrey Ryabinin
1ab5c05695 mm/memcontrol.c: try harder to decrease [memory,memsw].limit_in_bytes
mem_cgroup_resize_[memsw]_limit() tries to free only 32
(SWAP_CLUSTER_MAX) pages on each iteration.  This makes it practically
impossible to decrease limit of memory cgroup.  Tasks could easily
allocate back 32 pages, so we can't reduce memory usage, and once
retry_count reaches zero we return -EBUSY.

Easy to reproduce the problem by running the following commands:

  mkdir /sys/fs/cgroup/memory/test
  echo $$ >> /sys/fs/cgroup/memory/test/tasks
  cat big_file > /dev/null &
  sleep 1 && echo $((100*1024*1024)) > /sys/fs/cgroup/memory/test/memory.limit_in_bytes
  -bash: echo: write error: Device or resource busy

Instead of relying on retry_count, keep retrying the reclaim until the
desired limit is reached or fail if the reclaim doesn't make any
progress or a signal is pending.

Link: http://lkml.kernel.org/r/20180119132544.19569-1-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:40 -08:00
Christopher Díaz Riveros
8ad6e404ef mm/memcontrol.c: make local symbol static
Fix the following sparse warning:

  mm/memcontrol.c:1097:14: warning: symbol 'memcg1_stats' was not declared. Should it be static?

Link: http://lkml.kernel.org/r/20180118193327.14200-1-chrisadr@gentoo.org
Signed-off-by: Christopher Díaz Riveros <chrisadr@gentoo.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:40 -08:00
Yu Zhao
c054a78c66 memcg: refactor mem_cgroup_resize_limit()
mem_cgroup_resize_limit() and mem_cgroup_resize_memsw_limit() have
identical logics.  Refactor code so we don't need to keep two pieces of
code that does same thing.

Link: http://lkml.kernel.org/r/20180108224238.14583-1-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:39 -08:00
Johannes Weiner
a983b5ebee mm: memcontrol: fix excessive complexity in memory.stat reporting
We've seen memory.stat reads in top-level cgroups take up to fourteen
seconds during a userspace bug that created tens of thousands of ghost
cgroups pinned by lingering page cache.

Even with a more reasonable number of cgroups, aggregating memory.stat
is unnecessarily heavy.  The complexity is this:

	nr_cgroups * nr_stat_items * nr_possible_cpus

where the stat items are ~70 at this point.  With 128 cgroups and 128
CPUs - decent, not enormous setups - reading the top-level memory.stat
has to aggregate over a million per-cpu counters.  This doesn't scale.

Instead of spreading the source of truth across all CPUs, use the
per-cpu counters merely to batch updates to shared atomic counters.

This is the same as the per-cpu stocks we use for charging memory to the
shared atomic page_counters, and also the way the global vmstat counters
are implemented.

Vmstat has elaborate spilling thresholds that depend on the number of
CPUs, amount of memory, and memory pressure - carefully balancing the
cost of counter updates with the amount of per-cpu error.  That's
because the vmstat counters are system-wide, but also used for decisions
inside the kernel (e.g.  NR_FREE_PAGES in the allocator).  Neither is
true for the memory controller.

Use the same static batch size we already use for page_counter updates
during charging.  The per-cpu error in the stats will be 128k, which is
an acceptable ratio of cores to memory accounting granularity.

[hannes@cmpxchg.org: fix warning in __this_cpu_xchg() calls]
  Link: http://lkml.kernel.org/r/20171201135750.GB8097@cmpxchg.org
Link: http://lkml.kernel.org/r/20171103153336.24044-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:36 -08:00
Johannes Weiner
c9019e9bf4 mm: memcontrol: eliminate raw access to stat and event counters
Replace all raw 'this_cpu_' modifications of the stat and event per-cpu
counters with API functions such as mod_memcg_state().

This makes the code easier to read, but is also in preparation for the
next patch, which changes the per-cpu implementation of those counters.

Link: http://lkml.kernel.org/r/20171103153336.24044-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:36 -08:00
Linus Torvalds
168fe32a07 Merge branch 'misc.poll' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull poll annotations from Al Viro:
 "This introduces a __bitwise type for POLL### bitmap, and propagates
  the annotations through the tree. Most of that stuff is as simple as
  'make ->poll() instances return __poll_t and do the same to local
  variables used to hold the future return value'.

  Some of the obvious brainos found in process are fixed (e.g. POLLIN
  misspelled as POLL_IN). At that point the amount of sparse warnings is
  low and most of them are for genuine bugs - e.g. ->poll() instance
  deciding to return -EINVAL instead of a bitmap. I hadn't touched those
  in this series - it's large enough as it is.

  Another problem it has caught was eventpoll() ABI mess; select.c and
  eventpoll.c assumed that corresponding POLL### and EPOLL### were
  equal. That's true for some, but not all of them - EPOLL### are
  arch-independent, but POLL### are not.

  The last commit in this series separates userland POLL### values from
  the (now arch-independent) kernel-side ones, converting between them
  in the few places where they are copied to/from userland. AFAICS, this
  is the least disruptive fix preserving poll(2) ABI and making epoll()
  work on all architectures.

  As it is, it's simply broken on sparc - try to give it EPOLLWRNORM and
  it will trigger only on what would've triggered EPOLLWRBAND on other
  architectures. EPOLLWRBAND and EPOLLRDHUP, OTOH, are never triggered
  at all on sparc. With this patch they should work consistently on all
  architectures"

* 'misc.poll' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (37 commits)
  make kernel-side POLL... arch-independent
  eventpoll: no need to mask the result of epi_item_poll() again
  eventpoll: constify struct epoll_event pointers
  debugging printk in sg_poll() uses %x to print POLL... bitmap
  annotate poll(2) guts
  9p: untangle ->poll() mess
  ->si_band gets POLL... bitmap stored into a user-visible long field
  ring_buffer_poll_wait() return value used as return value of ->poll()
  the rest of drivers/*: annotate ->poll() instances
  media: annotate ->poll() instances
  fs: annotate ->poll() instances
  ipc, kernel, mm: annotate ->poll() instances
  net: annotate ->poll() instances
  apparmor: annotate ->poll() instances
  tomoyo: annotate ->poll() instances
  sound: annotate ->poll() instances
  acpi: annotate ->poll() instances
  crypto: annotate ->poll() instances
  block: annotate ->poll() instances
  x86: annotate ->poll() instances
  ...
2018-01-30 17:58:07 -08:00
Shakeel Butt
d08afa149a mm, memcg: fix mem_cgroup_swapout() for THPs
Commit d6810d7300 ("memcg, THP, swap: make mem_cgroup_swapout()
support THP") changed mem_cgroup_swapout() to support transparent huge
page (THP).

However the patch missed one location which should be changed for
correctly handling THPs.  The resulting bug will cause the memory
cgroups whose THPs were swapped out to become zombies on deletion.

Link: http://lkml.kernel.org/r/20171128161941.20931-1-shakeelb@google.com
Fixes: d6810d7300 ("memcg, THP, swap: make mem_cgroup_swapout() support THP")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: <stable@vger.kernel.org>

Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-29 18:40:43 -08:00
Al Viro
3ad6f93e98 annotate poll-related wait keys
__poll_t is also used as wait key in some waitqueues.
Verify that wait_..._poll() gets __poll_t as key and
provide a helper for wakeup functions to get back to
that __poll_t value.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2017-11-27 16:19:54 -05:00
Yang Shi
5b36577109 mm: slabinfo: remove CONFIG_SLABINFO
According to discussion with Christoph
(https://marc.info/?l=linux-kernel&m=150695909709711&w=2), it sounds like
it is pointless to keep CONFIG_SLABINFO around.

This patch removes the CONFIG_SLABINFO config option, but /proc/slabinfo
is still available.

[yang.s@alibaba-inc.com: v11]
  Link: http://lkml.kernel.org/r/1507656303-103845-3-git-send-email-yang.s@alibaba-inc.com
Link: http://lkml.kernel.org/r/1507152550-46205-3-git-send-email-yang.s@alibaba-inc.com
Signed-off-by: Yang Shi <yang.s@alibaba-inc.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:01 -08:00
Eric Dumazet
9f1c2674b3 net: memcontrol: defer call to mem_cgroup_sk_alloc()
Instead of calling mem_cgroup_sk_alloc() from BH context,
it is better to call it from inet_csk_accept() in process context.

Not only this removes code in mem_cgroup_sk_alloc(), but it also
fixes a bug since listener might have been dismantled and css_get()
might cause a use-after-free.

Fixes: e994b2f0fb ("tcp: do not lock listener to process SYN packets")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-09 20:55:01 -07:00
Jérôme Glisse
3f2eb0287e mm/memcg: avoid page count check for zone device
Fix for 4.14, zone device page always have an elevated refcount of one
and thus page count sanity check in uncharge_page() is inappropriate for
them.

[mhocko@suse.com: nano-optimize VM_BUG_ON in uncharge_page]
Link: http://lkml.kernel.org/r/20170914190011.5217-1-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Evgeny Baskakov <ebaskakov@nvidia.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-10-03 17:54:24 -07:00
Michal Hocko
72f0184c8a mm, memcg: remove hotplug locking from try_charge
The following lockdep splat has been noticed during LTP testing

  ======================================================
  WARNING: possible circular locking dependency detected
  4.13.0-rc3-next-20170807 #12 Not tainted
  ------------------------------------------------------
  a.out/4771 is trying to acquire lock:
   (cpu_hotplug_lock.rw_sem){++++++}, at: [<ffffffff812b4668>] drain_all_stock.part.35+0x18/0x140

  but task is already holding lock:
   (&mm->mmap_sem){++++++}, at: [<ffffffff8106eb35>] __do_page_fault+0x175/0x530

  which lock already depends on the new lock.

  the existing dependency chain (in reverse order) is:

  -> #3 (&mm->mmap_sem){++++++}:
         lock_acquire+0xc9/0x230
         __might_fault+0x70/0xa0
         _copy_to_user+0x23/0x70
         filldir+0xa7/0x110
         xfs_dir2_sf_getdents.isra.10+0x20c/0x2c0 [xfs]
         xfs_readdir+0x1fa/0x2c0 [xfs]
         xfs_file_readdir+0x30/0x40 [xfs]
         iterate_dir+0x17a/0x1a0
         SyS_getdents+0xb0/0x160
         entry_SYSCALL_64_fastpath+0x1f/0xbe

  -> #2 (&type->i_mutex_dir_key#3){++++++}:
         lock_acquire+0xc9/0x230
         down_read+0x51/0xb0
         lookup_slow+0xde/0x210
         walk_component+0x160/0x250
         link_path_walk+0x1a6/0x610
         path_openat+0xe4/0xd50
         do_filp_open+0x91/0x100
         file_open_name+0xf5/0x130
         filp_open+0x33/0x50
         kernel_read_file_from_path+0x39/0x80
         _request_firmware+0x39f/0x880
         request_firmware_direct+0x37/0x50
         request_microcode_fw+0x64/0xe0
         reload_store+0xf7/0x180
         dev_attr_store+0x18/0x30
         sysfs_kf_write+0x44/0x60
         kernfs_fop_write+0x113/0x1a0
         __vfs_write+0x37/0x170
         vfs_write+0xc7/0x1c0
         SyS_write+0x58/0xc0
         do_syscall_64+0x6c/0x1f0
         return_from_SYSCALL_64+0x0/0x7a

  -> #1 (microcode_mutex){+.+.+.}:
         lock_acquire+0xc9/0x230
         __mutex_lock+0x88/0x960
         mutex_lock_nested+0x1b/0x20
         microcode_init+0xbb/0x208
         do_one_initcall+0x51/0x1a9
         kernel_init_freeable+0x208/0x2a7
         kernel_init+0xe/0x104
         ret_from_fork+0x2a/0x40

  -> #0 (cpu_hotplug_lock.rw_sem){++++++}:
         __lock_acquire+0x153c/0x1550
         lock_acquire+0xc9/0x230
         cpus_read_lock+0x4b/0x90
         drain_all_stock.part.35+0x18/0x140
         try_charge+0x3ab/0x6e0
         mem_cgroup_try_charge+0x7f/0x2c0
         shmem_getpage_gfp+0x25f/0x1050
         shmem_fault+0x96/0x200
         __do_fault+0x1e/0xa0
         __handle_mm_fault+0x9c3/0xe00
         handle_mm_fault+0x16e/0x380
         __do_page_fault+0x24a/0x530
         do_page_fault+0x30/0x80
         page_fault+0x28/0x30

  other info that might help us debug this:

  Chain exists of:
    cpu_hotplug_lock.rw_sem --> &type->i_mutex_dir_key#3 --> &mm->mmap_sem

   Possible unsafe locking scenario:

         CPU0                    CPU1
         ----                    ----
    lock(&mm->mmap_sem);
                                 lock(&type->i_mutex_dir_key#3);
                                 lock(&mm->mmap_sem);
    lock(cpu_hotplug_lock.rw_sem);

   *** DEADLOCK ***

  2 locks held by a.out/4771:
   #0:  (&mm->mmap_sem){++++++}, at: [<ffffffff8106eb35>] __do_page_fault+0x175/0x530
   #1:  (percpu_charge_mutex){+.+...}, at: [<ffffffff812b4c97>] try_charge+0x397/0x6e0

The problem is very similar to the one fixed by commit a459eeb7b8
("mm, page_alloc: do not depend on cpu hotplug locks inside the
allocator").  We are taking hotplug locks while we can be sitting on top
of basically arbitrary locks.  This just calls for problems.

We can get rid of {get,put}_online_cpus, fortunately.  We do not have to
be worried about races with memory hotplug because drain_local_stock,
which is called from both the WQ draining and the memory hotplug
contexts, is always operating on the local cpu stock with IRQs disabled.

The only thing to be careful about is that the target memcg doesn't
vanish while we are still in drain_all_stock so take a reference on it.

Link: http://lkml.kernel.org/r/20170913090023.28322-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Artem Savkov <asavkov@redhat.com>
Tested-by: Artem Savkov <asavkov@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-10-03 17:54:24 -07:00
Davidlohr Bueso
fa90b2fd30 mem/memcg: cache rightmost node
Such that we can optimize __mem_cgroup_largest_soft_limit_node().  The
only overhead is the extra footprint for the cached pointer, but this
should not be an issue for mem_cgroup_tree_per_node.

[dave@stgolabs.net: brain fart #2]
  Link: http://lkml.kernel.org/r/20170731160114.GE21328@linux-80c1.suse
Link: http://lkml.kernel.org/r/20170719014603.19029-17-dave@stgolabs.net
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-08 18:26:49 -07:00
Roman Gushchin
475d0487a2 mm: memcontrol: use per-cpu stocks for socket memory uncharging
We've noticed a quite noticeable performance overhead on some hosts with
significant network traffic when socket memory accounting is enabled.

Perf top shows that socket memory uncharging path is hot:
  2.13%  [kernel]                [k] page_counter_cancel
  1.14%  [kernel]                [k] __sk_mem_reduce_allocated
  1.14%  [kernel]                [k] _raw_spin_lock
  0.87%  [kernel]                [k] _raw_spin_lock_irqsave
  0.84%  [kernel]                [k] tcp_ack
  0.84%  [kernel]                [k] ixgbe_poll
  0.83%  < workload >
  0.82%  [kernel]                [k] enqueue_entity
  0.68%  [kernel]                [k] __fget
  0.68%  [kernel]                [k] tcp_delack_timer_handler
  0.67%  [kernel]                [k] __schedule
  0.60%  < workload >
  0.59%  [kernel]                [k] __inet6_lookup_established
  0.55%  [kernel]                [k] __switch_to
  0.55%  [kernel]                [k] menu_select
  0.54%  libc-2.20.so            [.] __memcpy_avx_unaligned

To address this issue, the existing per-cpu stock infrastructure can be
used.

refill_stock() can be called from mem_cgroup_uncharge_skmem() to move
charge to a per-cpu stock instead of calling atomic
page_counter_uncharge().

To prevent the uncontrolled growth of per-cpu stocks, refill_stock()
will explicitly drain the cached charge, if the cached value exceeds
CHARGE_BATCH.

This allows significantly optimize the load:
  1.21%  [kernel]                [k] _raw_spin_lock
  1.01%  [kernel]                [k] ixgbe_poll
  0.92%  [kernel]                [k] _raw_spin_lock_irqsave
  0.90%  [kernel]                [k] enqueue_entity
  0.86%  [kernel]                [k] tcp_ack
  0.85%  < workload >
  0.74%  perf-11120.map          [.] 0x000000000061bf24
  0.73%  [kernel]                [k] __schedule
  0.67%  [kernel]                [k] __fget
  0.63%  [kernel]                [k] __inet6_lookup_established
  0.62%  [kernel]                [k] menu_select
  0.59%  < workload >
  0.59%  [kernel]                [k] __switch_to
  0.57%  libc-2.20.so            [.] __memcpy_avx_unaligned

Link: http://lkml.kernel.org/r/20170829100150.4580-1-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-08 18:26:47 -07:00
Jérôme Glisse
df6ad69838 mm/device-public-memory: device memory cache coherent with CPU
Platform with advance system bus (like CAPI or CCIX) allow device memory
to be accessible from CPU in a cache coherent fashion.  Add a new type of
ZONE_DEVICE to represent such memory.  The use case are the same as for
the un-addressable device memory but without all the corners cases.

Link: http://lkml.kernel.org/r/20170817000548.32038-19-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: David Nellans <dnellans@nvidia.com>
Cc: Evgeny Baskakov <ebaskakov@nvidia.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mark Hairgrove <mhairgrove@nvidia.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sherry Cheung <SCheung@nvidia.com>
Cc: Subhash Gutti <sgutti@nvidia.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Bob Liu <liubo95@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-08 18:26:46 -07:00
Jérôme Glisse
c733a82874 mm/memcontrol: support MEMORY_DEVICE_PRIVATE
HMM pages (private or public device pages) are ZONE_DEVICE page and thus
need special handling when it comes to lru or refcount.  This patch make
sure that memcontrol properly handle those when it face them.  Those pages
are use like regular pages in a process address space either as anonymous
page or as file back page.  So from memcg point of view we want to handle
them like regular page for now at least.

Link: http://lkml.kernel.org/r/20170817000548.32038-11-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Nellans <dnellans@nvidia.com>
Cc: Evgeny Baskakov <ebaskakov@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mark Hairgrove <mhairgrove@nvidia.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Sherry Cheung <SCheung@nvidia.com>
Cc: Subhash Gutti <sgutti@nvidia.com>
Cc: Bob Liu <liubo95@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-08 18:26:46 -07:00
Jérôme Glisse
a9d5adeeb4 mm/memcontrol: allow to uncharge page without using page->lru field
HMM pages (private or public device pages) are ZONE_DEVICE page and
thus you can not use page->lru fields of those pages. This patch
re-arrange the uncharge to allow single page to be uncharge without
modifying the lru field of the struct page.

There is no change to memcontrol logic, it is the same as it was
before this patch.

Link: http://lkml.kernel.org/r/20170817000548.32038-10-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Nellans <dnellans@nvidia.com>
Cc: Evgeny Baskakov <ebaskakov@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mark Hairgrove <mhairgrove@nvidia.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Sherry Cheung <SCheung@nvidia.com>
Cc: Subhash Gutti <sgutti@nvidia.com>
Cc: Bob Liu <liubo95@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-08 18:26:46 -07:00
Zi Yan
84c3fc4e9c mm: thp: check pmd migration entry in common path
When THP migration is being used, memory management code needs to handle
pmd migration entries properly.  This patch uses !pmd_present() or
is_swap_pmd() (depending on whether pmd_none() needs separate code or
not) to check pmd migration entries at the places where a pmd entry is
present.

Since pmd-related code uses split_huge_page(), split_huge_pmd(),
pmd_trans_huge(), pmd_trans_unstable(), or
pmd_none_or_trans_huge_or_clear_bad(), this patch:

1. adds pmd migration entry split code in split_huge_pmd(),

2. takes care of pmd migration entries whenever pmd_trans_huge() is present,

3. makes pmd_none_or_trans_huge_or_clear_bad() pmd migration entry aware.

Since split_huge_page() uses split_huge_pmd() and pmd_trans_unstable()
is equivalent to pmd_none_or_trans_huge_or_clear_bad(), we do not change
them.

Until this commit, a pmd entry should be:
1. pointing to a pte page,
2. is_swap_pmd(),
3. pmd_trans_huge(),
4. pmd_devmap(), or
5. pmd_none().

Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Nellans <dnellans@nvidia.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-08 18:26:45 -07:00
Linus Torvalds
608c1d3c17 Merge branch 'for-4.14' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup updates from Tejun Heo:
 "Several notable changes this cycle:

   - Thread mode was merged. This will be used for cgroup2 support for
     CPU and possibly other controllers. Unfortunately, CPU controller
     cgroup2 support didn't make this pull request but most contentions
     have been resolved and the support is likely to be merged before
     the next merge window.

   - cgroup.stat now shows the number of descendant cgroups.

   - cpuset now can enable the easier-to-configure v2 behavior on v1
     hierarchy"

* 'for-4.14' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (21 commits)
  cpuset: Allow v2 behavior in v1 cgroup
  cgroup: Add mount flag to enable cpuset to use v2 behavior in v1 cgroup
  cgroup: remove unneeded checks
  cgroup: misc changes
  cgroup: short-circuit cset_cgroup_from_root() on the default hierarchy
  cgroup: re-use the parent pointer in cgroup_destroy_locked()
  cgroup: add cgroup.stat interface with basic hierarchy stats
  cgroup: implement hierarchy limits
  cgroup: keep track of number of descent cgroups
  cgroup: add comment to cgroup_enable_threaded()
  cgroup: remove unnecessary empty check when enabling threaded mode
  cgroup: update debug controller to print out thread mode information
  cgroup: implement cgroup v2 thread support
  cgroup: implement CSS_TASK_ITER_THREADED
  cgroup: introduce cgroup->dom_cgrp and threaded css_set handling
  cgroup: add @flags to css_task_iter_start() and implement CSS_TASK_ITER_PROCS
  cgroup: reorganize cgroup.procs / task write path
  cgroup: replace css_set walking populated test with testing cgrp->nr_populated_csets
  cgroup: distinguish local and children populated states
  cgroup: remove now unused list_head @pending in cgroup_apply_cftypes()
  ...
2017-09-06 22:25:25 -07:00
Michal Hocko
da99ecf117 mm: replace TIF_MEMDIE checks by tsk_is_oom_victim
TIF_MEMDIE is set only to the tasks whick were either directly selected
by the OOM killer or passed through mark_oom_victim from the allocator
path.  tsk_is_oom_victim is more generic and allows to identify all
tasks (threads) which share the mm with the oom victim.

Please note that the freezer still needs to check TIF_MEMDIE because we
cannot thaw tasks which do not participage in oom_victims counting
otherwise a !TIF_MEMDIE task could interfere after oom_disbale returns.

Link: http://lkml.kernel.org/r/20170810075019.28998-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:30 -07:00
Huang Ying
d6810d7300 memcg, THP, swap: make mem_cgroup_swapout() support THP
This patch makes mem_cgroup_swapout() works for the transparent huge
page (THP).  Which will move the memory cgroup charge from memory to
swap for a THP.

This will be used for the THP swap support.  Where a THP may be swapped
out as a whole to a set of (HPAGE_PMD_NR) continuous swap slots on the
swap device.

Link: http://lkml.kernel.org/r/20170724051840.2309-11-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ross Zwisler <ross.zwisler@intel.com> [for brd.c, zram_drv.c, pmem.c]
Cc: Shaohua Li <shli@kernel.org>
Cc: Vishal L Verma <vishal.l.verma@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:28 -07:00
Huang Ying
abe2895b76 memcg, THP, swap: avoid to duplicated charge THP in swap cache
For a THP (Transparent Huge Page), tail_page->mem_cgroup is NULL.  So to
check whether the page is charged already, we need to check the head
page.  This is not an issue before because it is impossible for a THP to
be in the swap cache before.  But after we add delaying splitting THP
after swapped out support, it is possible now.

Link: http://lkml.kernel.org/r/20170724051840.2309-10-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ross Zwisler <ross.zwisler@intel.com> [for brd.c, zram_drv.c, pmem.c]
Cc: Shaohua Li <shli@kernel.org>
Cc: Vishal L Verma <vishal.l.verma@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:28 -07:00
Huang Ying
3e14a57b24 memcg, THP, swap: support move mem cgroup charge for THP swapped out
PTE mapped THP (Transparent Huge Page) will be ignored when moving
memory cgroup charge.  But for THP which is in the swap cache, the
memory cgroup charge for the swap of a tail-page may be moved in current
implementation.  That isn't correct, because the swap charge for all
sub-pages of a THP should be moved together.  Following the processing
of the PTE mapped THP, the mem cgroup charge moving for the swap entry
for a tail-page of a THP is ignored too.

Link: http://lkml.kernel.org/r/20170724051840.2309-9-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ross Zwisler <ross.zwisler@intel.com> [for brd.c, zram_drv.c, pmem.c]
Cc: Shaohua Li <shli@kernel.org>
Cc: Vishal L Verma <vishal.l.verma@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:28 -07:00
Matthias Kaehlcke
04fecbf51b mm: memcontrol: use int for event/state parameter in several functions
Several functions use an enum type as parameter for an event/state, but
are called in some locations with an argument of a different enum type.
Adjust the interface of these functions to reality by changing the
parameter to int.

This fixes a ton of enum-conversion warnings that are generated when
building the kernel with clang.

[mka@chromium.org: also change parameter type of inc/dec/mod_memcg_page_state()]
  Link: http://lkml.kernel.org/r/20170728213442.93823-1-mka@chromium.org
Link: http://lkml.kernel.org/r/20170727211004.34435-1-mka@chromium.org
Signed-off-by: Matthias Kaehlcke <mka@chromium.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Doug Anderson <dianders@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:27 -07:00
Roman Gushchin
63677c745d mm, memcg: reset memory.low during memcg offlining
A removed memory cgroup with a defined memory.low and some belonging
pagecache has very low chances to be freed.

If a cgroup has been removed, there is likely no memory pressure inside
the cgroup, and the pagecache is protected from the external pressure by
the defined low limit.  The cgroup will be freed only after the reclaim
of all belonging pages.  And it will not happen until there are any
reclaimable memory in the system.  That means, there is a good chance,
that a cold pagecache will reside in the memory for an undefined amount
of time, wasting system resources.

This problem was fixed earlier by fa06235b8e ("cgroup: reset css on
destruction"), but it's not a best way to do it, as we can't really
reset all limits/counters during cgroup offlining.

Link: http://lkml.kernel.org/r/20170727130428.28856-1-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:27 -07:00
Johannes Weiner
739f79fc9d mm: memcontrol: fix NULL pointer crash in test_clear_page_writeback()
Jaegeuk and Brad report a NULL pointer crash when writeback ending tries
to update the memcg stats:

    BUG: unable to handle kernel NULL pointer dereference at 00000000000003b0
    IP: test_clear_page_writeback+0x12e/0x2c0
    [...]
    RIP: 0010:test_clear_page_writeback+0x12e/0x2c0
    Call Trace:
     <IRQ>
     end_page_writeback+0x47/0x70
     f2fs_write_end_io+0x76/0x180 [f2fs]
     bio_endio+0x9f/0x120
     blk_update_request+0xa8/0x2f0
     scsi_end_request+0x39/0x1d0
     scsi_io_completion+0x211/0x690
     scsi_finish_command+0xd9/0x120
     scsi_softirq_done+0x127/0x150
     __blk_mq_complete_request_remote+0x13/0x20
     flush_smp_call_function_queue+0x56/0x110
     generic_smp_call_function_single_interrupt+0x13/0x30
     smp_call_function_single_interrupt+0x27/0x40
     call_function_single_interrupt+0x89/0x90
    RIP: 0010:native_safe_halt+0x6/0x10

    (gdb) l *(test_clear_page_writeback+0x12e)
    0xffffffff811bae3e is in test_clear_page_writeback (./include/linux/memcontrol.h:619).
    614		mod_node_page_state(page_pgdat(page), idx, val);
    615		if (mem_cgroup_disabled() || !page->mem_cgroup)
    616			return;
    617		mod_memcg_state(page->mem_cgroup, idx, val);
    618		pn = page->mem_cgroup->nodeinfo[page_to_nid(page)];
    619		this_cpu_add(pn->lruvec_stat->count[idx], val);
    620	}
    621
    622	unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
    623							gfp_t gfp_mask,

The issue is that writeback doesn't hold a page reference and the page
might get freed after PG_writeback is cleared (and the mapping is
unlocked) in test_clear_page_writeback().  The stat functions looking up
the page's node or zone are safe, as those attributes are static across
allocation and free cycles.  But page->mem_cgroup is not, and it will
get cleared if we race with truncation or migration.

It appears this race window has been around for a while, but less likely
to trigger when the memcg stats were updated first thing after
PG_writeback is cleared.  Recent changes reshuffled this code to update
the global node stats before the memcg ones, though, stretching the race
window out to an extent where people can reproduce the problem.

Update test_clear_page_writeback() to look up and pin page->mem_cgroup
before clearing PG_writeback, then not use that pointer afterward.  It
is a partial revert of 62cccb8c8e ("mm: simplify lock_page_memcg()")
but leaves the pageref-holding callsites that aren't affected alone.

Link: http://lkml.kernel.org/r/20170809183825.GA26387@cmpxchg.org
Fixes: 62cccb8c8e ("mm: simplify lock_page_memcg()")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Jaegeuk Kim <jaegeuk@kernel.org>
Tested-by: Jaegeuk Kim <jaegeuk@kernel.org>
Reported-by: Bradley Bolen <bradleybolen@gmail.com>
Tested-by: Brad Bolen <bradleybolen@gmail.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: <stable@vger.kernel.org>	[4.6+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-18 15:32:01 -07:00
Tejun Heo
bc2fb7ed08 cgroup: add @flags to css_task_iter_start() and implement CSS_TASK_ITER_PROCS
css_task_iter currently always walks all tasks.  With the scheduled
cgroup v2 thread support, the iterator would need to handle multiple
types of iteration.  As a preparation, add @flags to
css_task_iter_start() and implement CSS_TASK_ITER_PROCS.  If the flag
is not specified, it walks all tasks as before.  When asserted, the
iterator only walks the group leaders.

For now, the only user of the flag is cgroup v2 "cgroup.procs" file
which no longer needs to skip non-leader tasks in cgroup_procs_next().
Note that cgroup v1 "cgroup.procs" can't use the group leader walk as
v1 "cgroup.procs" doesn't mean "list all thread group leaders in the
cgroup" but "list all thread group id's with any threads in the
cgroup".

While at it, update cgroup_procs_show() to use task_pid_vnr() instead
of task_tgid_vnr().  As the iteration guarantees that the function
only sees group leaders, this doesn't change the output and will allow
sharing the function for thread iteration.

Signed-off-by: Tejun Heo <tj@kernel.org>
2017-07-21 11:14:51 -04:00
Michal Hocko
6a1a8b8072 mm, memcg: fix potential undefined behavior in mem_cgroup_event_ratelimit()
Alice has reported the following UBSAN splat:

  UBSAN: Undefined behaviour in mm/memcontrol.c:661:17
  signed integer overflow:
  -2147483644 - 2147483525 cannot be represented in type 'long int'
  CPU: 1 PID: 11758 Comm: mybibtex2filena Tainted: P           O 4.9.25-gentoo #4
  Hardware name: XXXXXX, BIOS YYYYYY
  Call Trace:
    dump_stack+0x59/0x87
    ubsan_epilogue+0xe/0x40
    handle_overflow+0xbb/0xf0
    __ubsan_handle_sub_overflow+0x12/0x20
    memcg_check_events.isra.36+0x223/0x360
    mem_cgroup_commit_charge+0x55/0x140
    wp_page_copy+0x34e/0xb80
    do_wp_page+0x1e6/0x1300
    handle_mm_fault+0x88b/0x1990
    __do_page_fault+0x2de/0x8a0
    do_page_fault+0x1a/0x20
    error_code+0x67/0x6c

The reason is that we subtract two signed types.  Let's fix this by
truly mimicing time_after and cast the result of the subtraction.

Link: http://lkml.kernel.org/r/20170616150057.GQ30580@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Alice Ferrazzi <alicef@gentoo.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:32 -07:00
Sean Christopherson
34c8105792 mm/memcontrol: exclude @root from checks in mem_cgroup_low
Make @root exclusive in mem_cgroup_low; it is never considered low when
looked at directly and is not checked when traversing the tree.  In
effect, @root is handled identically to how root_mem_cgroup was
previously handled by mem_cgroup_low.

If @root is not excluded from the checks, a cgroup underneath @root will
never be considered low during targeted reclaim of @root, e.g.  due to
memory.current > memory.high, unless @root is misconfigured to have
memory.low > memory.high.

Excluding @root enables using memory.low to prioritize memory usage
between cgroups within a subtree of the hierarchy that is limited by
memory.high or memory.max, e.g.  when ROOT owns @root's controls but
delegates the @root directory to a USER so that USER can create and
administer children of @root.

For example, given cgroup A with children B and C:

    A
   / \
  B   C

and

  1. A/memory.current > A/memory.high
  2. A/B/memory.current < A/B/memory.low
  3. A/C/memory.current >= A/C/memory.low

As 'A' is high, i.e.  triggers reclaim from 'A', and 'B' is low, we
should reclaim from 'C' until 'A' is no longer high or until we can no
longer reclaim from 'C'.  If 'A', i.e.  @root, isn't excluded by
mem_cgroup_low when reclaming from 'A', then 'B' won't be considered low
and we will reclaim indiscriminately from both 'B' and 'C'.

Here is the test I used to confirm the bug and the patch.

20:00:55@sjchrist-vm ? ~ $ cat ~/.bin/memcg_low_test
#!/bin/bash

x62mb=$((62<<20))
x66mb=$((66<<20))
x94mb=$((94<<20))
x98mb=$((98<<20))

setup() {
    set -e

    if [[ -n $DEBUG ]]; then
        set -x
    fi

    trap teardown EXIT HUP INT TERM

    if [[ ! -e /mnt/1gb.swap ]]; then
        sudo fallocate -l 1G /mnt/1gb.swap > /dev/null
        sudo mkswap /mnt/1gb.swap > /dev/null
    fi
    if ! swapon --show=NAME | grep -q "/mnt/1gb.swap"; then
        sudo swapon /mnt/1gb.swap
    fi

    if [[ ! -e /cgroup/cgroup.controllers ]]; then
        sudo mount -t cgroup2 none /cgroup
    fi

    grep -q memory /cgroup/cgroup.controllers

    sudo sh -c "echo '+memory' > /cgroup/cgroup.subtree_control"

    sudo mkdir /cgroup/A && sudo chown $USER:$USER /cgroup/A
    sudo sh -c "echo '+memory' > /cgroup/A/cgroup.subtree_control"
    sudo sh -c "echo '96m' > /cgroup/A/memory.high"

    mkdir /cgroup/A/0
    mkdir /cgroup/A/1

    echo 64m > /cgroup/A/0/memory.low
}

teardown() {
    set +e

    trap - EXIT HUP INT TERM

    if [[ -z $1 ]]; then
        printf "\n"
        printf "%0.s*" {1..35}
        printf "\nFAILED!\n\n"
        tail /cgroup/A/**/memory.current
        printf "%0.s*" {1..35}
        printf "\n\n"
    fi

    ps | grep stress | tr -s ' ' | cut -f 2 -d ' ' | xargs -I % kill %

    sleep 2

    if [[ -e /cgroup/A/0 ]]; then
        rmdir /cgroup/A/0
    fi
    if [[ -e /cgroup/A/1 ]]; then
        rmdir /cgroup/A/1
    fi
    if [[ -e /cgroup/A ]]; then
        sudo rmdir /cgroup/A
    fi
}

stress_test() {
    sudo sh -c "echo $$ > /cgroup/A/$1/cgroup.procs"
    stress --vm 1 --vm-bytes 64M --vm-keep > /dev/null &

    sudo sh -c "echo $$ > /cgroup/A/$2/cgroup.procs"
    stress --vm 1 --vm-bytes 64M --vm-keep > /dev/null &

    sudo sh -c "echo $$ > /cgroup/cgroup.procs"

    sleep 1

    # A/0 should be consuming more memory than A/1
    [[ $(cat /cgroup/A/0/memory.current) -ge $(cat /cgroup/A/1/memory.current) ]]

    # A/0 should be consuming ~64mb
    [[ $(cat /cgroup/A/0/memory.current) -ge $x62mb ]] && [[ $(cat /cgroup/A/0/memory.current) -le $x66mb ]]

    # A should cumulatively be consuming ~96mb
    [[ $(cat /cgroup/A/memory.current) -ge $x94mb ]] && [[ $(cat /cgroup/A/memory.current) -le $x98mb ]]

    # Stop the stressors
    ps | grep stress | tr -s ' ' | cut -f 2 -d ' ' | xargs -I % kill %
}

teardown 1
setup

for ((i=1;i<=$1;i++)); do
    printf "ITERATION $i of $1 - stress_test 0 1"
    stress_test 0 1
    printf "\x1b[2K\r"

    printf "ITERATION $i of $1 - stress_test 1 0"
    stress_test 1 0
    printf "\x1b[2K\r"

    printf "ITERATION $i of $1 - PASSED\n"
done

teardown 1

echo PASSED!

20:11:26@sjchrist-vm ? ~ $ memcg_low_test 10

Link: http://lkml.kernel.org/r/1496434412-21005-1-git-send-email-sean.j.christopherson@intel.com
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:31 -07:00
Johannes Weiner
00f3ca2c2d mm: memcontrol: per-lruvec stats infrastructure
lruvecs are at the intersection of the NUMA node and memcg, which is the
scope for most paging activity.

Introduce a convenient accounting infrastructure that maintains
statistics per node, per memcg, and the lruvec itself.

Then convert over accounting sites for statistics that are already
tracked in both nodes and memcgs and can be easily switched.

[hannes@cmpxchg.org: fix crash in the new cgroup stat keeping code]
  Link: http://lkml.kernel.org/r/20170531171450.GA10481@cmpxchg.org
[hannes@cmpxchg.org: don't track uncharged pages at all
  Link: http://lkml.kernel.org/r/20170605175254.GA8547@cmpxchg.org
[hannes@cmpxchg.org: add missing free_percpu()]
  Link: http://lkml.kernel.org/r/20170605175354.GB8547@cmpxchg.org
[linux@roeck-us.net: hexagon: fix build error caused by include file order]
  Link: http://lkml.kernel.org/r/20170617153721.GA4382@roeck-us.net
Link: http://lkml.kernel.org/r/20170530181724.27197-6-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:35 -07:00
Johannes Weiner
320492961c mm: memcontrol: use the node-native slab memory counters
Now that the slab counters are moved from the zone to the node level we
can drop the private memcg node stats and use the official ones.

Link: http://lkml.kernel.org/r/20170530181724.27197-4-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:35 -07:00
Konstantin Khlebnikov
8e675f7af5 mm/oom_kill: count global and memory cgroup oom kills
Show count of oom killer invocations in /proc/vmstat and count of
processes killed in memory cgroup in knob "memory.events" (in
memory.oom_control for v1 cgroup).

Also describe difference between "oom" and "oom_kill" in memory cgroup
documentation.  Currently oom in memory cgroup kills tasks iff shortage
has happened inside page fault.

These counters helps in monitoring oom kills - for now the only way is
grepping for magic words in kernel log.

[akpm@linux-foundation.org: fix for mem_cgroup_count_vm_event() rename]
[akpm@linux-foundation.org: fix comment, per Konstantin]
Link: http://lkml.kernel.org/r/149570810989.203600.9492483715840752937.stgit@buzz
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Roman Guschin <guroan@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:35 -07:00
Roman Gushchin
2262185c5b mm: per-cgroup memory reclaim stats
Track the following reclaim counters for every memory cgroup: PGREFILL,
PGSCAN, PGSTEAL, PGACTIVATE, PGDEACTIVATE, PGLAZYFREE and PGLAZYFREED.

These values are exposed using the memory.stats interface of cgroup v2.

The meaning of each value is the same as for global counters, available
using /proc/vmstat.

Also, for consistency, rename mem_cgroup_count_vm_event() to
count_memcg_event_mm().

Link: http://lkml.kernel.org/r/1494530183-30808-1-git-send-email-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:35 -07:00
Huang Ying
38d8b4e6bd mm, THP, swap: delay splitting THP during swap out
Patch series "THP swap: Delay splitting THP during swapping out", v11.

This patchset is to optimize the performance of Transparent Huge Page
(THP) swap.

Recently, the performance of the storage devices improved so fast that
we cannot saturate the disk bandwidth with single logical CPU when do
page swap out even on a high-end server machine.  Because the
performance of the storage device improved faster than that of single
logical CPU.  And it seems that the trend will not change in the near
future.  On the other hand, the THP becomes more and more popular
because of increased memory size.  So it becomes necessary to optimize
THP swap performance.

The advantages of the THP swap support include:

 - Batch the swap operations for the THP to reduce lock
   acquiring/releasing, including allocating/freeing the swap space,
   adding/deleting to/from the swap cache, and writing/reading the swap
   space, etc. This will help improve the performance of the THP swap.

 - The THP swap space read/write will be 2M sequential IO. It is
   particularly helpful for the swap read, which are usually 4k random
   IO. This will improve the performance of the THP swap too.

 - It will help the memory fragmentation, especially when the THP is
   heavily used by the applications. The 2M continuous pages will be
   free up after THP swapping out.

 - It will improve the THP utilization on the system with the swap
   turned on. Because the speed for khugepaged to collapse the normal
   pages into the THP is quite slow. After the THP is split during the
   swapping out, it will take quite long time for the normal pages to
   collapse back into the THP after being swapped in. The high THP
   utilization helps the efficiency of the page based memory management
   too.

There are some concerns regarding THP swap in, mainly because possible
enlarged read/write IO size (for swap in/out) may put more overhead on
the storage device.  To deal with that, the THP swap in should be turned
on only when necessary.  For example, it can be selected via
"always/never/madvise" logic, to be turned on globally, turned off
globally, or turned on only for VMA with MADV_HUGEPAGE, etc.

This patchset is the first step for the THP swap support.  The plan is
to delay splitting THP step by step, finally avoid splitting THP during
the THP swapping out and swap out/in the THP as a whole.

As the first step, in this patchset, the splitting huge page is delayed
from almost the first step of swapping out to after allocating the swap
space for the THP and adding the THP into the swap cache.  This will
reduce lock acquiring/releasing for the locks used for the swap cache
management.

With the patchset, the swap out throughput improves 15.5% (from about
3.73GB/s to about 4.31GB/s) in the vm-scalability swap-w-seq test case
with 8 processes.  The test is done on a Xeon E5 v3 system.  The swap
device used is a RAM simulated PMEM (persistent memory) device.  To test
the sequential swapping out, the test case creates 8 processes, which
sequentially allocate and write to the anonymous pages until the RAM and
part of the swap device is used up.

This patch (of 5):

In this patch, splitting huge page is delayed from almost the first step
of swapping out to after allocating the swap space for the THP
(Transparent Huge Page) and adding the THP into the swap cache.  This
will batch the corresponding operation, thus improve THP swap out
throughput.

This is the first step for the THP swap optimization.  The plan is to
delay splitting the THP step by step and avoid splitting the THP
finally.

In this patch, one swap cluster is used to hold the contents of each THP
swapped out.  So, the size of the swap cluster is changed to that of the
THP (Transparent Huge Page) on x86_64 architecture (512).  For other
architectures which want such THP swap optimization,
ARCH_USES_THP_SWAP_CLUSTER needs to be selected in the Kconfig file for
the architecture.  In effect, this will enlarge swap cluster size by 2
times on x86_64.  Which may make it harder to find a free cluster when
the swap space becomes fragmented.  So that, this may reduce the
continuous swap space allocation and sequential write in theory.  The
performance test in 0day shows no regressions caused by this.

In the future of THP swap optimization, some information of the swapped
out THP (such as compound map count) will be recorded in the
swap_cluster_info data structure.

The mem cgroup swap accounting functions are enhanced to support charge
or uncharge a swap cluster backing a THP as a whole.

The swap cluster allocate/free functions are added to allocate/free a
swap cluster for a THP.  A fair simple algorithm is used for swap
cluster allocation, that is, only the first swap device in priority list
will be tried to allocate the swap cluster.  The function will fail if
the trying is not successful, and the caller will fallback to allocate a
single swap slot instead.  This works good enough for normal cases.  If
the difference of the number of the free swap clusters among multiple
swap devices is significant, it is possible that some THPs are split
earlier than necessary.  For example, this could be caused by big size
difference among multiple swap devices.

The swap cache functions is enhanced to support add/delete THP to/from
the swap cache as a set of (HPAGE_PMD_NR) sub-pages.  This may be
enhanced in the future with multi-order radix tree.  But because we will
split the THP soon during swapping out, that optimization doesn't make
much sense for this first step.

The THP splitting functions are enhanced to support to split THP in swap
cache during swapping out.  The page lock will be held during allocating
the swap cluster, adding the THP into the swap cache and splitting the
THP.  So in the code path other than swapping out, if the THP need to be
split, the PageSwapCache(THP) will be always false.

The swap cluster is only available for SSD, so the THP swap optimization
in this patchset has no effect for HDD.

[ying.huang@intel.com: fix two issues in THP optimize patch]
  Link: http://lkml.kernel.org/r/87k25ed8zo.fsf@yhuang-dev.intel.com
[hannes@cmpxchg.org: extensive cleanups and simplifications, reduce code size]
Link: http://lkml.kernel.org/r/20170515112522.32457-2-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Andrew Morton <akpm@linux-foundation.org> [for config option]
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> [for changes in huge_memory.c and huge_mm.h]
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:31 -07:00
Ingo Molnar
2055da9738 sched/wait: Disambiguate wq_entry->task_list and wq_head->task_list naming
So I've noticed a number of instances where it was not obvious from the
code whether ->task_list was for a wait-queue head or a wait-queue entry.

Furthermore, there's a number of wait-queue users where the lists are
not for 'tasks' but other entities (poll tables, etc.), in which case
the 'task_list' name is actively confusing.

To clear this all up, name the wait-queue head and entry list structure
fields unambiguously:

	struct wait_queue_head::task_list	=> ::head
	struct wait_queue_entry::task_list	=> ::entry

For example, this code:

	rqw->wait.task_list.next != &wait->task_list

... is was pretty unclear (to me) what it's doing, while now it's written this way:

	rqw->wait.head.next != &wait->entry

... which makes it pretty clear that we are iterating a list until we see the head.

Other examples are:

	list_for_each_entry_safe(pos, next, &x->task_list, task_list) {
	list_for_each_entry(wq, &fence->wait.task_list, task_list) {

... where it's unclear (to me) what we are iterating, and during review it's
hard to tell whether it's trying to walk a wait-queue entry (which would be
a bug), while now it's written as:

	list_for_each_entry_safe(pos, next, &x->head, entry) {
	list_for_each_entry(wq, &fence->wait.head, entry) {

Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-06-20 12:19:14 +02:00
Ingo Molnar
ac6424b981 sched/wait: Rename wait_queue_t => wait_queue_entry_t
Rename:

	wait_queue_t		=>	wait_queue_entry_t

'wait_queue_t' was always a slight misnomer: its name implies that it's a "queue",
but in reality it's a queue *entry*. The 'real' queue is the wait queue head,
which had to carry the name.

Start sorting this out by renaming it to 'wait_queue_entry_t'.

This also allows the real structure name 'struct __wait_queue' to
lose its double underscore and become 'struct wait_queue_entry',
which is the more canonical nomenclature for such data types.

Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-06-20 12:18:27 +02:00
Michal Hocko
18365225f0 hwpoison, memcg: forcibly uncharge LRU pages
Laurent Dufour has noticed that hwpoinsoned pages are kept charged.  In
his particular case he has hit a bad_page("page still charged to
cgroup") when onlining a hwpoison page.  While this looks like something
that shouldn't happen in the first place because onlining hwpages and
returning them to the page allocator makes only little sense it shows a
real problem.

hwpoison pages do not get freed usually so we do not uncharge them (at
least not since commit 0a31bc97c8 ("mm: memcontrol: rewrite uncharge
API")).  Each charge pins memcg (since e8ea14cc6e ("mm: memcontrol:
take a css reference for each charged page")) as well and so the
mem_cgroup and the associated state will never go away.  Fix this leak
by forcibly uncharging a LRU hwpoisoned page in delete_from_lru_cache().
We also have to tweak uncharge_list because it cannot rely on zero ref
count for these pages.

[akpm@linux-foundation.org: coding-style fixes]
Fixes: 0a31bc97c8 ("mm: memcontrol: rewrite uncharge API")
Link: http://lkml.kernel.org/r/20170502185507.GB19165@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Tested-by: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Reviewed-by: Balbir Singh <bsingharora@gmail.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-12 15:57:15 -07:00
Johannes Weiner
ccda7f4360 mm: memcontrol: use node page state naming scheme for memcg
The memory controllers stat function names are awkwardly long and
arbitrarily different from the zone and node stat functions.

The current interface is named:

  mem_cgroup_read_stat()
  mem_cgroup_update_stat()
  mem_cgroup_inc_stat()
  mem_cgroup_dec_stat()
  mem_cgroup_update_page_stat()
  mem_cgroup_inc_page_stat()
  mem_cgroup_dec_page_stat()

This patch renames it to match the corresponding node stat functions:

  memcg_page_state()		[node_page_state()]
  mod_memcg_state()		[mod_node_state()]
  inc_memcg_state()		[inc_node_state()]
  dec_memcg_state()		[dec_node_state()]
  mod_memcg_page_state()	[mod_node_page_state()]
  inc_memcg_page_state()	[inc_node_page_state()]
  dec_memcg_page_state()	[dec_node_page_state()]

Link: http://lkml.kernel.org/r/20170404220148.28338-4-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:11 -07:00
Johannes Weiner
71cd31135d mm: memcontrol: re-use node VM page state enum
The current duplication is a high-maintenance mess, and it's painful to
add new items or query memcg state from the rest of the VM.

This increases the size of the stat array marginally, but we should aim
to track all these stats on a per-cgroup level anyway.

Link: http://lkml.kernel.org/r/20170404220148.28338-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:11 -07:00
Johannes Weiner
df0e53d061 mm: memcontrol: re-use global VM event enum
The current duplication is a high-maintenance mess, and it's painful to
add new items.

This increases the size of the event array, but we'll eventually want
most of the VM events tracked on a per-cgroup basis anyway.

Link: http://lkml.kernel.org/r/20170404220148.28338-2-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:11 -07:00
Johannes Weiner
31176c7815 mm: memcontrol: clean up memory.events counting function
We only ever count single events, drop the @nr parameter.  Rename the
function accordingly.  Remove low-information kerneldoc.

Link: http://lkml.kernel.org/r/20170404220148.28338-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:11 -07:00
Johannes Weiner
2a2e48854d mm: vmscan: fix IO/refault regression in cache workingset transition
Since commit 59dc76b0d4 ("mm: vmscan: reduce size of inactive file
list") we noticed bigger IO spikes during changes in cache access
patterns.

The patch in question shrunk the inactive list size to leave more room
for the current workingset in the presence of streaming IO.  However,
workingset transitions that previously happened on the inactive list are
now pushed out of memory and incur more refaults to complete.

This patch disables active list protection when refaults are being
observed.  This accelerates workingset transitions, and allows more of
the new set to establish itself from memory, without eating into the
ability to protect the established workingset during stable periods.

The workloads that were measurably affected for us were hit pretty bad
by it, with refault/majfault rates doubling and tripling during cache
transitions, and the machines sustaining half-hour periods of 100% IO
utilization, where they'd previously have sub-minute peaks at 60-90%.

Stateful services that handle user data tend to be more conservative
with kernel upgrades.  As a result we hit most page cache issues with
some delay, as was the case here.

The severity seemed to warrant a stable tag.

Fixes: 59dc76b0d4 ("mm: vmscan: reduce size of inactive file list")
Link: http://lkml.kernel.org/r/20170404220052.27593-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org>	[4.7+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:11 -07:00
Johannes Weiner
9a4caf1e9f mm: memcontrol: provide shmem statistics
Cgroups currently don't report how much shmem they use, which can be
useful data to have, in particular since shmem is included in the
cache/file item while being reclaimed like anonymous memory.

Add a counter to track shmem pages during charging and uncharging.

Link: http://lkml.kernel.org/r/20170221164343.32252-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Chris Down <cdown@fb.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:08 -07:00
Tahsin Erdogan
40e952f9d6 mm: do not call mem_cgroup_free() from within mem_cgroup_alloc()
mem_cgroup_free() indirectly calls wb_domain_exit() which is not
prepared to deal with a struct wb_domain object that hasn't executed
wb_domain_init().  For instance, the following warning message is
printed by lockdep if alloc_percpu() fails in mem_cgroup_alloc():

  INFO: trying to register non-static key.
  the code is fine but needs lockdep annotation.
  turning off the locking correctness validator.
  CPU: 1 PID: 1950 Comm: mkdir Not tainted 4.10.0+ #151
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011
  Call Trace:
   dump_stack+0x67/0x99
   register_lock_class+0x36d/0x540
   __lock_acquire+0x7f/0x1a30
   lock_acquire+0xcc/0x200
   del_timer_sync+0x3c/0xc0
   wb_domain_exit+0x14/0x20
   mem_cgroup_free+0x14/0x40
   mem_cgroup_css_alloc+0x3f9/0x620
   cgroup_apply_control_enable+0x190/0x390
   cgroup_mkdir+0x290/0x3d0
   kernfs_iop_mkdir+0x58/0x80
   vfs_mkdir+0x10e/0x1a0
   SyS_mkdirat+0xa8/0xd0
   SyS_mkdir+0x14/0x20
   entry_SYSCALL_64_fastpath+0x18/0xad

Add __mem_cgroup_free() which skips wb_domain_exit().  This is used by
both mem_cgroup_free() and mem_cgroup_alloc() clean up.

Fixes: 0b8f73e104 ("mm: memcontrol: clean up alloc, online, offline, free functions")
Link: http://lkml.kernel.org/r/20170306192122.24262-1-tahsin@google.com
Signed-off-by: Tahsin Erdogan <tahsin@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-03-09 17:01:10 -08:00
Laurent Dufour
bfc7228b9a mm/cgroup: avoid panic when init with low memory
The system may panic when initialisation is done when almost all the
memory is assigned to the huge pages using the kernel command line
parameter hugepage=xxxx.  Panic may occur like this:

  Unable to handle kernel paging request for data at address 0x00000000
  Faulting instruction address: 0xc000000000302b88
  Oops: Kernel access of bad area, sig: 11 [#1]
  SMP NR_CPUS=2048 [    0.082424] NUMA
  pSeries
  Modules linked in:
  CPU: 0 PID: 1 Comm: swapper/0 Not tainted 4.9.0-15-generic #16-Ubuntu
  task: c00000021ed01600 task.stack: c00000010d108000
  NIP: c000000000302b88 LR: c000000000270e04 CTR: c00000000016cfd0
  REGS: c00000010d10b2c0 TRAP: 0300   Not tainted (4.9.0-15-generic)
  MSR: 8000000002009033 <SF,VEC,EE,ME,IR,DR,RI,LE>[ 0.082770]   CR: 28424422  XER: 00000000
  CFAR: c0000000003d28b8 DAR: 0000000000000000 DSISR: 40000000 SOFTE: 1
  GPR00: c000000000270e04 c00000010d10b540 c00000000141a300 c00000010fff6300
  GPR04: 0000000000000000 00000000026012c0 c00000010d10b630 0000000487ab0000
  GPR08: 000000010ee90000 c000000001454fd8 0000000000000000 0000000000000000
  GPR12: 0000000000004400 c00000000fb80000 00000000026012c0 00000000026012c0
  GPR16: 00000000026012c0 0000000000000000 0000000000000000 0000000000000002
  GPR20: 000000000000000c 0000000000000000 0000000000000000 00000000024200c0
  GPR24: c0000000016eef48 0000000000000000 c00000010fff7d00 00000000026012c0
  GPR28: 0000000000000000 c00000010fff7d00 c00000010fff6300 c00000010d10b6d0
  NIP mem_cgroup_soft_limit_reclaim+0xf8/0x4f0
  LR do_try_to_free_pages+0x1b4/0x450
  Call Trace:
    do_try_to_free_pages+0x1b4/0x450
    try_to_free_pages+0xf8/0x270
    __alloc_pages_nodemask+0x7a8/0xff0
    new_slab+0x104/0x8e0
    ___slab_alloc+0x620/0x700
    __slab_alloc+0x34/0x60
    kmem_cache_alloc_node_trace+0xdc/0x310
    mem_cgroup_init+0x158/0x1c8
    do_one_initcall+0x68/0x1d0
    kernel_init_freeable+0x278/0x360
    kernel_init+0x24/0x170
    ret_from_kernel_thread+0x5c/0x74
  Instruction dump:
  eb81ffe0 eba1ffe8 ebc1fff0 ebe1fff8 4e800020 3d230001 e9499a42 3d220004
  3929acd8 794a1f24 7d295214 eac90100 <e9360000> 2fa90000 419eff74 3b200000
  ---[ end trace 342f5208b00d01b6 ]---

This is a chicken and egg issue where the kernel try to get free memory
when allocating per node data in mem_cgroup_init(), but in that path
mem_cgroup_soft_limit_reclaim() is called which assumes that these data
are allocated.

As mem_cgroup_soft_limit_reclaim() is best effort, it should return when
these data are not yet allocated.

This patch also fixes potential null pointer access in
mem_cgroup_remove_from_trees() and mem_cgroup_update_tree().

Link: http://lkml.kernel.org/r/1487856999-16581-2-git-send-email-ldufour@linux.vnet.ibm.com
Signed-off-by: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-03-09 17:01:10 -08:00
Ingo Molnar
6e84f31522 sched/headers: Prepare for new header dependencies before moving code to <linux/sched/mm.h>
We are going to split <linux/sched/mm.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.

Create a trivial placeholder <linux/sched/mm.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.

The APIs that are going to be moved first are:

   mm_alloc()
   __mmdrop()
   mmdrop()
   mmdrop_async_fn()
   mmdrop_async()
   mmget_not_zero()
   mmput()
   mmput_async()
   get_task_mm()
   mm_access()
   mm_release()

Include the new header in the files that are going to need it.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:28 +01:00
Hugh Dickins
3a4f8a0b3f mm: remove shmem_mapping() shmem_zero_setup() duplicates
Remove the prototypes for shmem_mapping() and shmem_zero_setup() from
linux/mm.h, since they are already provided in linux/shmem_fs.h.  But
shmem_fs.h must then provide the inline stub for shmem_mapping() when
CONFIG_SHMEM is not set, and a few more cfiles now need to #include it.

Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1702081658250.1549@eggly.anvils
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24 17:46:56 -08:00
Tejun Heo
17cc4dfeda slab: use memcg_kmem_cache_wq for slab destruction operations
If there's contention on slab_mutex, queueing the per-cache destruction
work item on the system_wq can unnecessarily create and tie up a lot of
kworkers.

Rename memcg_kmem_cache_create_wq to memcg_kmem_cache_wq and make it
global and use that workqueue for the destruction work items too.  While
at it, convert the workqueue from an unbound workqueue to a per-cpu one
with concurrency limited to 1.  It's generally preferable to use per-cpu
workqueues and concurrency limit of 1 is safe enough.

This is suggested by Joonsoo Kim.

Link: http://lkml.kernel.org/r/20170117235411.9408-11-tj@kernel.org
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Jay Vana <jsvana@fb.com>
Acked-by: Vladimir Davydov <vdavydov@tarantool.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:27 -08:00
Tejun Heo
bc2791f857 slab: link memcg kmem_caches on their associated memory cgroup
With kmem cgroup support enabled, kmem_caches can be created and
destroyed frequently and a great number of near empty kmem_caches can
accumulate if there are a lot of transient cgroups and the system is not
under memory pressure.  When memory reclaim starts under such
conditions, it can lead to consecutive deactivation and destruction of
many kmem_caches, easily hundreds of thousands on moderately large
systems, exposing scalability issues in the current slab management
code.  This is one of the patches to address the issue.

While a memcg kmem_cache is listed on its root cache's ->children list,
there is no direct way to iterate all kmem_caches which are assocaited
with a memory cgroup.  The only way to iterate them is walking all
caches while filtering out caches which don't match, which would be most
of them.

This makes memcg destruction operations O(N^2) where N is the total
number of slab caches which can be huge.  This combined with the
synchronous RCU operations can tie up a CPU and affect the whole machine
for many hours when memory reclaim triggers offlining and destruction of
the stale memcgs.

This patch adds mem_cgroup->kmem_caches list which goes through
memcg_cache_params->kmem_caches_node of all kmem_caches which are
associated with the memcg.  All memcg specific iterations, including
stat file access, are updated to use the new list instead.

Link: http://lkml.kernel.org/r/20170117235411.9408-6-tj@kernel.org
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Jay Vana <jsvana@fb.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:27 -08:00
David Rientjes
3674534b77 mm, memcg: do not retry precharge charges
When memory.move_charge_at_immigrate is enabled and precharges are
depleted during move, mem_cgroup_move_charge_pte_range() will attempt to
increase the size of the precharge.

Prevent precharges from ever looping by setting __GFP_NORETRY.  This was
probably the intention of the GFP_KERNEL & ~__GFP_NORETRY, which is
pointless as written.

Fixes: 0029e19ebf ("mm: memcontrol: remove explicit OOM parameter in charge path")
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1701130208510.69402@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-24 16:26:14 -08:00
Michal Hocko
b4536f0c82 mm, memcg: fix the active list aging for lowmem requests when memcg is enabled
Nils Holland and Klaus Ethgen have reported unexpected OOM killer
invocations with 32b kernel starting with 4.8 kernels

	kworker/u4:5 invoked oom-killer: gfp_mask=0x2400840(GFP_NOFS|__GFP_NOFAIL), nodemask=0, order=0, oom_score_adj=0
	kworker/u4:5 cpuset=/ mems_allowed=0
	CPU: 1 PID: 2603 Comm: kworker/u4:5 Not tainted 4.9.0-gentoo #2
	[...]
	Mem-Info:
	active_anon:58685 inactive_anon:90 isolated_anon:0
	 active_file:274324 inactive_file:281962 isolated_file:0
	 unevictable:0 dirty:649 writeback:0 unstable:0
	 slab_reclaimable:40662 slab_unreclaimable:17754
	 mapped:7382 shmem:202 pagetables:351 bounce:0
	 free:206736 free_pcp:332 free_cma:0
	Node 0 active_anon:234740kB inactive_anon:360kB active_file:1097296kB inactive_file:1127848kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:29528kB dirty:2596kB writeback:0kB shmem:0kB shmem_thp: 0kB shmem_pmdmapped: 184320kB anon_thp: 808kB writeback_tmp:0kB unstable:0kB pages_scanned:0 all_unreclaimable? no
	DMA free:3952kB min:788kB low:984kB high:1180kB active_anon:0kB inactive_anon:0kB active_file:7316kB inactive_file:0kB unevictable:0kB writepending:96kB present:15992kB managed:15916kB mlocked:0kB slab_reclaimable:3200kB slab_unreclaimable:1408kB kernel_stack:0kB pagetables:0kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
	lowmem_reserve[]: 0 813 3474 3474
	Normal free:41332kB min:41368kB low:51708kB high:62048kB active_anon:0kB inactive_anon:0kB active_file:532748kB inactive_file:44kB unevictable:0kB writepending:24kB present:897016kB managed:836248kB mlocked:0kB slab_reclaimable:159448kB slab_unreclaimable:69608kB kernel_stack:1112kB pagetables:1404kB bounce:0kB free_pcp:528kB local_pcp:340kB free_cma:0kB
	lowmem_reserve[]: 0 0 21292 21292
	HighMem free:781660kB min:512kB low:34356kB high:68200kB active_anon:234740kB inactive_anon:360kB active_file:557232kB inactive_file:1127804kB unevictable:0kB writepending:2592kB present:2725384kB managed:2725384kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:0kB bounce:0kB free_pcp:800kB local_pcp:608kB free_cma:0kB

the oom killer is clearly pre-mature because there there is still a lot
of page cache in the zone Normal which should satisfy this lowmem
request.  Further debugging has shown that the reclaim cannot make any
forward progress because the page cache is hidden in the active list
which doesn't get rotated because inactive_list_is_low is not memcg
aware.

The code simply subtracts per-zone highmem counters from the respective
memcg's lru sizes which doesn't make any sense.  We can simply end up
always seeing the resulting active and inactive counts 0 and return
false.  This issue is not limited to 32b kernels but in practice the
effect on systems without CONFIG_HIGHMEM would be much harder to notice
because we do not invoke the OOM killer for allocations requests
targeting < ZONE_NORMAL.

Fix the issue by tracking per zone lru page counts in mem_cgroup_per_node
and subtract per-memcg highmem counts when memcg is enabled.  Introduce
helper lruvec_zone_lru_size which redirects to either zone counters or
mem_cgroup_get_zone_lru_size when appropriate.

We are losing empty LRU but non-zero lru size detection introduced by
ca707239e8 ("mm: update_lru_size warn and reset bad lru_size") because
of the inherent zone vs. node discrepancy.

Fixes: f8d1a31163 ("mm: consider whether to decivate based on eligible zones inactive ratio")
Link: http://lkml.kernel.org/r/20170104100825.3729-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Nils Holland <nholland@tisys.org>
Tested-by: Nils Holland <nholland@tisys.org>
Reported-by: Klaus Ethgen <Klaus@Ethgen.de>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org>	[4.8+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-10 18:31:55 -08:00
Linus Torvalds
7c0f6ba682 Replace <asm/uaccess.h> with <linux/uaccess.h> globally
This was entirely automated, using the script by Al:

  PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
  sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
        $(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h)

to do the replacement at the end of the merge window.

Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-24 11:46:01 -08:00
Linus Torvalds
e34bac726d Merge branch 'akpm' (patches from Andrew)
Merge updates from Andrew Morton:

 - various misc bits

 - most of MM (quite a lot of MM material is awaiting the merge of
   linux-next dependencies)

 - kasan

 - printk updates

 - procfs updates

 - MAINTAINERS

 - /lib updates

 - checkpatch updates

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (123 commits)
  init: reduce rootwait polling interval time to 5ms
  binfmt_elf: use vmalloc() for allocation of vma_filesz
  checkpatch: don't emit unified-diff error for rename-only patches
  checkpatch: don't check c99 types like uint8_t under tools
  checkpatch: avoid multiple line dereferences
  checkpatch: don't check .pl files, improve absolute path commit log test
  scripts/checkpatch.pl: fix spelling
  checkpatch: don't try to get maintained status when --no-tree is given
  lib/ida: document locking requirements a bit better
  lib/rbtree.c: fix typo in comment of ____rb_erase_color
  lib/Kconfig.debug: make CONFIG_STRICT_DEVMEM depend on CONFIG_DEVMEM
  MAINTAINERS: add drm and drm/i915 irc channels
  MAINTAINERS: add "C:" for URI for chat where developers hang out
  MAINTAINERS: add drm and drm/i915 bug filing info
  MAINTAINERS: add "B:" for URI where to file bugs
  get_maintainer: look for arbitrary letter prefixes in sections
  printk: add Kconfig option to set default console loglevel
  printk/sound: handle more message headers
  printk/btrfs: handle more message headers
  printk/kdb: handle more message headers
  ...
2016-12-12 20:50:02 -08:00
Vladimir Davydov
13583c3d32 mm: memcontrol: use special workqueue for creating per-memcg caches
Creating a lot of cgroups at the same time might stall all worker
threads with kmem cache creation works, because kmem cache creation is
done with the slab_mutex held.  The problem was amplified by commits
801faf0db8 ("mm/slab: lockless decision to grow cache") in case of
SLAB and 81ae6d0395 ("mm/slub.c: replace kick_all_cpus_sync() with
synchronize_sched() in kmem_cache_shrink()") in case of SLUB, which
increased the maximal time the slab_mutex can be held.

To prevent that from happening, let's use a special ordered single
threaded workqueue for kmem cache creation.  This shouldn't introduce
any functional changes regarding how kmem caches are created, as the
work function holds the global slab_mutex during its whole runtime
anyway, making it impossible to run more than one work at a time.  By
using a single threaded workqueue, we just avoid creating a thread per
each work.  Ordering is required to avoid a situation when a cgroup's
work is put off indefinitely because there are other cgroups to serve,
in other words to guarantee fairness.

Link: https://bugzilla.kernel.org/show_bug.cgi?id=172981
Link: http://lkml.kernel.org/r/20161004131417.GC1862@esperanza
Signed-off-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Reported-by: Doug Smythies <dsmythies@telus.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:06 -08:00
Sebastian Andrzej Siewior
308167fcb3 mm/memcg: Convert to hotplug state machine
Install the callbacks via the state machine.

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: linux-mm@kvack.org
Cc: rt@linutronix.de
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: cgroups@vger.kernel.org
Link: http://lkml.kernel.org/r/20161103145021.28528-4-bigeasy@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-11-09 23:45:26 +01:00
Johannes Weiner
89a2848381 mm: memcontrol: do not recurse in direct reclaim
On 4.0, we saw a stack corruption from a page fault entering direct
memory cgroup reclaim, calling into btrfs_releasepage(), which then
tried to allocate an extent and recursed back into a kmem charge ad
nauseam:

  [...]
  btrfs_releasepage+0x2c/0x30
  try_to_release_page+0x32/0x50
  shrink_page_list+0x6da/0x7a0
  shrink_inactive_list+0x1e5/0x510
  shrink_lruvec+0x605/0x7f0
  shrink_zone+0xee/0x320
  do_try_to_free_pages+0x174/0x440
  try_to_free_mem_cgroup_pages+0xa7/0x130
  try_charge+0x17b/0x830
  memcg_charge_kmem+0x40/0x80
  new_slab+0x2d9/0x5a0
  __slab_alloc+0x2fd/0x44f
  kmem_cache_alloc+0x193/0x1e0
  alloc_extent_state+0x21/0xc0
  __clear_extent_bit+0x2b5/0x400
  try_release_extent_mapping+0x1a3/0x220
  __btrfs_releasepage+0x31/0x70
  btrfs_releasepage+0x2c/0x30
  try_to_release_page+0x32/0x50
  shrink_page_list+0x6da/0x7a0
  shrink_inactive_list+0x1e5/0x510
  shrink_lruvec+0x605/0x7f0
  shrink_zone+0xee/0x320
  do_try_to_free_pages+0x174/0x440
  try_to_free_mem_cgroup_pages+0xa7/0x130
  try_charge+0x17b/0x830
  mem_cgroup_try_charge+0x65/0x1c0
  handle_mm_fault+0x117f/0x1510
  __do_page_fault+0x177/0x420
  do_page_fault+0xc/0x10
  page_fault+0x22/0x30

On later kernels, kmem charging is opt-in rather than opt-out, and that
particular kmem allocation in btrfs_releasepage() is no longer being
charged and won't recurse and overrun the stack anymore.

But it's not impossible for an accounted allocation to happen from the
memcg direct reclaim context, and we needed to reproduce this crash many
times before we even got a useful stack trace out of it.

Like other direct reclaimers, mark tasks in memcg reclaim PF_MEMALLOC to
avoid recursing into any other form of direct reclaim.  Then let
recursive charges from PF_MEMALLOC contexts bypass the cgroup limit.

Link: http://lkml.kernel.org/r/20161025141050.GA13019@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-27 18:43:43 -07:00
Johannes Weiner
2d75807383 mm: memcontrol: consolidate cgroup socket tracking
The cgroup core and the memory controller need to track socket ownership
for different purposes, but the tracking sites being entirely different
is kind of ugly.

Be a better citizen and rename the memory controller callbacks to match
the cgroup core callbacks, then move them to the same place.

[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20160914194846.11153-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:29 -07:00
Huang Ying
f6ab1f7f6b mm, swap: use offset of swap entry as key of swap cache
This patch is to improve the performance of swap cache operations when
the type of the swap device is not 0.  Originally, the whole swap entry
value is used as the key of the swap cache, even though there is one
radix tree for each swap device.  If the type of the swap device is not
0, the height of the radix tree of the swap cache will be increased
unnecessary, especially on 64bit architecture.  For example, for a 1GB
swap device on the x86_64 architecture, the height of the radix tree of
the swap cache is 11.  But if the offset of the swap entry is used as
the key of the swap cache, the height of the radix tree of the swap
cache is 4.  The increased height causes unnecessary radix tree
descending and increased cache footprint.

This patch reduces the height of the radix tree of the swap cache via
using the offset of the swap entry instead of the whole swap entry value
as the key of the swap cache.  In 32 processes sequential swap out test
case on a Xeon E5 v3 system with RAM disk as swap, the lock contention
for the spinlock of the swap cache is reduced from 20.15% to 12.19%,
when the type of the swap device is 1.

Use the whole swap entry as key,

  perf-profile.calltrace.cycles-pp._raw_spin_lock_irq.__add_to_swap_cache.add_to_swap_cache.add_to_swap.shrink_page_list: 10.37,
  perf-profile.calltrace.cycles-pp._raw_spin_lock_irqsave.__remove_mapping.shrink_page_list.shrink_inactive_list.shrink_node_memcg: 9.78,

Use the swap offset as key,

  perf-profile.calltrace.cycles-pp._raw_spin_lock_irq.__add_to_swap_cache.add_to_swap_cache.add_to_swap.shrink_page_list: 6.25,
  perf-profile.calltrace.cycles-pp._raw_spin_lock_irqsave.__remove_mapping.shrink_page_list.shrink_inactive_list.shrink_node_memcg: 5.94,

Link: http://lkml.kernel.org/r/1473270649-27229-1-git-send-email-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Aaron Lu <aaron.lu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:28 -07:00
James Morse
0247f3f4d7 mm/memcontrol.c: make the walk_page_range() limit obvious
mem_cgroup_count_precharge() and mem_cgroup_move_charge() both call
walk_page_range() on the range 0 to ~0UL, neither provide a pte_hole
callback, which causes the current implementation to skip non-vma
regions.  This is all fine but follow up changes would like to make
walk_page_range more generic so it is better to be explicit about which
range to traverse so let's use highest_vm_end to explicitly traverse
only user mmaped memory.

[mhocko@kernel.org: rewrote changelog]
Link: http://lkml.kernel.org/r/1472655897-22532-1-git-send-email-james.morse@arm.com
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:28 -07:00
Vladimir Davydov
58fa2a5512 mm: memcontrol: add sanity checks for memcg->id.ref on get/put
Link: http://lkml.kernel.org/r/1c5ddb1c171dbdfc3262252769d6138a29b35b70.1470219853.git.vdavydov@virtuozzo.com
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:26 -07:00
Vladimir Davydov
7c5f64f844 mm: oom: deduplicate victim selection code for memcg and global oom
When selecting an oom victim, we use the same heuristic for both memory
cgroup and global oom.  The only difference is the scope of tasks to
select the victim from.  So we could just export an iterator over all
memcg tasks and keep all oom related logic in oom_kill.c, but instead we
duplicate pieces of it in memcontrol.c reusing some initially private
functions of oom_kill.c in order to not duplicate all of it.  That looks
ugly and error prone, because any modification of select_bad_process
should also be propagated to mem_cgroup_out_of_memory.

Let's rework this as follows: keep all oom heuristic related code private
to oom_kill.c and make oom_kill.c use exported memcg functions when it's
really necessary (like in case of iterating over memcg tasks).

Link: http://lkml.kernel.org/r/1470056933-7505-1-git-send-email-vdavydov@virtuozzo.com
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:26 -07:00
Johannes Weiner
db2ba40c27 mm: memcontrol: make per-cpu charge cache IRQ-safe for socket accounting
During cgroup2 rollout into production, we started encountering css
refcount underflows and css access crashes in the memory controller.
Splitting the heavily shared css reference counter into logical users
narrowed the imbalance down to the cgroup2 socket memory accounting.

The problem turns out to be the per-cpu charge cache.  Cgroup1 had a
separate socket counter, but the new cgroup2 socket accounting goes
through the common charge path that uses a shared per-cpu cache for all
memory that is being tracked.  Those caches are safe against scheduling
preemption, but not against interrupts - such as the newly added packet
receive path.  When cache draining is interrupted by network RX taking
pages out of the cache, the resuming drain operation will put references
of in-use pages, thus causing the imbalance.

Disable IRQs during all per-cpu charge cache operations.

Fixes: f7e1cb6ec5 ("mm: memcontrol: account socket memory in unified hierarchy memory controller")
Link: http://lkml.kernel.org/r/20160914194846.11153-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: <stable@vger.kernel.org>	[4.5+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-09-19 15:36:17 -07:00
Arnd Bergmann
358c07fcc3 mm: memcontrol: avoid unused function warning
A bugfix in v4.8-rc2 introduced a harmless warning when
CONFIG_MEMCG_SWAP is disabled but CONFIG_MEMCG is enabled:

  mm/memcontrol.c:4085:27: error: 'mem_cgroup_id_get_online' defined but not used [-Werror=unused-function]
   static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)

This moves the function inside of the #ifdef block that hides the
calling function, to avoid the warning.

Fixes: 1f47b61fb4 ("mm: memcontrol: fix swap counter leak on swapout from offline cgroup")
Link: http://lkml.kernel.org/r/20160824113733.2776701-1-arnd@arndb.de
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-26 17:39:35 -07:00
Vladimir Davydov
615d66c37c mm: memcontrol: fix memcg id ref counter on swap charge move
Since commit 73f576c04b ("mm: memcontrol: fix cgroup creation failure
after many small jobs") swap entries do not pin memcg->css.refcnt
directly.  Instead, they pin memcg->id.ref.  So we should adjust the
reference counters accordingly when moving swap charges between cgroups.

Fixes: 73f576c04b ("mm: memcontrol: fix cgroup creation failure after many small jobs")
Link: http://lkml.kernel.org/r/9ce297c64954a42dc90b543bc76106c4a94f07e8.1470219853.git.vdavydov@virtuozzo.com
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>	[3.19+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-11 16:58:13 -07:00
Vladimir Davydov
1f47b61fb4 mm: memcontrol: fix swap counter leak on swapout from offline cgroup
An offline memory cgroup might have anonymous memory or shmem left
charged to it and no swap.  Since only swap entries pin the id of an
offline cgroup, such a cgroup will have no id and so an attempt to
swapout its anon/shmem will not store memory cgroup info in the swap
cgroup map.  As a result, memcg->swap or memcg->memsw will never get
uncharged from it and any of its ascendants.

Fix this by always charging swapout to the first ancestor cgroup that
hasn't released its id yet.

[hannes@cmpxchg.org: add comment to mem_cgroup_swapout]
[vdavydov@virtuozzo.com: use WARN_ON_ONCE() in mem_cgroup_id_get_online()]
  Link: http://lkml.kernel.org/r/20160803123445.GJ13263@esperanza
Fixes: 73f576c04b ("mm: memcontrol: fix cgroup creation failure after many small jobs")
Link: http://lkml.kernel.org/r/5336daa5c9a32e776067773d9da655d2dc126491.1470219853.git.vdavydov@virtuozzo.com
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>	[3.19+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-11 16:58:13 -07:00
Vladimir Davydov
c4159a75b6 mm: memcontrol: only mark charged pages with PageKmemcg
To distinguish non-slab pages charged to kmemcg we mark them PageKmemcg,
which sets page->_mapcount to -512.  Currently, we set/clear PageKmemcg
in __alloc_pages_nodemask()/free_pages_prepare() for any page allocated
with __GFP_ACCOUNT, including those that aren't actually charged to any
cgroup, i.e. allocated from the root cgroup context.  To avoid overhead
in case cgroups are not used, we only do that if memcg_kmem_enabled() is
true.  The latter is set iff there are kmem-enabled memory cgroups
(online or offline).  The root cgroup is not considered kmem-enabled.

As a result, if a page is allocated with __GFP_ACCOUNT for the root
cgroup when there are kmem-enabled memory cgroups and is freed after all
kmem-enabled memory cgroups were removed, e.g.

  # no memory cgroups has been created yet, create one
  mkdir /sys/fs/cgroup/memory/test
  # run something allocating pages with __GFP_ACCOUNT, e.g.
  # a program using pipe
  dmesg | tail
  # remove the memory cgroup
  rmdir /sys/fs/cgroup/memory/test

we'll get bad page state bug complaining about page->_mapcount != -1:

  BUG: Bad page state in process swapper/0  pfn:1fd945c
  page:ffffea007f651700 count:0 mapcount:-511 mapping:          (null) index:0x0
  flags: 0x1000000000000000()

To avoid that, let's mark with PageKmemcg only those pages that are
actually charged to and hence pin a non-root memory cgroup.

Fixes: 4949148ad4 ("mm: charge/uncharge kmemcg from generic page allocator paths")
Reported-and-tested-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-09 10:14:10 -07:00
Michal Hocko
d6507ff533 memcg: put soft limit reclaim out of way if the excess tree is empty
We've had a report about soft lockups caused by lock bouncing in the
soft reclaim path:

  BUG: soft lockup - CPU#0 stuck for 22s! [kav4proxy-kavic:3128]
  RIP: 0010:[<ffffffff81469798>]  [<ffffffff81469798>] _raw_spin_lock+0x18/0x20
  Call Trace:
    mem_cgroup_soft_limit_reclaim+0x25a/0x280
    shrink_zones+0xed/0x200
    do_try_to_free_pages+0x74/0x320
    try_to_free_pages+0x112/0x180
    __alloc_pages_slowpath+0x3ff/0x820
    __alloc_pages_nodemask+0x1e9/0x200
    alloc_pages_vma+0xe1/0x290
    do_wp_page+0x19f/0x840
    handle_pte_fault+0x1cd/0x230
    do_page_fault+0x1fd/0x4c0
    page_fault+0x25/0x30

There are no memcgs created so there cannot be any in the soft limit
excess obviously:

  [...]
  memory  0       1       1

so all this just seems to be mem_cgroup_largest_soft_limit_node trying
to get spin_lock_irq(&mctz->lock) just to find out that the soft limit
excess tree is empty.  This is just pointless wasting of cycles and
cache line bouncing during heavy parallel reclaim on large machines.
The particular machine wasn't very healthy and most probably suffering
from a memory leak which just caused the memory reclaim to trash
heavily.  But bouncing on the lock certainly didn't help...

Fix this by optimistic lockless check and bail out early if the tree is
empty.  This is theoretically racy but that shouldn't matter all that
much.  First of all soft limit is a best effort feature and it is slowly
getting deprecated and its usage should be really scarce.  Bouncing on a
lock without a good reason is surely much bigger problem, especially on
large CPU machines.

Link: http://lkml.kernel.org/r/1470073277-1056-1-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-02 17:31:41 -04:00
Andy Lutomirski
efdc949079 mm: fix memcg stack accounting for sub-page stacks
We should account for stacks regardless of stack size, and we need to
account in sub-page units if THREAD_SIZE < PAGE_SIZE.  Change the units
to kilobytes and Move it into account_kernel_stack().

Fixes: 12580e4b54 ("mm: memcontrol: report kernel stack usage in cgroup2 memory.stat")
Link: http://lkml.kernel.org/r/9b5314e3ee5eda61b0317ec1563768602c1ef438.1468523549.git.luto@kernel.org
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
7ee36a14f0 mm, vmscan: Update all zone LRU sizes before updating memcg
Minchan Kim reported setting the following warning on a 32-bit system
although it can affect 64-bit systems.

  WARNING: CPU: 4 PID: 1322 at mm/memcontrol.c:998 mem_cgroup_update_lru_size+0x103/0x110
  mem_cgroup_update_lru_size(f44b4000, 1, -7): zid 1 lru_size 1 but empty
  Modules linked in:
  CPU: 4 PID: 1322 Comm: cp Not tainted 4.7.0-rc4-mm1+ #143
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011
  Call Trace:
    dump_stack+0x76/0xaf
    __warn+0xea/0x110
    ? mem_cgroup_update_lru_size+0x103/0x110
    warn_slowpath_fmt+0x3b/0x40
    mem_cgroup_update_lru_size+0x103/0x110
    isolate_lru_pages.isra.61+0x2e2/0x360
    shrink_active_list+0xac/0x2a0
    ? __delay+0xe/0x10
    shrink_node_memcg+0x53c/0x7a0
    shrink_node+0xab/0x2a0
    do_try_to_free_pages+0xc6/0x390
    try_to_free_pages+0x245/0x590

LRU list contents and counts are updated separately.  Counts are updated
before pages are added to the LRU and updated after pages are removed.
The warning above is from a check in mem_cgroup_update_lru_size that
ensures that list sizes of zero are empty.

The problem is that node-lru needs to account for highmem pages if
CONFIG_HIGHMEM is set.  One impact of the implementation is that the
sizes are updated in multiple passes when pages from multiple zones were
isolated.  This happens whether HIGHMEM is set or not.  When multiple
zones are isolated, it's possible for a debugging check in memcg to be
tripped.

This patch forces all the zone counts to be updated before the memcg
function is called.

Link: http://lkml.kernel.org/r/1468588165-12461-6-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Tested-by: Minchan Kim <minchan@kernel.org>
Reported-by: Minchan Kim <minchan@kernel.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
ef8f232799 mm, memcg: move memcg limit enforcement from zones to nodes
Memcg needs adjustment after moving LRUs to the node.  Limits are
tracked per memcg but the soft-limit excess is tracked per zone.  As
global page reclaim is based on the node, it is easy to imagine a
situation where a zone soft limit is exceeded even though the memcg
limit is fine.

This patch moves the soft limit tree the node.  Technically, all the
variable names should also change but people are already familiar by the
meaning of "mz" even if "mn" would be a more appropriate name now.

Link: http://lkml.kernel.org/r/1467970510-21195-15-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
a9dd0a8310 mm, vmscan: make shrink_node decisions more node-centric
Earlier patches focused on having direct reclaim and kswapd use data
that is node-centric for reclaiming but shrink_node() itself still uses
too much zone information.  This patch removes unnecessary zone-based
information with the most important decision being whether to continue
reclaim or not.  Some memcg APIs are adjusted as a result even though
memcg itself still uses some zone information.

[mgorman@techsingularity.net: optimization]
  Link: http://lkml.kernel.org/r/1468588165-12461-2-git-send-email-mgorman@techsingularity.net
Link: http://lkml.kernel.org/r/1467970510-21195-14-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
599d0c954f mm, vmscan: move LRU lists to node
This moves the LRU lists from the zone to the node and related data such
as counters, tracing, congestion tracking and writeback tracking.

Unfortunately, due to reclaim and compaction retry logic, it is
necessary to account for the number of LRU pages on both zone and node
logic.  Most reclaim logic is based on the node counters but the retry
logic uses the zone counters which do not distinguish inactive and
active sizes.  It would be possible to leave the LRU counters on a
per-zone basis but it's a heavier calculation across multiple cache
lines that is much more frequent than the retry checks.

Other than the LRU counters, this is mostly a mechanical patch but note
that it introduces a number of anomalies.  For example, the scans are
per-zone but using per-node counters.  We also mark a node as congested
when a zone is congested.  This causes weird problems that are fixed
later but is easier to review.

In the event that there is excessive overhead on 32-bit systems due to
the nodes being on LRU then there are two potential solutions

1. Long-term isolation of highmem pages when reclaim is lowmem

   When pages are skipped, they are immediately added back onto the LRU
   list. If lowmem reclaim persisted for long periods of time, the same
   highmem pages get continually scanned. The idea would be that lowmem
   keeps those pages on a separate list until a reclaim for highmem pages
   arrives that splices the highmem pages back onto the LRU. It potentially
   could be implemented similar to the UNEVICTABLE list.

   That would reduce the skip rate with the potential corner case is that
   highmem pages have to be scanned and reclaimed to free lowmem slab pages.

2. Linear scan lowmem pages if the initial LRU shrink fails

   This will break LRU ordering but may be preferable and faster during
   memory pressure than skipping LRU pages.

Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
a52633d8e9 mm, vmscan: move lru_lock to the node
Node-based reclaim requires node-based LRUs and locking.  This is a
preparation patch that just moves the lru_lock to the node so later
patches are easier to review.  It is a mechanical change but note this
patch makes contention worse because the LRU lock is hotter and direct
reclaim and kswapd can contend on the same lock even when reclaiming
from different zones.

Link: http://lkml.kernel.org/r/1467970510-21195-3-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Johannes Weiner
55779ec759 mm: fix vm-scalability regression in cgroup-aware workingset code
Commit 23047a96d7 ("mm: workingset: per-cgroup cache thrash
detection") added a page->mem_cgroup lookup to the cache eviction,
refault, and activation paths, as well as locking to the activation
path, and the vm-scalability tests showed a regression of -23%.

While the test in question is an artificial worst-case scenario that
doesn't occur in real workloads - reading two sparse files in parallel
at full CPU speed just to hammer the LRU paths - there is still some
optimizations that can be done in those paths.

Inline the lookup functions to eliminate calls.  Also, page->mem_cgroup
doesn't need to be stabilized when counting an activation; we merely
need to hold the RCU lock to prevent the memcg from being freed.

This cuts down on overhead quite a bit:

23047a96d7 063f6715e77a7be5770d6081fe
---------------- --------------------------
         %stddev     %change         %stddev
             \          |                \
  21621405 +- 0%     +11.3%   24069657 +- 2%  vm-scalability.throughput

[linux@roeck-us.net: drop unnecessary include file]
[hannes@cmpxchg.org: add WARN_ON_ONCE()s]
  Link: http://lkml.kernel.org/r/20160707194024.GA26580@cmpxchg.org
Link: http://lkml.kernel.org/r/20160624175101.GA3024@cmpxchg.org
Reported-by: Ye Xiaolong <xiaolong.ye@intel.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Michal Hocko
1af8bb4326 mm, oom: fortify task_will_free_mem()
task_will_free_mem is rather weak.  It doesn't really tell whether the
task has chance to drop its mm.  98748bd722 ("oom: consider
multi-threaded tasks in task_will_free_mem") made a first step into making
it more robust for multi-threaded applications so now we know that the
whole process is going down and probably drop the mm.

This patch builds on top for more complex scenarios where mm is shared
between different processes - CLONE_VM without CLONE_SIGHAND, or in kernel
use_mm().

Make sure that all processes sharing the mm are killed or exiting.  This
will allow us to replace try_oom_reaper by wake_oom_reaper because
task_will_free_mem implies the task is reapable now.  Therefore all paths
which bypass the oom killer are now reapable and so they shouldn't lock up
the oom killer.

Link: http://lkml.kernel.org/r/1466426628-15074-8-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Li RongQing
25843c2b21 mm: memcontrol: fix documentation for compound parameter
Commit f627c2f537 ("memcg: adjust to support new THP refcounting")
adds a compound parameter for several functions, and change one as
compound for mem_cgroup_move_account but it does not change the
comments.

Link: http://lkml.kernel.org/r/1465368216-9393-1-git-send-email-roy.qing.li@gmail.com
Signed-off-by: Li RongQing <roy.qing.li@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Li RongQing
17408d785a mm: memcontrol: remove BUG_ON in uncharge_list
When calling uncharge_list, if a page is transparent huge we don't need
to BUG_ON about non-transparent huge, since nobody should be able to see
the page at this stage and this page cannot be raced against with a THP
split.

This check became unneeded after 0a31bc97c8 ("mm: memcontrol: rewrite
uncharge API").

[mhocko@suse.com: changelog enhancements]
Link: http://lkml.kernel.org/r/1465369248-13865-1-git-send-email-roy.qing.li@gmail.com
Signed-off-by: Li RongQing <roy.qing.li@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Tetsuo Handa
fbe84a09da mm,oom: remove unused argument from oom_scan_process_thread().
oom_scan_process_thread() does not use totalpages argument.
oom_badness() uses it.

Link: http://lkml.kernel.org/r/1463796041-7889-1-git-send-email-penguin-kernel@I-love.SAKURA.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Vladimir Davydov
5e8d35f849 mm: memcontrol: teach uncharge_list to deal with kmem pages
Page table pages are batched-freed in release_pages on most
architectures.  If we want to charge them to kmemcg (this is what is
done later in this series), we need to teach mem_cgroup_uncharge_list to
handle kmem pages.

Link: http://lkml.kernel.org/r/18d5c09e97f80074ed25b97a7d0f32b95d875717.1464079538.git.vdavydov@virtuozzo.com
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Vladimir Davydov
452647784b mm: memcontrol: cleanup kmem charge functions
- Handle memcg_kmem_enabled check out to the caller. This reduces the
   number of function definitions making the code easier to follow. At
   the same time it doesn't result in code bloat, because all of these
   functions are used only in one or two places.

 - Move __GFP_ACCOUNT check to the caller as well so that one wouldn't
   have to dive deep into memcg implementation to see which allocations
   are charged and which are not.

 - Refresh comments.

Link: http://lkml.kernel.org/r/52882a28b542c1979fd9a033b4dc8637fc347399.1464079537.git.vdavydov@virtuozzo.com
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Vladimir Davydov
2a966b77ae mm: oom: add memcg to oom_control
It's a part of oom context just like allocation order and nodemask, so
let's move it to oom_control instead of passing it in the argument list.

Link: http://lkml.kernel.org/r/40e03fd7aaf1f55c75d787128d6d17c5a71226c2.1464358556.git.vdavydov@virtuozzo.com
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Li RongQing
48406ef897 mm/memcontrol.c: remove the useless parameter for mc_handle_swap_pte
It seems like this parameter has never been used since being introduced
by 90254a6583 ("memcg: clean up move charge").  Not a big deal because
I assume the function would get inlined into the caller anyway but why
not get rid of it.

[mhocko@suse.com: wrote changelog]
  Link: http://lkml.kernel.org/r/20160525151831.GJ20132@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/1464145026-26693-1-git-send-email-roy.qing.li@gmail.com
Signed-off-by: Li RongQing <roy.qing.li@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Johannes Weiner
73f576c04b mm: memcontrol: fix cgroup creation failure after many small jobs
The memory controller has quite a bit of state that usually outlives the
cgroup and pins its CSS until said state disappears.  At the same time
it imposes a 16-bit limit on the CSS ID space to economically store IDs
in the wild.  Consequently, when we use cgroups to contain frequent but
small and short-lived jobs that leave behind some page cache, we quickly
run into the 64k limitations of outstanding CSSs.  Creating a new cgroup
fails with -ENOSPC while there are only a few, or even no user-visible
cgroups in existence.

Although pinning CSSs past cgroup removal is common, there are only two
instances that actually need an ID after a cgroup is deleted: cache
shadow entries and swapout records.

Cache shadow entries reference the ID weakly and can deal with the CSS
having disappeared when it's looked up later.  They pose no hurdle.

Swap-out records do need to pin the css to hierarchically attribute
swapins after the cgroup has been deleted; though the only pages that
remain swapped out after offlining are tmpfs/shmem pages.  And those
references are under the user's control, so they are manageable.

This patch introduces a private 16-bit memcg ID and switches swap and
cache shadow entries over to using that.  This ID can then be recycled
after offlining when the CSS remains pinned only by objects that don't
specifically need it.

This script demonstrates the problem by faulting one cache page in a new
cgroup and deleting it again:

  set -e
  mkdir -p pages
  for x in `seq 128000`; do
    [ $((x % 1000)) -eq 0 ] && echo $x
    mkdir /cgroup/foo
    echo $$ >/cgroup/foo/cgroup.procs
    echo trex >pages/$x
    echo $$ >/cgroup/cgroup.procs
    rmdir /cgroup/foo
  done

When run on an unpatched kernel, we eventually run out of possible IDs
even though there are no visible cgroups:

  [root@ham ~]# ./cssidstress.sh
  [...]
  65000
  mkdir: cannot create directory '/cgroup/foo': No space left on device

After this patch, the IDs get released upon cgroup destruction and the
cache and css objects get released once memory reclaim kicks in.

[hannes@cmpxchg.org: init the IDR]
  Link: http://lkml.kernel.org/r/20160621154601.GA22431@cmpxchg.org
Fixes: b2052564e6 ("mm: memcontrol: continue cache reclaim from offlined groups")
Link: http://lkml.kernel.org/r/20160617162516.GD19084@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: John Garcia <john.garcia@mesosphere.io>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Nikolay Borisov <kernel@kyup.com>
Cc: <stable@vger.kernel.org>	[3.19+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-23 10:25:54 +09:00
Tejun Heo
ea3a964586 memcg: css_alloc should return an ERR_PTR value on error
mem_cgroup_css_alloc() was returning NULL on failure while cgroup core
expected it to return an ERR_PTR value leading to the following NULL
deref after a css allocation failure.  Fix it by return
ERR_PTR(-ENOMEM) instead.  I'll also update cgroup core so that it
can handle NULL returns.

  mkdir: page allocation failure: order:6, mode:0x240c0c0(GFP_KERNEL|__GFP_COMP|__GFP_ZERO)
  CPU: 0 PID: 8738 Comm: mkdir Not tainted 4.7.0-rc3+ #123
  ...
  Call Trace:
    dump_stack+0x68/0xa1
    warn_alloc_failed+0xd6/0x130
    __alloc_pages_nodemask+0x4c6/0xf20
    alloc_pages_current+0x66/0xe0
    alloc_kmem_pages+0x14/0x80
    kmalloc_order_trace+0x2a/0x1a0
    __kmalloc+0x291/0x310
    memcg_update_all_caches+0x6c/0x130
    mem_cgroup_css_alloc+0x590/0x610
    cgroup_apply_control_enable+0x18b/0x370
    cgroup_mkdir+0x1de/0x2e0
    kernfs_iop_mkdir+0x55/0x80
    vfs_mkdir+0xb9/0x150
    SyS_mkdir+0x66/0xd0
    do_syscall_64+0x53/0x120
    entry_SYSCALL64_slow_path+0x25/0x25
  ...
  BUG: unable to handle kernel NULL pointer dereference at 00000000000000d0
  IP:  init_and_link_css+0x37/0x220
  PGD 34b1e067 PUD 3a109067 PMD 0
  Oops: 0002 [#1] SMP
  Modules linked in:
  CPU: 0 PID: 8738 Comm: mkdir Not tainted 4.7.0-rc3+ #123
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.9.2-20160422_131301-anatol 04/01/2014
  task: ffff88007cbc5200 ti: ffff8800666d4000 task.ti: ffff8800666d4000
  RIP: 0010:[<ffffffff810f2ca7>]  [<ffffffff810f2ca7>] init_and_link_css+0x37/0x220
  RSP: 0018:ffff8800666d7d90  EFLAGS: 00010246
  RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000
  RDX: ffffffff810f2499 RSI: 0000000000000000 RDI: 0000000000000008
  RBP: ffff8800666d7db8 R08: 0000000000000003 R09: 0000000000000000
  R10: 0000000000000001 R11: 0000000000000000 R12: ffff88005a5fb400
  R13: ffffffff81f0f8a0 R14: ffff88005a5fb400 R15: 0000000000000010
  FS:  00007fc944689700(0000) GS:ffff88007fc00000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00007f3aed0d2b80 CR3: 000000003a1e8000 CR4: 00000000000006f0
  DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  Call Trace:
    cgroup_apply_control_enable+0x1ac/0x370
    cgroup_mkdir+0x1de/0x2e0
    kernfs_iop_mkdir+0x55/0x80
    vfs_mkdir+0xb9/0x150
    SyS_mkdir+0x66/0xd0
    do_syscall_64+0x53/0x120
    entry_SYSCALL64_slow_path+0x25/0x25
  Code: 89 f5 48 89 fb 49 89 d4 48 83 ec 08 8b 05 72 3b d8 00 85 c0 0f 85 60 01 00 00 4c 89 e7 e8 72 f7 ff ff 48 8d 7b 08 48 89 d9 31 c0 <48> c7 83 d0 00 00 00 00 00 00 00 48 83 e7 f8 48 29 f9 81 c1 d8
  RIP   init_and_link_css+0x37/0x220
   RSP <ffff8800666d7d90>
  CR2: 00000000000000d0
  ---[ end trace a2d8836ae1e852d1 ]---

Link: http://lkml.kernel.org/r/20160621165740.GJ3262@mtj.duckdns.org
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-06-24 17:23:52 -07:00
Tejun Heo
d93c4130a7 memcg: mem_cgroup_migrate() may be called with irq disabled
mem_cgroup_migrate() uses local_irq_disable/enable() but can be called
with irq disabled from migrate_page_copy().  This ends up enabling irq
while holding a irq context lock triggering the following lockdep
warning.  Fix it by using irq_save/restore instead.

  =================================
  [ INFO: inconsistent lock state ]
  4.7.0-rc1+ #52 Tainted: G        W
  ---------------------------------
  inconsistent {IN-SOFTIRQ-W} -> {SOFTIRQ-ON-W} usage.
  kcompactd0/151 [HC0[0]:SC0[0]:HE1:SE1] takes:
   (&(&ctx->completion_lock)->rlock){+.?.-.}, at: [<000000000038fd96>] aio_migratepage+0x156/0x1e8
  {IN-SOFTIRQ-W} state was registered at:
     __lock_acquire+0x5b6/0x1930
     lock_acquire+0xee/0x270
     _raw_spin_lock_irqsave+0x66/0xb0
     aio_complete+0x98/0x328
     dio_complete+0xe4/0x1e0
     blk_update_request+0xd4/0x450
     scsi_end_request+0x48/0x1c8
     scsi_io_completion+0x272/0x698
     blk_done_softirq+0xca/0xe8
     __do_softirq+0xc8/0x518
     irq_exit+0xee/0x110
     do_IRQ+0x6a/0x88
     io_int_handler+0x11a/0x25c
     __mutex_unlock_slowpath+0x144/0x1d8
     __mutex_unlock_slowpath+0x140/0x1d8
     kernfs_iop_permission+0x64/0x80
     __inode_permission+0x9e/0xf0
     link_path_walk+0x6e/0x510
     path_lookupat+0xc4/0x1a8
     filename_lookup+0x9c/0x160
     user_path_at_empty+0x5c/0x70
     SyS_readlinkat+0x68/0x140
     system_call+0xd6/0x270
  irq event stamp: 971410
  hardirqs last  enabled at (971409):  migrate_page_move_mapping+0x3ea/0x588
  hardirqs last disabled at (971410):  _raw_spin_lock_irqsave+0x3c/0xb0
  softirqs last  enabled at (970526):  __do_softirq+0x460/0x518
  softirqs last disabled at (970519):  irq_exit+0xee/0x110

  other info that might help us debug this:
   Possible unsafe locking scenario:

	 CPU0
	 ----
    lock(&(&ctx->completion_lock)->rlock);
    <Interrupt>
      lock(&(&ctx->completion_lock)->rlock);

    *** DEADLOCK ***

  3 locks held by kcompactd0/151:
   #0:  (&(&mapping->private_lock)->rlock){+.+.-.}, at:  aio_migratepage+0x42/0x1e8
   #1:  (&ctx->ring_lock){+.+.+.}, at:  aio_migratepage+0x5a/0x1e8
   #2:  (&(&ctx->completion_lock)->rlock){+.?.-.}, at:  aio_migratepage+0x156/0x1e8

  stack backtrace:
  CPU: 20 PID: 151 Comm: kcompactd0 Tainted: G        W       4.7.0-rc1+ #52
  Call Trace:
    show_trace+0xea/0xf0
    show_stack+0x72/0xf0
    dump_stack+0x9a/0xd8
    print_usage_bug.part.27+0x2d4/0x2e8
    mark_lock+0x17e/0x758
    mark_held_locks+0xa2/0xd0
    trace_hardirqs_on_caller+0x140/0x1c0
    mem_cgroup_migrate+0x266/0x370
    aio_migratepage+0x16a/0x1e8
    move_to_new_page+0xb0/0x260
    migrate_pages+0x8f4/0x9f0
    compact_zone+0x4dc/0xdc8
    kcompactd_do_work+0x1aa/0x358
    kcompactd+0xba/0x2c8
    kthread+0x10a/0x110
    kernel_thread_starter+0x6/0xc
    kernel_thread_starter+0x0/0xc
  INFO: lockdep is turned off.

Link: http://lkml.kernel.org/r/20160620184158.GO3262@mtj.duckdns.org
Link: http://lkml.kernel.org/g/5767CFE5.7080904@de.ibm.com
Fixes: 74485cf2bc ("mm: migrate: consolidate mem_cgroup_migrate() calls")
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: <stable@vger.kernel.org>	[4.5+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-06-24 17:23:52 -07:00
Andrew Morton
d0db7afa1b revert "mm: memcontrol: fix possible css ref leak on oom"
Revert commit 1383399d7b ("mm: memcontrol: fix possible css ref leak
on oom").  Johannes points out "There is a task_in_memcg_oom() check
before calling mem_cgroup_oom()".

Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-06-09 14:23:11 -07:00
Tejun Heo
3a06bb78ce memcg: add RCU locking around css_for_each_descendant_pre() in memcg_offline_kmem()
memcg_offline_kmem() may be called from memcg_free_kmem() after a css
init failure.  memcg_free_kmem() is a ->css_free callback which is
called without cgroup_mutex and memcg_offline_kmem() ends up using
css_for_each_descendant_pre() without any locking.  Fix it by adding rcu
read locking around it.

    mkdir: cannot create directory `65530': No space left on device
    ===============================
    [ INFO: suspicious RCU usage. ]
    4.6.0-work+ #321 Not tainted
    -------------------------------
    kernel/cgroup.c:4008 cgroup_mutex or RCU read lock required!
     [  527.243970] other info that might help us debug this:
     [  527.244715]
    rcu_scheduler_active = 1, debug_locks = 0
    2 locks held by kworker/0:5/1664:
     #0:  ("cgroup_destroy"){.+.+..}, at: [<ffffffff81060ab5>] process_one_work+0x165/0x4a0
     #1:  ((&css->destroy_work)#3){+.+...}, at: [<ffffffff81060ab5>] process_one_work+0x165/0x4a0
     [  527.248098] stack backtrace:
    CPU: 0 PID: 1664 Comm: kworker/0:5 Not tainted 4.6.0-work+ #321
    Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.9.1-1.fc24 04/01/2014
    Workqueue: cgroup_destroy css_free_work_fn
    Call Trace:
      dump_stack+0x68/0xa1
      lockdep_rcu_suspicious+0xd7/0x110
      css_next_descendant_pre+0x7d/0xb0
      memcg_offline_kmem.part.44+0x4a/0xc0
      mem_cgroup_css_free+0x1ec/0x200
      css_free_work_fn+0x49/0x5e0
      process_one_work+0x1c5/0x4a0
      worker_thread+0x49/0x490
      kthread+0xea/0x100
      ret_from_fork+0x1f/0x40

Link: http://lkml.kernel.org/r/20160526203018.GG23194@mtj.duckdns.org
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org>	[4.5+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-06-03 16:02:55 -07:00
Li RongQing
7cf7806ce1 mm/memcontrol.c: move comments for get_mctgt_type() to proper position
Move the comments for get_mctgt_type() to be before get_mctgt_type()
implementation.

Link: http://lkml.kernel.org/r/1463644638-7446-1-git-send-email-roy.qing.li@gmail.com
Signed-off-by: Li RongQing <roy.qing.li@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-27 14:49:37 -07:00
Li RongQing
cbedbac3e6 mm/memcontrol.c: fix the margin computation in mem_cgroup_margin()
mem_cgroup_margin() might return (memory.limit - memory_count) when the
memsw.limit is in excess.  This doesn't happen usually because we do not
allow excess on hard limits and (memory.limit <= memsw.limit), but
__GFP_NOFAIL charges can force the charge and cause the excess when no
memory is really swappable (swap is full or no anonymous memory is
left).

[mhocko@suse.com: rewrote changelog]
  Link: http://lkml.kernel.org/r/20160525155122.GK20132@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/1464068266-27736-1-git-send-email-roy.qing.li@gmail.com
Signed-off-by: Li RongQing <roy.qing.li@gmail.com>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-27 14:49:37 -07:00
Tetsuo Handa
1ebab2db06 memcg: fix mem_cgroup_out_of_memory() return value.
mem_cgroup_out_of_memory() is returning "true" if it finds a TIF_MEMDIE
task after an eligible task was found, "false" if it found a TIF_MEMDIE
task before an eligible task is found.

This difference confuses memory_max_write() which checks the return
value of mem_cgroup_out_of_memory().  Since memory_max_write() wants to
continue looping, mem_cgroup_out_of_memory() should return "true" in
this case.

This patch sets a dummy pointer in order to return "true".

Link: http://lkml.kernel.org/r/1463753327-5170-1-git-send-email-penguin-kernel@I-love.SAKURA.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-26 15:35:44 -07:00
Vladimir Davydov
1383399d7b mm: memcontrol: fix possible css ref leak on oom
mem_cgroup_oom may be invoked multiple times while a process is handling
a page fault, in which case current->memcg_in_oom will be overwritten
leaking the previously taken css reference.

Link: http://lkml.kernel.org/r/1464019330-7579-1-git-send-email-vdavydov@virtuozzo.com
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-23 17:04:14 -07:00
Greg Thelen
51038171b7 memcg: fix stale mem_cgroup_force_empty() comment
Commit f61c42a7d9 ("memcg: remove tasks/children test from
mem_cgroup_force_empty()") removed memory reparenting from the function.

Fix the function's comment.

Link: http://lkml.kernel.org/r/1462569810-54496-1-git-send-email-gthelen@google.com
Signed-off-by: Greg Thelen <gthelen@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Michal Hocko
3ef22dfff2 oom, oom_reaper: try to reap tasks which skip regular OOM killer path
If either the current task is already killed or PF_EXITING or a selected
task is PF_EXITING then the oom killer is suppressed and so is the oom
reaper.  This patch adds try_oom_reaper which checks the given task and
queues it for the oom reaper if that is safe to be done meaning that the
task doesn't share the mm with an alive process.

This might help to release the memory pressure while the task tries to
exit.

[akpm@linux-foundation.org: fix nommu build]
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Raushaniya Maksudova <rmaksudova@parallels.com>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Daniel Vetter <daniel.vetter@intel.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Hugh Dickins
9d5e6a9f22 mm: update_lru_size do the __mod_zone_page_state
Konstantin Khlebnikov pointed out (nearly four years ago, when lumpy
reclaim was removed) that lru_size can be updated by -nr_taken once per
call to isolate_lru_pages(), instead of page by page.

Update it inside isolate_lru_pages(), or at its two callsites? I chose
to update it at the callsites, rearranging and grouping the updates by
nr_taken and nr_scanned together in both.

With one exception, mem_cgroup_update_lru_size(,lru,) is then used where
__mod_zone_page_state(,NR_LRU_BASE+lru,) is used; and we shall be adding
some more calls in a future commit.  Make the code a little smaller and
simpler by incorporating stat update in lru_size update.

The exception was move_active_pages_to_lru(), which aggregated the
pgmoved stat update separately from the individual lru_size updates; but
I still think this a simplification worth making.

However, the __mod_zone_page_state is not peculiar to mem_cgroups: so
better use the name update_lru_size, calls mem_cgroup_update_lru_size
when CONFIG_MEMCG.

Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Yang Shi <yang.shi@linaro.org>
Cc: Ning Qu <quning@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Hugh Dickins
ca707239e8 mm: update_lru_size warn and reset bad lru_size
Though debug kernels have a VM_BUG_ON to help protect from misaccounting
lru_size, non-debug kernels are liable to wrap it around: and then the
vast unsigned long size draws page reclaim into a loop of repeatedly
doing nothing on an empty list, without even a cond_resched().

That soft lockup looks confusingly like an over-busy reclaim scenario,
with lots of contention on the lru_lock in shrink_inactive_list(): yet
has a totally different origin.

Help differentiate with a custom warning in
mem_cgroup_update_lru_size(), even in non-debug kernels; and reset the
size to avoid the lockup.  But the particular bug which suggested this
change was mine alone, and since fixed.

Make it a WARN_ONCE: the first occurrence is the most informative, a
flurry may follow, yet even when rate-limited little more is learnt.

Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Yang Shi <yang.shi@linaro.org>
Cc: Ning Qu <quning@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Michal Hocko
fda3d69be9 mm/memcontrol.c:mem_cgroup_select_victim_node(): clarify comment
> The comment seems to have not much to do with the code?

I guess the comment tries to say that the code path is triggered when we
charge the page which happens _before_ it is added to the LRU list and
so last_scanned_node might contain the stale data.

Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Andrew Morton
0edaf86cf1 include/linux/nodemask.h: create next_node_in() helper
Lots of code does

	node = next_node(node, XXX);
	if (node == MAX_NUMNODES)
		node = first_node(XXX);

so create next_node_in() to do this and use it in various places.

[mhocko@suse.com: use next_node_in() helper]
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Hui Zhu <zhuhui@xiaomi.com>
Cc: Wang Xiaoqiang <wangxq10@lzu.edu.cn>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Tejun Heo
264a0ae164 memcg: relocate charge moving from ->attach to ->post_attach
Hello,

So, this ended up a lot simpler than I originally expected.  I tested
it lightly and it seems to work fine.  Petr, can you please test these
two patches w/o the lru drain drop patch and see whether the problem
is gone?

Thanks.
------ 8< ------
If charge moving is used, memcg performs relabeling of the affected
pages from its ->attach callback which is called under both
cgroup_threadgroup_rwsem and thus can't create new kthreads.  This is
fragile as various operations may depend on workqueues making forward
progress which relies on the ability to create new kthreads.

There's no reason to perform charge moving from ->attach which is deep
in the task migration path.  Move it to ->post_attach which is called
after the actual migration is finished and cgroup_threadgroup_rwsem is
dropped.

* move_charge_struct->mm is added and ->can_attach is now responsible
  for pinning and recording the target mm.  mem_cgroup_clear_mc() is
  updated accordingly.  This also simplifies mem_cgroup_move_task().

* mem_cgroup_move_task() is now called from ->post_attach instead of
  ->attach.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@kernel.org>
Debugged-and-tested-by: Petr Mladek <pmladek@suse.com>
Reported-by: Cyril Hrubis <chrubis@suse.cz>
Reported-by: Johannes Weiner <hannes@cmpxchg.org>
Fixes: 1ed1328792 ("sched, cgroup: replace signal_struct->group_rwsem with a global percpu_rwsem")
Cc: <stable@vger.kernel.org> # 4.4+
2016-04-25 15:45:14 -04:00
Vladimir Davydov
e0775d10f1 mm: memcontrol: zap oom_info_lock
mem_cgroup_print_oom_info is always called under oom_lock, so
oom_info_lock is redundant.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Johannes Weiner
8b5926560f mm: memcontrol: clarify the uncharge_list() loop
uncharge_list() does an unusual list walk because the function can take
regular lists with dedicated list_heads as well as singleton lists where
a single page is passed via the page->lru list node.

This can sometimes lead to confusion as well as suggestions to replace
the loop with a list_for_each_entry(), which wouldn't work.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Johannes Weiner
b6e6edcfa4 mm: memcontrol: reclaim and OOM kill when shrinking memory.max below usage
Setting the original memory.limit_in_bytes hardlimit is subject to a
race condition when the desired value is below the current usage.  The
code tries a few times to first reclaim and then see if the usage has
dropped to where we would like it to be, but there is no locking, and
the workload is free to continue making new charges up to the old limit.
Thus, attempting to shrink a workload relies on pure luck and hope that
the workload happens to cooperate.

To fix this in the cgroup2 memory.max knob, do it the other way round:
set the limit first, then try enforcement.  And if reclaim is not able
to succeed, trigger OOM kills in the group.  Keep going until the new
limit is met, we run out of OOM victims and there's only unreclaimable
memory left, or the task writing to memory.max is killed.  This allows
users to shrink groups reliably, and the behavior is consistent with
what happens when new charges are attempted in excess of memory.max.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Johannes Weiner
588083bb37 mm: memcontrol: reclaim when shrinking memory.high below usage
When setting memory.high below usage, nothing happens until the next
charge comes along, and then it will only reclaim its own charge and not
the now potentially huge excess of the new memory.high.  This can cause
groups to stay in excess of their memory.high indefinitely.

To fix that, when shrinking memory.high, kick off a reclaim cycle that
goes after the delta.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Vladimir Davydov
d334c9bcb4 mm: memcontrol: cleanup css_reset callback
- Do not take memcg_limit_mutex for resetting limits - the cgroup cannot
  be altered from userspace anymore, so no need to protect them.

- Use plain page_counter_limit() for resetting ->memory and ->memsw
  limits instead of mem_cgrouop_resize_* helpers - we enlarge the limits,
  so no need in special handling.

- Reset ->swap and ->tcpmem limits as well.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Vladimir Davydov
0a6b76dd23 mm: workingset: make shadow node shrinker memcg aware
Workingset code was recently made memcg aware, but shadow node shrinker
is still global.  As a result, one small cgroup can consume all memory
available for shadow nodes, possibly hurting other cgroups by reclaiming
their shadow nodes, even though reclaim distances stored in its shadow
nodes have no effect.  To avoid this, we need to make shadow node
shrinker memcg aware.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Vladimir Davydov
b6ecd2dea4 mm: memcontrol: zap memcg_kmem_online helper
As kmem accounting is now either enabled for all cgroups or disabled
system-wide, there's no point in having memcg_kmem_online() helper -
instead one can use memcg_kmem_enabled() and mem_cgroup_online(), as
shrink_slab() now does.

There are only two places left where this helper is used -
__memcg_kmem_charge() and memcg_create_kmem_cache().  The former can
only be called if memcg_kmem_enabled() returned true.  Since the cgroup
it operates on is online, mem_cgroup_is_root() check will be enough.

memcg_create_kmem_cache() can't use mem_cgroup_online() helper instead
of memcg_kmem_online(), because it relies on the fact that in
memcg_offline_kmem() memcg->kmem_state is changed before
memcg_deactivate_kmem_caches() is called, but there we can just
open-code the check.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Vladimir Davydov
b313aeee25 mm: memcontrol: enable kmem accounting for all cgroups in the legacy hierarchy
Workingset code was recently made memcg aware, but shadow node shrinker
is still global.  As a result, one small cgroup can consume all memory
available for shadow nodes, possibly hurting other cgroups by reclaiming
their shadow nodes, even though reclaim distances stored in its shadow
nodes have no effect.  To avoid this, we need to make shadow node
shrinker memcg aware.

The actual work is done in patch 6 of the series.  Patches 1 and 2
prepare memcg/shrinker infrastructure for the change.  Patch 3 is just a
collateral cleanup.  Patch 4 makes radix_tree_node accounted, which is
necessary for making shadow node shrinker memcg aware.  Patch 5 reduces
shadow nodes overhead in case workload mostly uses anonymous pages.

This patch:

Currently, in the legacy hierarchy kmem accounting is off for all
cgroups by default and must be enabled explicitly by writing something
to memory.kmem.limit_in_bytes.  Since we don't support reclaim on
hitting kmem limit, nor do we have any plans to implement it, this is
likely to be -1, just to enable kmem accounting and limit kernel memory
consumption by the memory.limit_in_bytes along with user memory.

This user API was introduced when the implementation of kmem accounting
lacked slab shrinker support and hence was useless in practice.  Things
have changed since then - slab shrinkers were made memcg aware, the
accounting overhead seems to be negligible, and a failure to charge a
kmem allocation should not have critical consequences, because we only
account those kernel objects that should be safe to fail.  That's why
kmem accounting is enabled by default for all cgroups in the default
hierarchy, which will eventually replace the legacy one.

The ability to enable kmem accounting for some cgroups while keeping it
disabled for others is getting difficult to maintain.  E.g.  to make
shadow node shrinker memcg aware (see mm/workingset.c), we need to know
the relationship between the number of shadow nodes allocated for a
cgroup and the size of its lru list.  If kmem accounting is enabled for
all cgroups there is no problem, but what should we do if kmem
accounting is enabled only for half of cgroups? We've no other choice
but use global lru stats while scanning root cgroup's shadow nodes, but
that would be wrong if kmem accounting was enabled for all cgroups
(which is the case if the unified hierarchy is used), in which case we
should use lru stats of the root cgroup's lruvec.

That being said, let's enable kmem accounting for all memory cgroups by
default.  If one finds it unstable or too costly, it can always be
disabled system-wide by passing cgroup.memory=nokmem to the kernel at
boot time.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Vladimir Davydov
12580e4b54 mm: memcontrol: report kernel stack usage in cgroup2 memory.stat
Show how much memory is allocated to kernel stacks.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Vladimir Davydov
27ee57c93f mm: memcontrol: report slab usage in cgroup2 memory.stat
Show how much memory is used for storing reclaimable and unreclaimable
in-kernel data structures allocated from slab caches.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Vladimir Davydov
72b54e7314 mm: memcontrol: make tree_{stat,events} fetch all stats
Currently, tree_{stat,events} helpers can only get one stat index at a
time, so when there are a lot of stats to be reported one has to call it
over and over again (see memory_stat_show).  This is neither effective,
nor does it look good.  Instead, let's make these helpers take a
snapshot of all available counters.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Vladimir Davydov
fcff7d7eeb mm: memcontrol: do not bypass slab charge if memcg is offline
Slab pages are charged in two steps.  First, an appropriate per memcg
cache is selected (see memcg_kmem_get_cache) basing on the current
context, then the new slab page is charged to the memory cgroup which
the selected cache was created for (see memcg_charge_slab ->
__memcg_kmem_charge_memcg).  It is OK to bypass kmemcg charge at step 1,
but if step 1 succeeded and we successfully allocated a new slab page,
step 2 must be performed, otherwise we would get a per memcg kmem cache
which contains a slab that does not hold a reference to the memory
cgroup owning the cache.  Since per memcg kmem caches are destroyed on
memcg css free, this could result in freeing a cache while there are
still active objects in it.

However, currently we will bypass slab page charge if the memory cgroup
owning the cache is offline (see __memcg_kmem_charge_memcg).  This is
very unlikely to occur in practice, because for this to happen a process
must be migrated to a different cgroup and the old cgroup must be
removed while the process is in kmalloc somewhere between steps 1 and 2
(e.g.  trying to allocate a new page).  Nevertheless, it's still better
to eliminate such a possibility.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Johannes Weiner
9cf7666ace mm: memcontrol: drop unnecessary lru locking from mem_cgroup_migrate()
Migration accounting in the memory controller used to have to handle
both oldpage and newpage being on the LRU already; fuse's page cache
replacement used to pass a recycled newpage that had been uncharged but
not freed and removed from the LRU, and the memcg migration code used to
uncharge oldpage to "pass on" the existing charge to newpage.

Nowadays, pages are no longer uncharged when truncated from the page
cache, but rather only at free time, so if a LRU page is recycled in
page cache replacement it'll also still be charged.  And we bail out of
the charge transfer altogether in that case.  Tell commit_charge() that
we know newpage is not on the LRU, to avoid taking the zone->lru_lock
unnecessarily from the migration path.

But also, oldpage is no longer uncharged inside migration.  We only use
oldpage for its page->mem_cgroup and page size, so we don't care about
its LRU state anymore either.  Remove any mention from the kernel doc.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Hugh Dickins <hughd@google.com>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mateusz Guzik <mguzik@redhat.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Johannes Weiner
62cccb8c8e mm: simplify lock_page_memcg()
Now that migration doesn't clear page->mem_cgroup of live pages anymore,
it's safe to make lock_page_memcg() and the memcg stat functions take
pages, and spare the callers from memcg objects.

[akpm@linux-foundation.org: fix warnings]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Johannes Weiner
6a93ca8fde mm: migrate: do not touch page->mem_cgroup of live pages
Changing a page's memcg association complicates dealing with the page,
so we want to limit this as much as possible.  Page migration e.g.  does
not have to do that.  Just like page cache replacement, it can forcibly
charge a replacement page, and then uncharge the old page when it gets
freed.  Temporarily overcharging the cgroup by a single page is not an
issue in practice, and charging is so cheap nowadays that this is much
preferrable to the headache of messing with live pages.

The only place that still changes the page->mem_cgroup binding of live
pages is when pages move along with a task to another cgroup.  But that
path isolates the page from the LRU, takes the page lock, and the move
lock (lock_page_memcg()).  That means page->mem_cgroup is always stable
in callers that have the page isolated from the LRU or locked.  Lighter
unlocked paths, like writeback accounting, can use lock_page_memcg().

[akpm@linux-foundation.org: fix build]
[vdavydov@virtuozzo.com: fix lockdep splat]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Johannes Weiner
23047a96d7 mm: workingset: per-cgroup cache thrash detection
Cache thrash detection (see a528910e12 "mm: thrash detection-based
file cache sizing" for details) currently only works on the system
level, not inside cgroups.  Worse, as the refaults are compared to the
global number of active cache, cgroups might wrongfully get all their
refaults activated when their pages are hotter than those of others.

Move the refault machinery from the zone to the lruvec, and then tag
eviction entries with the memcg ID.  This makes the thrash detection
work correctly inside cgroups.

[sergey.senozhatsky@gmail.com: do not return from workingset_activation() with locked rcu and page]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Johannes Weiner
81f8c3a461 mm: memcontrol: generalize locking for the page->mem_cgroup binding
These patches tag the page cache radix tree eviction entries with the
memcg an evicted page belonged to, thus making per-cgroup LRU reclaim
work properly and be as adaptive to new cache workingsets as global
reclaim already is.

This should have been part of the original thrash detection patch
series, but was deferred due to the complexity of those patches.

This patch (of 5):

So far the only sites that needed to exclude charge migration to
stabilize page->mem_cgroup have been per-cgroup page statistics, hence
the name mem_cgroup_begin_page_stat().  But per-cgroup thrash detection
will add another site that needs to ensure page->mem_cgroup lifetime.

Rename these locking functions to the more generic lock_page_memcg() and
unlock_page_memcg().  Since charge migration is a cgroup1 feature only,
we might be able to delete it at some point, and these now easy to
identify locking sites along with it.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Kirill A. Shutemov
b6ec57f4b9 thp: change pmd_trans_huge_lock() interface to return ptl
After THP refcounting rework we have only two possible return values
from pmd_trans_huge_lock(): success and failure.  Return-by-pointer for
ptl doesn't make much sense in this case.

Let's convert pmd_trans_huge_lock() to return ptl on success and NULL on
failure.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-21 17:20:51 -08:00
Johannes Weiner
b2807f07f4 mm: memcontrol: add "sock" to cgroup2 memory.stat
Provide statistics on how much of a cgroup's memory footprint is made up
of socket buffers from network connections owned by the group.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-20 17:09:18 -08:00
Johannes Weiner
587d9f726a mm: memcontrol: basic memory statistics in cgroup2 memory controller
Provide a cgroup2 memory.stat that provides statistics on LRU memory
and fault event counters. More consumers and breakdowns will follow.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-20 17:09:18 -08:00
Johannes Weiner
44b7a8d33d mm: memcontrol: do not uncharge old page in page cache replacement
Changing page->mem_cgroup of a live page is tricky and fragile.  In
particular, the memcg writeback code relies on that mapping being stable
and users of mem_cgroup_replace_page() not overlapping with dirtyable
inodes.

Page cache replacement doesn't have to do that, though.  Instead of being
clever and transferring the charge from the old page to the new,
force-charge the new page and leave the old page alone.  A temporary
overcharge won't matter in practice, and the old page is going to be freed
shortly after this anyway.  And this is not performance critical.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-20 17:09:18 -08:00
Vladimir Davydov
5ccc5abaaf mm: free swap cache aggressively if memcg swap is full
Swap cache pages are freed aggressively if swap is nearly full (>50%
currently), because otherwise we are likely to stop scanning anonymous
when we near the swap limit even if there is plenty of freeable swap cache
pages.  We should follow the same trend in case of memory cgroup, which
has its own swap limit.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-20 17:09:18 -08:00
Vladimir Davydov
d8b38438a0 mm: vmscan: do not scan anon pages if memcg swap limit is hit
We don't scan anonymous memory if we ran out of swap, neither should we do
it in case memcg swap limit is hit, because swap out is impossible anyway.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-20 17:09:18 -08:00
Vladimir Davydov
37e8435119 mm: memcontrol: charge swap to cgroup2
This patchset introduces swap accounting to cgroup2.

This patch (of 7):

In the legacy hierarchy we charge memsw, which is dubious, because:

 - memsw.limit must be >= memory.limit, so it is impossible to limit
   swap usage less than memory usage. Taking into account the fact that
   the primary limiting mechanism in the unified hierarchy is
   memory.high while memory.limit is either left unset or set to a very
   large value, moving memsw.limit knob to the unified hierarchy would
   effectively make it impossible to limit swap usage according to the
   user preference.

 - memsw.usage != memory.usage + swap.usage, because a page occupying
   both swap entry and a swap cache page is charged only once to memsw
   counter. As a result, it is possible to effectively eat up to
   memory.limit of memory pages *and* memsw.limit of swap entries, which
   looks unexpected.

That said, we should provide a different swap limiting mechanism for
cgroup2.

This patch adds mem_cgroup->swap counter, which charges the actual number
of swap entries used by a cgroup.  It is only charged in the unified
hierarchy, while the legacy hierarchy memsw logic is left intact.

The swap usage can be monitored using new memory.swap.current file and
limited using memory.swap.max.

Note, to charge swap resource properly in the unified hierarchy, we have
to make swap_entry_free uncharge swap only when ->usage reaches zero, not
just ->count, i.e.  when all references to a swap entry, including the one
taken by swap cache, are gone.  This is necessary, because otherwise
swap-in could result in uncharging swap even if the page is still in swap
cache and hence still occupies a swap entry.  At the same time, this
shouldn't break memsw counter logic, where a page is never charged twice
for using both memory and swap, because in case of legacy hierarchy we
uncharge swap on commit (see mem_cgroup_commit_charge).

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-20 17:09:18 -08:00
Johannes Weiner
0b8f73e104 mm: memcontrol: clean up alloc, online, offline, free functions
The creation and teardown of struct mem_cgroup is fairly messy and
that has attracted mistakes and subtle bugs before.

The main cause for this is that there is no clear model about what
needs to happen when, and that attracts more chaos. So create one:

1. mem_cgroup_alloc() should allocate struct mem_cgroup and its
   auxiliary members and initialize work items, locks etc. so that the
   object it returns is fully initialized and in a neutral state.

2. mem_cgroup_css_alloc() will use mem_cgroup_alloc() to obtain a new
   memcg object and configure it and the system according to the role
   of the new memory-controlled cgroup in the hierarchy.

3. mem_cgroup_css_online() is no longer needed to synchronize with
   iterators, but it verifies css->id which isn't available earlier.

4. mem_cgroup_css_offline() implements stuff that needs to happen upon
   the user-visible destruction of a cgroup, which includes stopping
   all user interfacing as well as releasing certain structures when
   continued memory consumption would be unexpected at that point.

5. mem_cgroup_css_free() prepares the system and the memcg object for
   the object's disappearance, neutralizes its state, and then gives
   it back to mem_cgroup_free().

6. mem_cgroup_free() releases struct mem_cgroup and auxiliary memory.

[arnd@arndb.de: fix SLOB build regression]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-20 17:09:18 -08:00
Johannes Weiner
0db1529817 mm: memcontrol: flatten struct cg_proto
There are no more external users of struct cg_proto, flatten the
structure into struct mem_cgroup.

Since using those struct members doesn't stand out as much anymore,
add cgroup2 static branches to make it clearer which code is legacy.

Suggested-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-20 17:09:18 -08:00
Johannes Weiner
d886f4e483 mm: memcontrol: rein in the CONFIG space madness
What CONFIG_INET and CONFIG_LEGACY_KMEM guard inside the memory
controller code is insignificant, having these conditionals is not
worth the complication and fragility that comes with them.

[akpm@linux-foundation.org: rework mem_cgroup_css_free() statement ordering]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-20 17:09:18 -08:00
Vladimir Davydov
d55f90bfab net: drop tcp_memcontrol.c
tcp_memcontrol.c only contains legacy memory.tcp.kmem.* file definitions
and mem_cgroup->tcp_mem init/destroy stuff.  This doesn't belong to
network subsys.  Let's move it to memcontrol.c.  This also allows us to
reuse generic code for handling legacy memcg files.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: "David S. Miller" <davem@davemloft.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-20 17:09:18 -08:00
Johannes Weiner
489c2a20a4 mm: memcontrol: introduce CONFIG_MEMCG_LEGACY_KMEM
Let the user know that CONFIG_MEMCG_KMEM does not apply to the cgroup2
interface. This also makes legacy-only code sections stand out better.

[arnd@arndb.de: mm: memcontrol: only manage socket pressure for CONFIG_INET]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-20 17:09:18 -08:00
Vladimir Davydov
04823c833b mm: memcontrol: allow to disable kmem accounting for cgroup2
Kmem accounting might incur overhead that some users can't put up with.
Besides, the implementation is still considered unstable.  So let's
provide a way to disable it for those users who aren't happy with it.

To disable kmem accounting for cgroup2, pass cgroup.memory=nokmem at
boot time.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-20 17:09:18 -08:00
Johannes Weiner
52c29b0482 mm: memcontrol: account "kmem" consumers in cgroup2 memory controller
The original cgroup memory controller has an extension to account slab
memory (and other "kernel memory" consumers) in a separate "kmem"
counter, once the user set an explicit limit on that "kmem" pool.

However, this includes various consumers whose sizes are directly linked
to userspace activity.  Accounting them as an optional "kmem" extension
is problematic for several reasons:

1. It leaves the main memory interface with incomplete semantics. A
   user who puts their workload into a cgroup and configures a memory
   limit does not expect us to leave holes in the containment as big
   as the dentry and inode cache, or the kernel stack pages.

2. If the limit set on this random historical subgroup of consumers is
   reached, subsequent allocations will fail even when the main memory
   pool available to the cgroup is not yet exhausted and/or has
   reclaimable memory in it.

3. Calling it 'kernel memory' is misleading. The dentry and inode
   caches are no more 'kernel' (or no less 'user') memory than the
   page cache itself. Treating these consumers as different classes is
   a historical implementation detail that should not leak to users.

So, in addition to page cache, anonymous memory, and network socket
memory, account the following memory consumers per default in the
cgroup2 memory controller:

     - threadinfo
     - task_struct
     - task_delay_info
     - pid
     - cred
     - mm_struct
     - vm_area_struct and vm_region (nommu)
     - anon_vma and anon_vma_chain
     - signal_struct
     - sighand_struct
     - fs_struct
     - files_struct
     - fdtable and fdtable->full_fds_bits
     - dentry and external_name
     - inode for all filesystems.

This should give us reasonable memory isolation for most common
workloads out of the box.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-20 17:09:18 -08:00
Johannes Weiner
127424c86b mm: memcontrol: move kmem accounting code to CONFIG_MEMCG
The cgroup2 memory controller will account important in-kernel memory
consumers per default.  Move all necessary components to CONFIG_MEMCG.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-20 17:09:18 -08:00
Johannes Weiner
3893e302f6 mm: memcontrol: separate kmem code from legacy tcp accounting code
The cgroup2 memory controller will include important in-kernel memory
consumers per default, including socket memory, but it will no longer
carry the historic tcp control interface.

Separate the kmem state init from the tcp control interface init in
preparation for that.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-20 17:09:18 -08:00
Johannes Weiner
8e0a891213 mm: memcontrol: group kmem init and exit functions together
Put all the related code to setup and teardown the kmem accounting state
into the same location.  No functional change intended.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-20 17:09:18 -08:00
Johannes Weiner
567e9ab2e6 mm: memcontrol: give the kmem states more descriptive names
On any given memcg, the kmem accounting feature has three separate
states: not initialized, structures allocated, and actively accounting
slab memory.  These are represented through a combination of the
kmem_acct_activated and kmem_acct_active flags, which is confusing.

Convert to a kmem_state enum with the states NONE, ALLOCATED, and
ONLINE.  Then rename the functions to modify the state accordingly.
This follows the nomenclature of css object states more closely.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-20 17:09:18 -08:00
Johannes Weiner
b15aac110a mm: memcontrol: remove double kmem page_counter init
The kmem page_counter's limit is initialized to PAGE_COUNTER_MAX inside
mem_cgroup_css_online().  There is no need to repeat this from
memcg_propagate_kmem().

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-20 17:09:18 -08:00
Johannes Weiner
6d378dac7c mm: memcontrol: drop unused @css argument in memcg_init_kmem
This series adds accounting of the historical "kmem" memory consumers to
the cgroup2 memory controller.

These consumers include the dentry cache, the inode cache, kernel stack
pages, and a few others that are pointed out in patch 7/8.  The
footprint of these consumers is directly tied to userspace activity in
common workloads, and so they have to be part of the minimally viable
configuration in order to present a complete feature to our users.

The cgroup2 interface of the memory controller is far from complete, but
this series, along with the socket memory accounting series, provides
the final semantic changes for the existing memory knobs in the cgroup2
interface, which is scheduled for initial release in the next merge
window.

This patch (of 8):

Remove unused css argument frmo memcg_init_kmem()

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-20 17:09:18 -08:00
Martijn Coenen
6611d8d761 memcg: only free spare array when readers are done
A spare array holding mem cgroup threshold events is kept around to make
sure we can always safely deregister an event and have an array to store
the new set of events in.

In the scenario where we're going from 1 to 0 registered events, the
pointer to the primary array containing 1 event is copied to the spare
slot, and then the spare slot is freed because no events are left.
However, it is freed before calling synchronize_rcu(), which means
readers may still be accessing threshold->primary after it is freed.

Fixed by only freeing after synchronize_rcu().

Signed-off-by: Martijn Coenen <maco@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Tejun Heo
654a0dd095 cgroup, memcg, writeback: drop spurious rcu locking around mem_cgroup_css_from_page()
In earlier versions, mem_cgroup_css_from_page() could return non-root
css on a legacy hierarchy which can go away and required rcu locking;
however, the eventual version simply returns the root cgroup if memcg is
on a legacy hierarchy and thus doesn't need rcu locking around or in it.
Remove spurious rcu lockings.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov
53f9263bab mm: rework mapcount accounting to enable 4k mapping of THPs
We're going to allow mapping of individual 4k pages of THP compound.  It
means we need to track mapcount on per small page basis.

Straight-forward approach is to use ->_mapcount in all subpages to track
how many time this subpage is mapped with PMDs or PTEs combined.  But
this is rather expensive: mapping or unmapping of a THP page with PMD
would require HPAGE_PMD_NR atomic operations instead of single we have
now.

The idea is to store separately how many times the page was mapped as
whole -- compound_mapcount.  This frees up ->_mapcount in subpages to
track PTE mapcount.

We use the same approach as with compound page destructor and compound
order to store compound_mapcount: use space in first tail page,
->mapping this time.

Any time we map/unmap whole compound page (THP or hugetlb) -- we
increment/decrement compound_mapcount.  When we map part of compound
page with PTE we operate on ->_mapcount of the subpage.

page_mapcount() counts both: PTE and PMD mappings of the page.

Basically, we have mapcount for a subpage spread over two counters.  It
makes tricky to detect when last mapcount for a page goes away.

We introduced PageDoubleMap() for this.  When we split THP PMD for the
first time and there's other PMD mapping left we offset up ->_mapcount
in all subpages by one and set PG_double_map on the compound page.
These additional references go away with last compound_mapcount.

This approach provides a way to detect when last mapcount goes away on
per small page basis without introducing new overhead for most common
cases.

[akpm@linux-foundation.org: fix typo in comment]
[mhocko@suse.com: ignore partial THP when moving task]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov
4b471e8898 mm, thp: remove infrastructure for handling splitting PMDs
With new refcounting we don't need to mark PMDs splitting.  Let's drop
code to handle this.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov
3ac808fdd2 mm, thp: remove compound_lock()
We are going to use migration entries to stabilize page counts.  It
means we don't need compound_lock() for that.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov
f627c2f537 memcg: adjust to support new THP refcounting
As with rmap, with new refcounting we cannot rely on PageTransHuge() to
check if we need to charge size of huge page form the cgroup.  We need
to get information from caller to know whether it was mapped with PMD or
PTE.

We do uncharge when last reference on the page gone.  At that point if
we see PageTransHuge() it means we need to unchange whole huge page.

The tricky part is partial unmap -- when we try to unmap part of huge
page.  We don't do a special handing of this situation, meaning we don't
uncharge the part of huge page unless last user is gone or
split_huge_page() is triggered.  In case of cgroup memory pressure
happens the partial unmapped page will be split through shrinker.  This
should be good enough.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Johannes Weiner
ef12947c9c mm: memcontrol: switch to the updated jump-label API
According to <linux/jump_label.h> the direct use of struct static_key is
deprecated.  Update the socket and slab accounting code accordingly.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David S. Miller <davem@davemloft.net>
Reported-by: Jason Baron <jbaron@akamai.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Johannes Weiner
8e8ae64524 mm: memcontrol: hook up vmpressure to socket pressure
Let the networking stack know when a memcg is under reclaim pressure so
that it can clamp its transmit windows accordingly.

Whenever the reclaim efficiency of a cgroup's LRU lists drops low enough
for a MEDIUM or HIGH vmpressure event to occur, assert a pressure state
in the socket and tcp memory code that tells it to curb consumption
growth from sockets associated with said control group.

Traditionally, vmpressure reports for the entire subtree of a memcg
under pressure, which drops useful information on the individual groups
reclaimed.  However, it's too late to change the userinterface, so add a
second reporting mode that reports on the level of reclaim instead of at
the level of pressure, and use that report for sockets.

vmpressure events are naturally edge triggered, so for hysteresis assert
socket pressure for a second to allow for subsequent vmpressure events
to occur before letting the socket code return to normal.

This will likely need finetuning for a wider variety of workloads, but
for now stick to the vmpressure presets and keep hysteresis simple.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David S. Miller <davem@davemloft.net>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Johannes Weiner
f7e1cb6ec5 mm: memcontrol: account socket memory in unified hierarchy memory controller
Socket memory can be a significant share of overall memory consumed by
common workloads.  In order to provide reasonable resource isolation in
the unified hierarchy, this type of memory needs to be included in the
tracking/accounting of a cgroup under active memory resource control.

Overhead is only incurred when a non-root control group is created AND
the memory controller is instructed to track and account the memory
footprint of that group.  cgroup.memory=nosocket can be specified on the
boot commandline to override any runtime configuration and forcibly
exclude socket memory from active memory resource control.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David S. Miller <davem@davemloft.net>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Johannes Weiner
1109208766 mm: memcontrol: move socket code for unified hierarchy accounting
The unified hierarchy memory controller will account socket memory.
Move the infrastructure functions accordingly.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Johannes Weiner
7941d2145a mm: memcontrol: do not account memory+swap on unified hierarchy
The unified hierarchy memory controller doesn't expose the memory+swap
counter to userspace, but its accounting is hardcoded in all charge
paths right now, including the per-cpu charge cache ("the stock").

To avoid adding yet more pointless memory+swap accounting with the
socket memory support in unified hierarchy, disable the counter
altogether when in unified hierarchy mode.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Johannes Weiner
80e95fe0fd mm: memcontrol: generalize the socket accounting jump label
The unified hierarchy memory controller is going to use this jump label
as well to control the networking callbacks.  Move it to the memory
controller code and give it a more generic name.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Johannes Weiner
baac50bbc3 net: tcp_memcontrol: simplify linkage between socket and page counter
There won't be any separate counters for socket memory consumed by
protocols other than TCP in the future.  Remove the indirection and link
sockets directly to their owning memory cgroup.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Johannes Weiner
e805605c72 net: tcp_memcontrol: sanitize tcp memory accounting callbacks
There won't be a tcp control soft limit, so integrating the memcg code
into the global skmem limiting scheme complicates things unnecessarily.
Replace this with simple and clear charge and uncharge calls--hidden
behind a jump label--to account skb memory.

Note that this is not purely aesthetic: as a result of shoehorning the
per-memcg code into the same memory accounting functions that handle the
global level, the old code would compare the per-memcg consumption
against the smaller of the per-memcg limit and the global limit.  This
allowed the total consumption of multiple sockets to exceed the global
limit, as long as the individual sockets stayed within bounds.  After
this change, the code will always compare the per-memcg consumption to
the per-memcg limit, and the global consumption to the global limit, and
thus close this loophole.

Without a soft limit, the per-memcg memory pressure state in sockets is
generally questionable.  However, we did it until now, so we continue to
enter it when the hard limit is hit, and packets are dropped, to let
other sockets in the cgroup know that they shouldn't grow their transmit
windows, either.  However, keep it simple in the new callback model and
leave memory pressure lazily when the next packet is accepted (as
opposed to doing it synchroneously when packets are processed).  When
packets are dropped, network performance will already be in the toilet,
so that should be a reasonable trade-off.

As described above, consumption is now checked on the per-memcg level
and the global level separately.  Likewise, memory pressure states are
maintained on both the per-memcg level and the global level, and a
socket is considered under pressure when either level asserts as much.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Johannes Weiner
3d596f7b90 net: tcp_memcontrol: protect all tcp_memcontrol calls by jump-label
Move the jump-label from sock_update_memcg() and sock_release_memcg() to
the callsite, and so eliminate those function calls when socket
accounting is not enabled.

This also eliminates the need for dummy functions because the calls will
be optimized away if the Kconfig options are not enabled.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David S. Miller <davem@davemloft.net>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Johannes Weiner
7d828602e5 mm: memcontrol: export root_mem_cgroup
A later patch will need this symbol in files other than memcontrol.c, so
export it now and replace mem_cgroup_root_css at the same time.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David S. Miller <davem@davemloft.net>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Vladimir Davydov
9ee11ba425 memcg: do not allow to disable tcp accounting after limit is set
There are two bits defined for cg_proto->flags - MEMCG_SOCK_ACTIVATED
and MEMCG_SOCK_ACTIVE - both are set in tcp_update_limit, but the former
is never cleared while the latter can be cleared by unsetting the limit.
This allows to disable tcp socket accounting for new sockets after it
was enabled by writing -1 to memory.kmem.tcp.limit_in_bytes while still
guaranteeing that memcg_socket_limit_enabled static key will be
decremented on memcg destruction.

This functionality looks dubious, because it is not clear what a use
case would be.  By enabling tcp accounting a user accepts the price.  If
they then find the performance degradation unacceptable, they can always
restart their workload with tcp accounting disabled.  It does not seem
there is any need to flip it while the workload is running.

Besides, it contradicts to how kmem accounting API works: writing
whatever to memory.kmem.limit_in_bytes enables kmem accounting for the
cgroup in question, after which it cannot be disabled.  Therefore one
might expect that writing -1 to memory.kmem.tcp.limit_in_bytes just
enables socket accounting w/o limiting it, which might be useful by
itself, but it isn't true.

Since this API peculiarity is not documented anywhere, I propose to drop
it.  This will allow to simplify the code by dropping cg_proto->flags.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Vladimir Davydov
230e9fc286 slab: add SLAB_ACCOUNT flag
Currently, if we want to account all objects of a particular kmem cache,
we have to pass __GFP_ACCOUNT to each kmem_cache_alloc call, which is
inconvenient.  This patch introduces SLAB_ACCOUNT flag which if passed
to kmem_cache_create will force accounting for every allocation from
this cache even if __GFP_ACCOUNT is not passed.

This patch does not make any of the existing caches use this flag - it
will be done later in the series.

Note, a cache with SLAB_ACCOUNT cannot be merged with a cache w/o
SLAB_ACCOUNT, because merged caches share the same kmem_cache struct and
hence cannot have different sets of SLAB_* flags.  Thus using this flag
will probably reduce the number of merged slabs even if kmem accounting
is not used (only compiled in).

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Suggested-by: Tejun Heo <tj@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Linus Torvalds
34a9304a96 Merge branch 'for-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup updates from Tejun Heo:

 - cgroup v2 interface is now official.  It's no longer hidden behind a
   devel flag and can be mounted using the new cgroup2 fs type.

   Unfortunately, cpu v2 interface hasn't made it yet due to the
   discussion around in-process hierarchical resource distribution and
   only memory and io controllers can be used on the v2 interface at the
   moment.

 - The existing documentation which has always been a bit of mess is
   relocated under Documentation/cgroup-v1/. Documentation/cgroup-v2.txt
   is added as the authoritative documentation for the v2 interface.

 - Some features are added through for-4.5-ancestor-test branch to
   enable netfilter xt_cgroup match to use cgroup v2 paths.  The actual
   netfilter changes will be merged through the net tree which pulled in
   the said branch.

 - Various cleanups

* 'for-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
  cgroup: rename cgroup documentations
  cgroup: fix a typo.
  cgroup: Remove resource_counter.txt in Documentation/cgroup-legacy/00-INDEX.
  cgroup: demote subsystem init messages to KERN_DEBUG
  cgroup: Fix uninitialized variable warning
  cgroup: put controller Kconfig options in meaningful order
  cgroup: clean up the kernel configuration menu nomenclature
  cgroup_pids: fix a typo.
  Subject: cgroup: Fix incomplete dd command in blkio documentation
  cgroup: kill cgrp_ss_priv[CGROUP_CANFORK_COUNT] and friends
  cpuset: Replace all instances of time_t with time64_t
  cgroup: replace unified-hierarchy.txt with a proper cgroup v2 documentation
  cgroup: rename Documentation/cgroups/ to Documentation/cgroup-legacy/
  cgroup: replace __DEVEL__sane_behavior with cgroup2 fs type
2016-01-12 19:20:32 -08:00
Vladimir Davydov
6df38689e0 mm: memcontrol: fix possible memcg leak due to interrupted reclaim
Memory cgroup reclaim can be interrupted with mem_cgroup_iter_break()
once enough pages have been reclaimed, in which case, in contrast to a
full round-trip over a cgroup sub-tree, the current position stored in
mem_cgroup_reclaim_iter of the target cgroup does not get invalidated
and so is left holding the reference to the last scanned cgroup.  If the
target cgroup does not get scanned again (we might have just reclaimed
the last page or all processes might exit and free their memory
voluntary), we will leak it, because there is nobody to put the
reference held by the iterator.

The problem is easy to reproduce by running the following command
sequence in a loop:

    mkdir /sys/fs/cgroup/memory/test
    echo 100M > /sys/fs/cgroup/memory/test/memory.limit_in_bytes
    echo $$ > /sys/fs/cgroup/memory/test/cgroup.procs
    memhog 150M
    echo $$ > /sys/fs/cgroup/memory/cgroup.procs
    rmdir test

The cgroups generated by it will never get freed.

This patch fixes this issue by making mem_cgroup_iter avoid taking
reference to the current position.  In order not to hit use-after-free
bug while running reclaim in parallel with cgroup deletion, we make use
of ->css_released cgroup callback to clear references to the dying
cgroup in all reclaim iterators that might refer to it.  This callback
is called right before scheduling rcu work which will free css, so if we
access iter->position from rcu read section, we might be sure it won't
go away under us.

[hannes@cmpxchg.org: clean up css ref handling]
Fixes: 5ac8fb31ad ("mm: memcontrol: convert reclaim iterator to simple css refcounting")
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>	[3.19+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-12-29 17:45:49 -08:00
Ross Zwisler
eed67d75b6 cgroup: Fix uninitialized variable warning
Commit 1f7dd3e5a6 ("cgroup: fix handling of multi-destination migration
from subtree_control enabling") introduced the following compiler warning:

mm/memcontrol.c: In function ‘mem_cgroup_can_attach’:
mm/memcontrol.c:4790:9: warning: ‘memcg’ may be used uninitialized in this function [-Wmaybe-uninitialized]
   mc.to = memcg;
         ^

Fix this by initializing 'memcg' to NULL.

This was found using gcc (GCC) 4.9.2 20150212 (Red Hat 4.9.2-6).

Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2015-12-28 10:42:07 -05:00
Hugh Dickins
25be6a6595 mm: fix kerneldoc on mem_cgroup_replace_page
Whoops, I missed removing the kerneldoc comment of the lrucare arg
removed from mem_cgroup_replace_page; but it's a good comment, keep it.

Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-12-12 10:15:34 -08:00
Vladimir Davydov
9516a18a9a memcg: fix memory.high target
When the memory.high threshold is exceeded, try_charge() schedules a
task_work to reclaim the excess.  The reclaim target is set to the
number of pages requested by try_charge().

This is wrong, because try_charge() usually charges more pages than
requested (batch > nr_pages) in order to refill per cpu stocks.  As a
result, a process in a cgroup can easily exceed memory.high
significantly when doing a lot of charges w/o returning to userspace
(e.g.  reading a file in big chunks).

Fix this issue by assuring that when exceeding memory.high a process
reclaims as many pages as were actually charged (i.e.  batch).

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-12-12 10:15:34 -08:00
Tejun Heo
1f7dd3e5a6 cgroup: fix handling of multi-destination migration from subtree_control enabling
Consider the following v2 hierarchy.

  P0 (+memory) --- P1 (-memory) --- A
                                 \- B
       
P0 has memory enabled in its subtree_control while P1 doesn't.  If
both A and B contain processes, they would belong to the memory css of
P1.  Now if memory is enabled on P1's subtree_control, memory csses
should be created on both A and B and A's processes should be moved to
the former and B's processes the latter.  IOW, enabling controllers
can cause atomic migrations into different csses.

The core cgroup migration logic has been updated accordingly but the
controller migration methods haven't and still assume that all tasks
migrate to a single target css; furthermore, the methods were fed the
css in which subtree_control was updated which is the parent of the
target csses.  pids controller depends on the migration methods to
move charges and this made the controller attribute charges to the
wrong csses often triggering the following warning by driving a
counter negative.

 WARNING: CPU: 1 PID: 1 at kernel/cgroup_pids.c:97 pids_cancel.constprop.6+0x31/0x40()
 Modules linked in:
 CPU: 1 PID: 1 Comm: systemd Not tainted 4.4.0-rc1+ #29
 ...
  ffffffff81f65382 ffff88007c043b90 ffffffff81551ffc 0000000000000000
  ffff88007c043bc8 ffffffff810de202 ffff88007a752000 ffff88007a29ab00
  ffff88007c043c80 ffff88007a1d8400 0000000000000001 ffff88007c043bd8
 Call Trace:
  [<ffffffff81551ffc>] dump_stack+0x4e/0x82
  [<ffffffff810de202>] warn_slowpath_common+0x82/0xc0
  [<ffffffff810de2fa>] warn_slowpath_null+0x1a/0x20
  [<ffffffff8118e031>] pids_cancel.constprop.6+0x31/0x40
  [<ffffffff8118e0fd>] pids_can_attach+0x6d/0xf0
  [<ffffffff81188a4c>] cgroup_taskset_migrate+0x6c/0x330
  [<ffffffff81188e05>] cgroup_migrate+0xf5/0x190
  [<ffffffff81189016>] cgroup_attach_task+0x176/0x200
  [<ffffffff8118949d>] __cgroup_procs_write+0x2ad/0x460
  [<ffffffff81189684>] cgroup_procs_write+0x14/0x20
  [<ffffffff811854e5>] cgroup_file_write+0x35/0x1c0
  [<ffffffff812e26f1>] kernfs_fop_write+0x141/0x190
  [<ffffffff81265f88>] __vfs_write+0x28/0xe0
  [<ffffffff812666fc>] vfs_write+0xac/0x1a0
  [<ffffffff81267019>] SyS_write+0x49/0xb0
  [<ffffffff81bcef32>] entry_SYSCALL_64_fastpath+0x12/0x76

This patch fixes the bug by removing @css parameter from the three
migration methods, ->can_attach, ->cancel_attach() and ->attach() and
updating cgroup_taskset iteration helpers also return the destination
css in addition to the task being migrated.  All controllers are
updated accordingly.

* Controllers which don't care whether there are one or multiple
  target csses can be converted trivially.  cpu, io, freezer, perf,
  netclassid and netprio fall in this category.

* cpuset's current implementation assumes that there's single source
  and destination and thus doesn't support v2 hierarchy already.  The
  only change made by this patchset is how that single destination css
  is obtained.

* memory migration path already doesn't do anything on v2.  How the
  single destination css is obtained is updated and the prep stage of
  mem_cgroup_can_attach() is reordered to accomodate the change.

* pids is the only controller which was affected by this bug.  It now
  correctly handles multi-destination migrations and no longer causes
  counter underflow from incorrect accounting.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-and-tested-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Cc: Aleksa Sarai <cyphar@cyphar.com>
2015-12-03 10:18:21 -05:00
Andrew Morton
6f6461562e mm/memcontrol.c: uninline mem_cgroup_usage
gcc version 5.2.1 20151010 (Debian 5.2.1-22)
$ size mm/memcontrol.o mm/memcontrol.o.before
   text    data     bss     dec     hex filename
  35535    7908      64   43507    a9f3 mm/memcontrol.o
  35762    7908      64   43734    aad6 mm/memcontrol.o.before

Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 17:50:42 -08:00
Mel Gorman
71baba4b92 mm, page_alloc: rename __GFP_WAIT to __GFP_RECLAIM
__GFP_WAIT was used to signal that the caller was in atomic context and
could not sleep.  Now it is possible to distinguish between true atomic
context and callers that are not willing to sleep.  The latter should
clear __GFP_DIRECT_RECLAIM so kswapd will still wake.  As clearing
__GFP_WAIT behaves differently, there is a risk that people will clear the
wrong flags.  This patch renames __GFP_WAIT to __GFP_RECLAIM to clearly
indicate what it does -- setting it allows all reclaim activity, clearing
them prevents it.

[akpm@linux-foundation.org: fix build]
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 17:50:42 -08:00
Mel Gorman
d0164adc89 mm, page_alloc: distinguish between being unable to sleep, unwilling to sleep and avoiding waking kswapd
__GFP_WAIT has been used to identify atomic context in callers that hold
spinlocks or are in interrupts.  They are expected to be high priority and
have access one of two watermarks lower than "min" which can be referred
to as the "atomic reserve".  __GFP_HIGH users get access to the first
lower watermark and can be called the "high priority reserve".

Over time, callers had a requirement to not block when fallback options
were available.  Some have abused __GFP_WAIT leading to a situation where
an optimisitic allocation with a fallback option can access atomic
reserves.

This patch uses __GFP_ATOMIC to identify callers that are truely atomic,
cannot sleep and have no alternative.  High priority users continue to use
__GFP_HIGH.  __GFP_DIRECT_RECLAIM identifies callers that can sleep and
are willing to enter direct reclaim.  __GFP_KSWAPD_RECLAIM to identify
callers that want to wake kswapd for background reclaim.  __GFP_WAIT is
redefined as a caller that is willing to enter direct reclaim and wake
kswapd for background reclaim.

This patch then converts a number of sites

o __GFP_ATOMIC is used by callers that are high priority and have memory
  pools for those requests. GFP_ATOMIC uses this flag.

o Callers that have a limited mempool to guarantee forward progress clear
  __GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall
  into this category where kswapd will still be woken but atomic reserves
  are not used as there is a one-entry mempool to guarantee progress.

o Callers that are checking if they are non-blocking should use the
  helper gfpflags_allow_blocking() where possible. This is because
  checking for __GFP_WAIT as was done historically now can trigger false
  positives. Some exceptions like dm-crypt.c exist where the code intent
  is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to
  flag manipulations.

o Callers that built their own GFP flags instead of starting with GFP_KERNEL
  and friends now also need to specify __GFP_KSWAPD_RECLAIM.

The first key hazard to watch out for is callers that removed __GFP_WAIT
and was depending on access to atomic reserves for inconspicuous reasons.
In some cases it may be appropriate for them to use __GFP_HIGH.

The second key hazard is callers that assembled their own combination of
GFP flags instead of starting with something like GFP_KERNEL.  They may
now wish to specify __GFP_KSWAPD_RECLAIM.  It's almost certainly harmless
if it's missed in most cases as other activity will wake kswapd.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 17:50:42 -08:00
Linus Torvalds
2e3078af2c Merge branch 'akpm' (patches from Andrew)
Merge patch-bomb from Andrew Morton:

 - inotify tweaks

 - some ocfs2 updates (many more are awaiting review)

 - various misc bits

 - kernel/watchdog.c updates

 - Some of mm.  I have a huge number of MM patches this time and quite a
   lot of it is quite difficult and much will be held over to next time.

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (162 commits)
  selftests: vm: add tests for lock on fault
  mm: mlock: add mlock flags to enable VM_LOCKONFAULT usage
  mm: introduce VM_LOCKONFAULT
  mm: mlock: add new mlock system call
  mm: mlock: refactor mlock, munlock, and munlockall code
  kasan: always taint kernel on report
  mm, slub, kasan: enable user tracking by default with KASAN=y
  kasan: use IS_ALIGNED in memory_is_poisoned_8()
  kasan: Fix a type conversion error
  lib: test_kasan: add some testcases
  kasan: update reference to kasan prototype repo
  kasan: move KASAN_SANITIZE in arch/x86/boot/Makefile
  kasan: various fixes in documentation
  kasan: update log messages
  kasan: accurately determine the type of the bad access
  kasan: update reported bug types for kernel memory accesses
  kasan: update reported bug types for not user nor kernel memory accesses
  mm/kasan: prevent deadlock in kasan reporting
  mm/kasan: don't use kasan shadow pointer in generic functions
  mm/kasan: MODULE_VADDR is not available on all archs
  ...
2015-11-05 23:10:54 -08:00
Michal Hocko
c12176d336 memcg: fix thresholds for 32b architectures.
Commit 424cdc1413 ("memcg: convert threshold to bytes") has fixed a
regression introduced by 3e32cb2e0a ("mm: memcontrol: lockless page
counters") where thresholds were silently converted to use page units
rather than bytes when interpreting the user input.

The fix is not complete, though, as properly pointed out by Ben Hutchings
during stable backport review.  The page count is converted to bytes but
unsigned long is used to hold the value which would be obviously not
sufficient for 32b systems with more than 4G thresholds.  The same applies
to usage as taken from mem_cgroup_usage which might overflow.

Let's remove this bytes vs.  pages internal tracking differences and
handle thresholds in page units internally.  Chage mem_cgroup_usage() to
return the value in page units and revert 424cdc1413 because this should
be sufficient for the consistent handling.  mem_cgroup_read_u64 as the
only users of mem_cgroup_usage outside of the threshold handling code is
converted to give the proper in bytes result.  It is doing that already
for page_counter output so this is more consistent as well.

The value presented to the userspace is still in bytes units.

Fixes: 424cdc1413 ("memcg: convert threshold to bytes")
Fixes: 3e32cb2e0a ("mm: memcontrol: lockless page counters")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Ben Hutchings <ben@decadent.org.uk>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>
From: Michal Hocko <mhocko@kernel.org>
Subject: memcg-fix-thresholds-for-32b-architectures-fix

Cc: Ben Hutchings <ben@decadent.org.uk>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
From: Andrew Morton <akpm@linux-foundation.org>
Subject: memcg-fix-thresholds-for-32b-architectures-fix-fix

don't attempt to inline mem_cgroup_usage()

The compiler ignores the inline anwyay.  And __always_inlining it adds 600
bytes of goop to the .o file.

Cc: Ben Hutchings <ben@decadent.org.uk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Johannes Weiner
6071ca5201 mm: page_counter: let page_counter_try_charge() return bool
page_counter_try_charge() currently returns 0 on success and -ENOMEM on
failure, which is surprising behavior given the function name.

Make it follow the expected pattern of try_stuff() functions that return a
boolean true to indicate success, or false for failure.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Johannes Weiner
f5fc3c5d81 mm: memcontrol: eliminate root memory.current
memory.current on the root level doesn't add anything that wouldn't be
more accurate and detailed using system statistics.  It already doesn't
include slabs, and it'll be a pain to keep in sync when further memory
types are accounted in the memory controller.  Remove it.

Note that this applies to the new unified hierarchy interface only.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Hugh Dickins
45637bab30 mm: rename mem_cgroup_migrate to mem_cgroup_replace_page
After v4.3's commit 0610c25daa ("memcg: fix dirty page migration")
mem_cgroup_migrate() doesn't have much to offer in page migration: convert
migrate_misplaced_transhuge_page() to set_page_memcg() instead.

Then rename mem_cgroup_migrate() to mem_cgroup_replace_page(), since its
remaining callers are replace_page_cache_page() and shmem_replace_page():
both of whom passed lrucare true, so just eliminate that argument.

Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Vladimir Davydov
df4065516b memcg: simplify and inline __mem_cgroup_from_kmem
Before the previous patch ("memcg: unify slab and other kmem pages
charging"), __mem_cgroup_from_kmem had to handle two types of kmem - slab
pages and pages allocated with alloc_kmem_pages - memcg in the page
struct.  Now we can unify it.  Since after it, this function becomes tiny
we can fold it into mem_cgroup_from_kmem.

[hughd@google.com: move mem_cgroup_from_kmem into list_lru.c]
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Vladimir Davydov
f3ccb2c422 memcg: unify slab and other kmem pages charging
We have memcg_kmem_charge and memcg_kmem_uncharge methods for charging and
uncharging kmem pages to memcg, but currently they are not used for
charging slab pages (i.e.  they are only used for charging pages allocated
with alloc_kmem_pages).  The only reason why the slab subsystem uses
special helpers, memcg_charge_slab and memcg_uncharge_slab, is that it
needs to charge to the memcg of kmem cache while memcg_charge_kmem charges
to the memcg that the current task belongs to.

To remove this diversity, this patch adds an extra argument to
__memcg_kmem_charge that can be a pointer to a memcg or NULL.  If it is
not NULL, the function tries to charge to the memcg it points to,
otherwise it charge to the current context.  Next, it makes the slab
subsystem use this function to charge slab pages.

Since memcg_charge_kmem and memcg_uncharge_kmem helpers are now used only
in __memcg_kmem_charge and __memcg_kmem_uncharge, they are inlined.  Since
__memcg_kmem_charge stores a pointer to the memcg in the page struct, we
don't need memcg_uncharge_slab anymore and can use free_kmem_pages.
Besides, one can now detect which memcg a slab page belongs to by reading
/proc/kpagecgroup.

Note, this patch switches slab to charge-after-alloc design.  Since this
design is already used for all other memcg charges, it should not make any
difference.

[hannes@cmpxchg.org: better to have an outer function than a magic parameter for the memcg lookup]
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Vladimir Davydov
d05e83a6f8 memcg: simplify charging kmem pages
Charging kmem pages proceeds in two steps.  First, we try to charge the
allocation size to the memcg the current task belongs to, then we allocate
a page and "commit" the charge storing the pointer to the memcg in the
page struct.

Such a design looks overcomplicated, because there is not much sense in
trying charging the allocation before actually allocating a page: we won't
be able to consume much memory over the limit even if we charge after
doing the actual allocation, besides we already charge user pages post
factum, so being pedantic with kmem pages just looks pointless.

So this patch simplifies the design by merging the "charge" and the
"commit" steps into the same function, which takes the allocated page.

Also, rename the charge and uncharge methods to memcg_kmem_charge and
memcg_kmem_uncharge and make the charge method return error code instead
of bool to conform to mem_cgroup_try_charge.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Jerome Marchand
3608de0787 mm/memcontrol.c: fix order calculation in try_charge()
Since commit 6539cc0538 ("mm: memcontrol: fold mem_cgroup_do_charge()"),
the order to pass to mem_cgroup_oom() is calculated by passing the
number of pages to get_order() instead of the expected size in bytes.
AFAICT, it only affects the value displayed in the oom warning message.
This patch fix this.

Michal said:

: We haven't noticed that just because the OOM is enabled only for page
: faults of order-0 (single page) and get_order work just fine.  Thanks for
: noticing this.  If we ever start triggering OOM on different orders this
: would be broken.

Signed-off-by: Jerome Marchand <jmarchan@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Tejun Heo
10d53c748b memcg: ratify and consolidate over-charge handling
try_charge() is the main charging logic of memcg.  When it hits the limit
but either can't fail the allocation due to __GFP_NOFAIL or the task is
likely to free memory very soon, being OOM killed, has SIGKILL pending or
exiting, it "bypasses" the charge to the root memcg and returns -EINTR.
While this is one approach which can be taken for these situations, it has
several issues.

* It unnecessarily lies about the reality.  The number itself doesn't
  go over the limit but the actual usage does.  memcg is either forced
  to or actively chooses to go over the limit because that is the
  right behavior under the circumstances, which is completely fine,
  but, if at all avoidable, it shouldn't be misrepresenting what's
  happening by sneaking the charges into the root memcg.

* Despite trying, we already do over-charge.  kmemcg can't deal with
  switching over to the root memcg by the point try_charge() returns
  -EINTR, so it open-codes over-charing.

* It complicates the callers.  Each try_charge() user has to handle
  the weird -EINTR exception.  memcg_charge_kmem() does the manual
  over-charging.  mem_cgroup_do_precharge() performs unnecessary
  uncharging of root memcg, which BTW is inconsistent with what
  memcg_charge_kmem() does but not broken as [un]charging are noops on
  root memcg.  mem_cgroup_try_charge() needs to switch the returned
  cgroup to the root one.

The reality is that in memcg there are cases where we are forced and/or
willing to go over the limit.  Each such case needs to be scrutinized and
justified but there definitely are situations where that is the right
thing to do.  We alredy do this but with a superficial and inconsistent
disguise which leads to unnecessary complications.

This patch updates try_charge() so that it over-charges and returns 0 when
deemed necessary.  -EINTR return is removed along with all special case
handling in the callers.

While at it, remove the local variable @ret, which was initialized to zero
and never changed, along with done: label which just returned the always
zero @ret.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Tejun Heo
b23afb93d3 memcg: punt high overage reclaim to return-to-userland path
Currently, try_charge() tries to reclaim memory synchronously when the
high limit is breached; however, if the allocation doesn't have
__GFP_WAIT, synchronous reclaim is skipped.  If a process performs only
speculative allocations, it can blow way past the high limit.  This is
actually easily reproducible by simply doing "find /".  slab/slub
allocator tries speculative allocations first, so as long as there's
memory which can be consumed without blocking, it can keep allocating
memory regardless of the high limit.

This patch makes try_charge() always punt the over-high reclaim to the
return-to-userland path.  If try_charge() detects that high limit is
breached, it adds the overage to current->memcg_nr_pages_over_high and
schedules execution of mem_cgroup_handle_over_high() which performs
synchronous reclaim from the return-to-userland path.

As long as kernel doesn't have a run-away allocation spree, this should
provide enough protection while making kmemcg behave more consistently.
It also has the following benefits.

- All over-high reclaims can use GFP_KERNEL regardless of the specific
  gfp mask in use, e.g. GFP_NOFS, when the limit was breached.

- It copes with prio inversion.  Previously, a low-prio task with
  small memory.high might perform over-high reclaim with a bunch of
  locks held.  If a higher prio task needed any of these locks, it
  would have to wait until the low prio task finished reclaim and
  released the locks.  By handing over-high reclaim to the task exit
  path this issue can be avoided.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@kernel.org>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Tejun Heo
626ebc4100 memcg: flatten task_struct->memcg_oom
task_struct->memcg_oom is a sub-struct containing fields which are used
for async memcg oom handling.  Most task_struct fields aren't packaged
this way and it can lead to unnecessary alignment paddings.  This patch
flattens it.

* task.memcg_oom.memcg          -> task.memcg_in_oom
* task.memcg_oom.gfp_mask	-> task.memcg_oom_gfp_mask
* task.memcg_oom.order          -> task.memcg_oom_order
* task.memcg_oom.may_oom        -> task.memcg_may_oom

In addition, task.memcg_may_oom is relocated to where other bitfields are
which reduces the size of task_struct.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Linus Torvalds
69234acee5 Merge branch 'for-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup updates from Tejun Heo:
 "The cgroup core saw several significant updates this cycle:

   - percpu_rwsem for threadgroup locking is reinstated.  This was
     temporarily dropped due to down_write latency issues.  Oleg's
     rework of percpu_rwsem which is scheduled to be merged in this
     merge window resolves the issue.

   - On the v2 hierarchy, when controllers are enabled and disabled, all
     operations are atomic and can fail and revert cleanly.  This allows
     ->can_attach() failure which is necessary for cpu RT slices.

   - Tasks now stay associated with the original cgroups after exit
     until released.  This allows tracking resources held by zombies
     (e.g.  pids) and makes it easy to find out where zombies came from
     on the v2 hierarchy.  The pids controller was broken before these
     changes as zombies escaped the limits; unfortunately, updating this
     behavior required too many invasive changes and I don't think it's
     a good idea to backport them, so the pids controller on 4.3, the
     first version which included the pids controller, will stay broken
     at least until I'm sure about the cgroup core changes.

   - Optimization of a couple common tests using static_key"

* 'for-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (38 commits)
  cgroup: fix race condition around termination check in css_task_iter_next()
  blkcg: don't create "io.stat" on the root cgroup
  cgroup: drop cgroup__DEVEL__legacy_files_on_dfl
  cgroup: replace error handling in cgroup_init() with WARN_ON()s
  cgroup: add cgroup_subsys->free() method and use it to fix pids controller
  cgroup: keep zombies associated with their original cgroups
  cgroup: make css_set_rwsem a spinlock and rename it to css_set_lock
  cgroup: don't hold css_set_rwsem across css task iteration
  cgroup: reorganize css_task_iter functions
  cgroup: factor out css_set_move_task()
  cgroup: keep css_set and task lists in chronological order
  cgroup: make cgroup_destroy_locked() test cgroup_is_populated()
  cgroup: make css_sets pin the associated cgroups
  cgroup: relocate cgroup_[try]get/put()
  cgroup: move check_for_release() invocation
  cgroup: replace cgroup_has_tasks() with cgroup_is_populated()
  cgroup: make cgroup->nr_populated count the number of populated css_sets
  cgroup: remove an unused parameter from cgroup_task_migrate()
  cgroup: fix too early usage of static_branch_disable()
  cgroup: make cgroup_update_dfl_csses() migrate all target processes atomically
  ...
2015-11-05 14:51:32 -08:00
Linus Torvalds
ea1ee5ff1b Merge branch 'for-linus' of git://git.kernel.dk/linux-block
Pull block layer fixes from Jens Axboe:
 "A final set of fixes for 4.3.

  It is (again) bigger than I would have liked, but it's all been
  through the testing mill and has been carefully reviewed by multiple
  parties.  Each fix is either a regression fix for this cycle, or is
  marked stable.  You can scold me at KS.  The pull request contains:

   - Three simple fixes for NVMe, fixing regressions since 4.3.  From
     Arnd, Christoph, and Keith.

   - A single xen-blkfront fix from Cathy, fixing a NULL dereference if
     an error is returned through the staste change callback.

   - Fixup for some bad/sloppy code in nbd that got introduced earlier
     in this cycle.  From Markus Pargmann.

   - A blk-mq tagset use-after-free fix from Junichi.

   - A backing device lifetime fix from Tejun, fixing a crash.

   - And finally, a set of regression/stable fixes for cgroup writeback
     from Tejun"

* 'for-linus' of git://git.kernel.dk/linux-block:
  writeback: remove broken rbtree_postorder_for_each_entry_safe() usage in cgwb_bdi_destroy()
  NVMe: Fix memory leak on retried commands
  block: don't release bdi while request_queue has live references
  nvme: use an integer value to Linux errno values
  blk-mq: fix use-after-free in blk_mq_free_tag_set()
  nvme: fix 32-bit build warning
  writeback: fix incorrect calculation of available memory for memcg domains
  writeback: memcg dirty_throttle_control should be initialized with wb->memcg_completions
  writeback: bdi_writeback iteration must not skip dying ones
  writeback: fix bdi_writeback iteration in wakeup_dirtytime_writeback()
  writeback: laptop_mode_timer_fn() needs rcu_read_lock() around bdi_writeback iteration
  nbd: Add locking for tasks
  xen-blkfront: check for null drvdata in blkback_changed (XenbusStateClosing)
2015-10-24 07:20:57 +09:00
Shaohua Li
424cdc1413 memcg: convert threshold to bytes
page_counter_memparse() returns pages for the threshold, while
mem_cgroup_usage() returns bytes for memory usage.  Convert the
threshold to bytes.

Fixes: 3e32cb2e0a ("memcg: rename cgroup_event to mem_cgroup_event").
Signed-off-by: Shaohua Li <shli@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-10-16 11:42:28 -07:00
Tejun Heo
27bd4dbb8d cgroup: replace cgroup_has_tasks() with cgroup_is_populated()
Currently, cgroup_has_tasks() tests whether the target cgroup has any
css_set linked to it.  This works because a css_set's refcnt converges
with the number of tasks linked to it and thus there's no css_set
linked to a cgroup if it doesn't have any live tasks.

To help tracking resource usage of zombie tasks, putting the ref of
css_set will be separated from disassociating the task from the
css_set which means that a cgroup may have css_sets linked to it even
when it doesn't have any live tasks.

This patch replaces cgroup_has_tasks() with cgroup_is_populated()
which tests cgroup->nr_populated instead which locally counts the
number of populated css_sets.  Unlike cgroup_has_tasks(),
cgroup_is_populated() is recursive - if any of the descendants is
populated, the cgroup is populated too.  While this changes the
meaning of the test, all the existing users are okay with the change.

While at it, replace the open-coded ->populated_cnt test in
cgroup_events_show() with cgroup_is_populated().

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
2015-10-15 16:41:50 -04:00
Tejun Heo
c5edf9cdc4 writeback: fix incorrect calculation of available memory for memcg domains
For memcg domains, the amount of available memory was calculated as

 min(the amount currently in use + headroom according to memcg,
     total clean memory)

This isn't quite correct as what should be capped by the amount of
clean memory is the headroom, not the sum of memory in use and
headroom.  For example, if a memcg domain has a significant amount of
dirty memory, the above can lead to a value which is lower than the
current amount in use which doesn't make much sense.  In most
circumstances, the above leads to a number which is somewhat but not
drastically lower.

As the amount of memory which can be readily allocated to the memcg
domain is capped by the amount of system-wide clean memory which is
not already assigned to the memcg itself, the number we want is

 the amount currently in use +
 min(headroom according to memcg, clean memory elsewhere in the system)

This patch updates mem_cgroup_wb_stats() to return the number of
filepages and headroom instead of the calculated available pages.
mdtc_cap_avail() is renamed to mdtc_calc_avail() and performs the
above calculation from file, headroom, dirty and globally clean pages.

v2: Dummy mem_cgroup_wb_stats() implementation wasn't updated leading
    to build failure when !CGROUP_WRITEBACK.  Fixed.

Signed-off-by: Tejun Heo <tj@kernel.org>
Fixes: c2aa723a60 ("writeback: implement memcg writeback domain based throttling")
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-10-12 10:31:13 -06:00
Greg Thelen
ef510194ce memcg: remove pcp_counter_lock
Commit 733a572e66 ("memcg: make mem_cgroup_read_{stat|event}() iterate
possible cpus instead of online") removed the last use of the per memcg
pcp_counter_lock but forgot to remove the variable.

Kill the vestigial variable.

Signed-off-by: Greg Thelen <gthelen@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-10-01 21:42:35 -04:00
Greg Thelen
484ebb3b8c memcg: make mem_cgroup_read_stat() unsigned
mem_cgroup_read_stat() returns a page count by summing per cpu page
counters.  The summing is racy wrt.  updates, so a transient negative
sum is possible.  Callers don't want negative values:

 - mem_cgroup_wb_stats() doesn't want negative nr_dirty or nr_writeback.
   This could confuse dirty throttling.

 - oom reports and memory.stat shouldn't show confusing negative usage.

 - tree_usage() already avoids negatives.

Avoid returning negative page counts from mem_cgroup_read_stat() and
convert it to unsigned.

[akpm@linux-foundation.org: fix old typo while we're in there]
Signed-off-by: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>	[4.2+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-10-01 21:42:35 -04:00
Tejun Heo
4530eddb59 cgroup, memcg, cpuset: implement cgroup_taskset_for_each_leader()
It wasn't explicitly documented but, when a process is being migrated,
cpuset and memcg depend on cgroup_taskset_first() returning the
threadgroup leader; however, this approach is somewhat ghetto and
would no longer work for the planned multi-process migration.

This patch introduces explicit cgroup_taskset_for_each_leader() which
iterates over only the threadgroup leaders and replaces
cgroup_taskset_first() usages for accessing the leader with it.

This prepares both memcg and cpuset for multi-process migration.  This
patch also updates the documentation for cgroup_taskset_for_each() to
clarify the iteration rules and removes comments mentioning task
ordering in tasksets.

v2: A previous patch which added threadgroup leader test was dropped.
    Patch updated accordingly.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Zefan Li <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
2015-09-22 12:46:53 -04:00
Tejun Heo
472912a2b5 memcg: generate file modified notifications on "memory.events"
cgroup core only recently grew generic notification support.  Wire up
"memory.events" so that it triggers a file modified event whenever its
content changes.

v2: Refreshed on top of mem_cgroup relocation.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Li Zefan <lizefan@huawei.com>
2015-09-21 15:14:47 -04:00
Tejun Heo
7dbdb199d3 cgroup: replace cftype->mode with CFTYPE_WORLD_WRITABLE
cftype->mode allows controllers to give arbitrary permissions to
interface knobs.  Except for "cgroup.event_control", the existing uses
are spurious.

* Some explicitly specify S_IRUGO | S_IWUSR even though that's the
  default.

* "cpuset.memory_pressure" specifies S_IRUGO while also setting a
  write callback which returns -EACCES.  All it needs to do is simply
  not setting a write callback.

"cgroup.event_control" uses cftype->mode to make the file
world-writable.  It's a misdesigned interface and we don't want
controllers to be tweaking interface file permissions in general.
This patch removes cftype->mode and all its spurious uses and
implements CFTYPE_WORLD_WRITABLE for "cgroup.event_control" which is
marked as compatibility-only.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
2015-09-18 17:54:23 -04:00
Tejun Heo
9e10a130d9 cgroup: replace cgroup_on_dfl() tests in controllers with cgroup_subsys_on_dfl()
cgroup_on_dfl() tests whether the cgroup's root is the default
hierarchy; however, an individual controller is only interested in
whether the controller is attached to the default hierarchy and never
tests a cgroup which doesn't belong to the hierarchy that the
controller is attached to.

This patch replaces cgroup_on_dfl() tests in controllers with faster
static_key based cgroup_subsys_on_dfl().  This leaves cgroup core as
the only user of cgroup_on_dfl() and the function is moved from the
header file to cgroup.c.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Zefan Li <lizefan@huawei.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
2015-09-18 11:56:28 -04:00
Vladimir Davydov
e993d905c8 memcg: zap try_get_mem_cgroup_from_page
It is only used in mem_cgroup_try_charge, so fold it in and zap it.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Reviewed-by: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-10 13:29:01 -07:00
Vladimir Davydov
2fc0452470 memcg: add page_cgroup_ino helper
This patchset introduces a new user API for tracking user memory pages
that have not been used for a given period of time.  The purpose of this
is to provide the userspace with the means of tracking a workload's
working set, i.e.  the set of pages that are actively used by the
workload.  Knowing the working set size can be useful for partitioning the
system more efficiently, e.g.  by tuning memory cgroup limits
appropriately, or for job placement within a compute cluster.

==== USE CASES ====

The unified cgroup hierarchy has memory.low and memory.high knobs, which
are defined as the low and high boundaries for the workload working set
size.  However, the working set size of a workload may be unknown or
change in time.  With this patch set, one can periodically estimate the
amount of memory unused by each cgroup and tune their memory.low and
memory.high parameters accordingly, therefore optimizing the overall
memory utilization.

Another use case is balancing workloads within a compute cluster.  Knowing
how much memory is not really used by a workload unit may help take a more
optimal decision when considering migrating the unit to another node
within the cluster.

Also, as noted by Minchan, this would be useful for per-process reclaim
(https://lwn.net/Articles/545668/). With idle tracking, we could reclaim idle
pages only by smart user memory manager.

==== USER API ====

The user API consists of two new files:

 * /sys/kernel/mm/page_idle/bitmap.  This file implements a bitmap where each
   bit corresponds to a page, indexed by PFN. When the bit is set, the
   corresponding page is idle. A page is considered idle if it has not been
   accessed since it was marked idle. To mark a page idle one should set the
   bit corresponding to the page by writing to the file. A value written to the
   file is OR-ed with the current bitmap value. Only user memory pages can be
   marked idle, for other page types input is silently ignored. Writing to this
   file beyond max PFN results in the ENXIO error. Only available when
   CONFIG_IDLE_PAGE_TRACKING is set.

   This file can be used to estimate the amount of pages that are not
   used by a particular workload as follows:

   1. mark all pages of interest idle by setting corresponding bits in the
      /sys/kernel/mm/page_idle/bitmap
   2. wait until the workload accesses its working set
   3. read /sys/kernel/mm/page_idle/bitmap and count the number of bits set

 * /proc/kpagecgroup.  This file contains a 64-bit inode number of the
   memory cgroup each page is charged to, indexed by PFN. Only available when
   CONFIG_MEMCG is set.

   This file can be used to find all pages (including unmapped file pages)
   accounted to a particular cgroup. Using /sys/kernel/mm/page_idle/bitmap, one
   can then estimate the cgroup working set size.

For an example of using these files for estimating the amount of unused
memory pages per each memory cgroup, please see the script attached
below.

==== REASONING ====

The reason to introduce the new user API instead of using
/proc/PID/{clear_refs,smaps} is that the latter has two serious
drawbacks:

 - it does not count unmapped file pages
 - it affects the reclaimer logic

The new API attempts to overcome them both. For more details on how it
is achieved, please see the comment to patch 6.

==== PATCHSET STRUCTURE ====

The patch set is organized as follows:

 - patch 1 adds page_cgroup_ino() helper for the sake of
   /proc/kpagecgroup and patches 2-3 do related cleanup
 - patch 4 adds /proc/kpagecgroup, which reports cgroup ino each page is
   charged to
 - patch 5 introduces a new mmu notifier callback, clear_young, which is
   a lightweight version of clear_flush_young; it is used in patch 6
 - patch 6 implements the idle page tracking feature, including the
   userspace API, /sys/kernel/mm/page_idle/bitmap
 - patch 7 exports idle flag via /proc/kpageflags

==== SIMILAR WORKS ====

Originally, the patch for tracking idle memory was proposed back in 2011
by Michel Lespinasse (see http://lwn.net/Articles/459269/).  The main
difference between Michel's patch and this one is that Michel implemented
a kernel space daemon for estimating idle memory size per cgroup while
this patch only provides the userspace with the minimal API for doing the
job, leaving the rest up to the userspace.  However, they both share the
same idea of Idle/Young page flags to avoid affecting the reclaimer logic.

==== PERFORMANCE EVALUATION ====

SPECjvm2008 (https://www.spec.org/jvm2008/) was used to evaluate the
performance impact introduced by this patch set.  Three runs were carried
out:

 - base: kernel without the patch
 - patched: patched kernel, the feature is not used
 - patched-active: patched kernel, 1 minute-period daemon is used for
   tracking idle memory

For tracking idle memory, idlememstat utility was used:
https://github.com/locker/idlememstat

testcase            base            patched        patched-active

compiler       537.40 ( 0.00)%   532.26 (-0.96)%   538.31 ( 0.17)%
compress       305.47 ( 0.00)%   301.08 (-1.44)%   300.71 (-1.56)%
crypto         284.32 ( 0.00)%   282.21 (-0.74)%   284.87 ( 0.19)%
derby          411.05 ( 0.00)%   413.44 ( 0.58)%   412.07 ( 0.25)%
mpegaudio      189.96 ( 0.00)%   190.87 ( 0.48)%   189.42 (-0.28)%
scimark.large   46.85 ( 0.00)%    46.41 (-0.94)%    47.83 ( 2.09)%
scimark.small  412.91 ( 0.00)%   415.41 ( 0.61)%   421.17 ( 2.00)%
serial         204.23 ( 0.00)%   213.46 ( 4.52)%   203.17 (-0.52)%
startup         36.76 ( 0.00)%    35.49 (-3.45)%    35.64 (-3.05)%
sunflow        115.34 ( 0.00)%   115.08 (-0.23)%   117.37 ( 1.76)%
xml            620.55 ( 0.00)%   619.95 (-0.10)%   620.39 (-0.03)%

composite      211.50 ( 0.00)%   211.15 (-0.17)%   211.67 ( 0.08)%

time idlememstat:

17.20user 65.16system 2:15:23elapsed 1%CPU (0avgtext+0avgdata 8476maxresident)k
448inputs+40outputs (1major+36052minor)pagefaults 0swaps

==== SCRIPT FOR COUNTING IDLE PAGES PER CGROUP ====
#! /usr/bin/python
#

import os
import stat
import errno
import struct

CGROUP_MOUNT = "/sys/fs/cgroup/memory"
BUFSIZE = 8 * 1024  # must be multiple of 8

def get_hugepage_size():
    with open("/proc/meminfo", "r") as f:
        for s in f:
            k, v = s.split(":")
            if k == "Hugepagesize":
                return int(v.split()[0]) * 1024

PAGE_SIZE = os.sysconf("SC_PAGE_SIZE")
HUGEPAGE_SIZE = get_hugepage_size()

def set_idle():
    f = open("/sys/kernel/mm/page_idle/bitmap", "wb", BUFSIZE)
    while True:
        try:
            f.write(struct.pack("Q", pow(2, 64) - 1))
        except IOError as err:
            if err.errno == errno.ENXIO:
                break
            raise
    f.close()

def count_idle():
    f_flags = open("/proc/kpageflags", "rb", BUFSIZE)
    f_cgroup = open("/proc/kpagecgroup", "rb", BUFSIZE)

    with open("/sys/kernel/mm/page_idle/bitmap", "rb", BUFSIZE) as f:
        while f.read(BUFSIZE): pass  # update idle flag

    idlememsz = {}
    while True:
        s1, s2 = f_flags.read(8), f_cgroup.read(8)
        if not s1 or not s2:
            break

        flags, = struct.unpack('Q', s1)
        cgino, = struct.unpack('Q', s2)

        unevictable = (flags >> 18) & 1
        huge = (flags >> 22) & 1
        idle = (flags >> 25) & 1

        if idle and not unevictable:
            idlememsz[cgino] = idlememsz.get(cgino, 0) + \
                (HUGEPAGE_SIZE if huge else PAGE_SIZE)

    f_flags.close()
    f_cgroup.close()
    return idlememsz

if __name__ == "__main__":
    print "Setting the idle flag for each page..."
    set_idle()

    raw_input("Wait until the workload accesses its working set, "
              "then press Enter")

    print "Counting idle pages..."
    idlememsz = count_idle()

    for dir, subdirs, files in os.walk(CGROUP_MOUNT):
        ino = os.stat(dir)[stat.ST_INO]
        print dir + ": " + str(idlememsz.get(ino, 0) / 1024) + " kB"
==== END SCRIPT ====

This patch (of 8):

Add page_cgroup_ino() helper to memcg.

This function returns the inode number of the closest online ancestor of
the memory cgroup a page is charged to.  It is required for exporting
information about which page is charged to which cgroup to userspace,
which will be introduced by a following patch.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Reviewed-by: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-10 13:29:01 -07:00
Michal Hocko
e752eb6881 memcg: move memcg_proto_active from sock.h
The only user is sock_update_memcg which is living in memcontrol.c so it
doesn't make much sense to pollute sock.h by this inline helper.  Move it
to memcontrol.c and open code it into its only caller.

Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Michal Hocko
a03f1f0589 memcg, tcp_kmem: check for cg_proto in sock_update_memcg
sk_prot->proto_cgroup is allowed to return NULL but sock_update_memcg
doesn't check for NULL.  The function relies on the mem_cgroup_is_root
check because we shouldn't get NULL otherwise because mem_cgroup_from_task
will always return !NULL.

All other callers are checking for NULL and we can safely replace
mem_cgroup_is_root() check by cg_proto != NULL which will be more
straightforward (proto_cgroup returns NULL for the root memcg already).

Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Tejun Heo
9f2115f93b memcg: restructure mem_cgroup_can_attach()
Restructure it to lower nesting level and help the planned threadgroup
leader iteration changes.

This is pure reorganization.

Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Michal Hocko
33398cf2f3 memcg: export struct mem_cgroup
mem_cgroup structure is defined in mm/memcontrol.c currently which means
that the code outside of this file has to use external API even for
trivial access stuff.

This patch exports mm_struct with its dependencies and makes some of the
exported functions inlines.  This even helps to reduce the code size a bit
(make defconfig + CONFIG_MEMCG=y)

  text		data    bss     dec     	 hex 	filename
  12355346        1823792 1089536 15268674         e8fb42 vmlinux.before
  12354970        1823792 1089536 15268298         e8f9ca vmlinux.after

This is not much (370B) but better than nothing.

We also save a function call in some hot paths like callers of
mem_cgroup_count_vm_event which is used for accounting.

The patch doesn't introduce any functional changes.

[vdavykov@parallels.com: inline memcg_kmem_is_active]
[vdavykov@parallels.com: do not expose type outside of CONFIG_MEMCG]
[akpm@linux-foundation.org: memcontrol.h needs eventfd.h for eventfd_ctx]
[akpm@linux-foundation.org: export mem_cgroup_from_task() to modules]
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
David Rientjes
54e9e29132 mm, oom: pass an oom order of -1 when triggered by sysrq
The force_kill member of struct oom_control isn't needed if an order of -1
is used instead.  This is the same as order == -1 in struct
compact_control which requires full memory compaction.

This patch introduces no functional change.

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
David Rientjes
6e0fc46dc2 mm, oom: organize oom context into struct
There are essential elements to an oom context that are passed around to
multiple functions.

Organize these elements into a new struct, struct oom_control, that
specifies the context for an oom condition.

This patch introduces no functional change.

Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Sebastian Andrzej Siewior
ce9ce6659a mm: memcontrol: bring back the VM_BUG_ON() in mem_cgroup_swapout()
Clark stumbled over a VM_BUG_ON() in -RT which was then was removed by
Johannes in commit f371763a79 ("mm: memcontrol: fix false-positive
VM_BUG_ON() on -rt").  The comment before that patch was a tiny bit better
than it is now.  While the patch claimed to fix a false-postive on -RT
this was not the case.  None of the -RT folks ACKed it and it was not a
false positive report.  That was a *real* problem.

This patch updates the comment that is improper because it refers to
"disabled preemption" as a consequence of that lock being taken.  A
spin_lock() disables preemption, true, but in this case the code relies on
the fact that the lock _also_ disables interrupts once it is acquired.
And this is the important detail (which was checked the VM_BUG_ON()) which
needs to be pointed out.  This is the hint one needs while looking at the
code.  It was explained by Johannes on the list that the per-CPU variables
are protected by local_irq_save().  The BUG_ON() was helpful.  This code
has been workarounded in -RT in the meantime.  I wouldn't mind running
into more of those if the code in question uses *special* kind of locking
since now there is no verification (in terms of lockdep or BUG_ON()) and
therefore I bring the VM_BUG_ON() check back in.

The two functions after the comment could also have a "local_irq_save()"
dance around them in order to serialize access to the per-CPU variables.
This has been avoided because the interrupts should be off.

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Clark Williams <williams@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-04 16:54:41 -07:00
Linus Torvalds
e4bc13adfd Merge branch 'for-4.2/writeback' of git://git.kernel.dk/linux-block
Pull cgroup writeback support from Jens Axboe:
 "This is the big pull request for adding cgroup writeback support.

  This code has been in development for a long time, and it has been
  simmering in for-next for a good chunk of this cycle too.  This is one
  of those problems that has been talked about for at least half a
  decade, finally there's a solution and code to go with it.

  Also see last weeks writeup on LWN:

        http://lwn.net/Articles/648292/"

* 'for-4.2/writeback' of git://git.kernel.dk/linux-block: (85 commits)
  writeback, blkio: add documentation for cgroup writeback support
  vfs, writeback: replace FS_CGROUP_WRITEBACK with SB_I_CGROUPWB
  writeback: do foreign inode detection iff cgroup writeback is enabled
  v9fs: fix error handling in v9fs_session_init()
  bdi: fix wrong error return value in cgwb_create()
  buffer: remove unusued 'ret' variable
  writeback: disassociate inodes from dying bdi_writebacks
  writeback: implement foreign cgroup inode bdi_writeback switching
  writeback: add lockdep annotation to inode_to_wb()
  writeback: use unlocked_inode_to_wb transaction in inode_congested()
  writeback: implement unlocked_inode_to_wb transaction and use it for stat updates
  writeback: implement [locked_]inode_to_wb_and_lock_list()
  writeback: implement foreign cgroup inode detection
  writeback: make writeback_control track the inode being written back
  writeback: relocate wb[_try]_get(), wb_put(), inode_{attach|detach}_wb()
  mm: vmscan: disable memcg direct reclaim stalling if cgroup writeback support is in use
  writeback: implement memcg writeback domain based throttling
  writeback: reset wb_domain->dirty_limit[_tstmp] when memcg domain size changes
  writeback: implement memcg wb_domain
  writeback: update wb_over_bg_thresh() to use wb_domain aware operations
  ...
2015-06-25 16:00:17 -07:00
Tejun Heo
c2b42d3cad memcg: convert mem_cgroup->under_oom from atomic_t to int
memcg->under_oom tracks whether the memcg is under OOM conditions and is
an atomic_t counter managed with mem_cgroup_[un]mark_under_oom().  While
atomic_t appears to be simple synchronization-wise, when used as a
synchronization construct like here, it's trickier and more error-prone
due to weak memory ordering rules, especially around atomic_read(), and
false sense of security.

For example, both non-trivial read sites of memcg->under_oom are a bit
problematic although not being actually broken.

* mem_cgroup_oom_register_event()

  It isn't explicit what guarantees the memory ordering between event
  addition and memcg->under_oom check.  This isn't broken only because
  memcg_oom_lock is used for both event list and memcg->oom_lock.

* memcg_oom_recover()

  The lockless test doesn't have any explanation why this would be
  safe.

mem_cgroup_[un]mark_under_oom() are very cold paths and there's no point
in avoiding locking memcg_oom_lock there.  This patch converts
memcg->under_oom from atomic_t to int, puts their modifications under
memcg_oom_lock and documents why the lockless test in
memcg_oom_recover() is safe.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-24 17:49:45 -07:00
Tejun Heo
f4b90b70b7 memcg: remove unused mem_cgroup->oom_wakeups
Since commit 4942642080 ("mm: memcg: handle non-error OOM situations
more gracefully"), nobody uses mem_cgroup->oom_wakeups.  Remove it.

While at it, also fold memcg_wakeup_oom() into memcg_oom_recover() which
is its only user.  This cleanup was suggested by Michal.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-24 17:49:45 -07:00
Johannes Weiner
dc56401fc9 mm: oom_kill: simplify OOM killer locking
The zonelist locking and the oom_sem are two overlapping locks that are
used to serialize global OOM killing against different things.

The historical zonelist locking serializes OOM kills from allocations with
overlapping zonelists against each other to prevent killing more tasks
than necessary in the same memory domain.  Only when neither tasklists nor
zonelists from two concurrent OOM kills overlap (tasks in separate memcgs
bound to separate nodes) are OOM kills allowed to execute in parallel.

The younger oom_sem is a read-write lock to serialize OOM killing against
the PM code trying to disable the OOM killer altogether.

However, the OOM killer is a fairly cold error path, there is really no
reason to optimize for highly performant and concurrent OOM kills.  And
the oom_sem is just flat-out redundant.

Replace both locking schemes with a single global mutex serializing OOM
kills regardless of context.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-24 17:49:43 -07:00
Johannes Weiner
16e951966f mm: oom_kill: clean up victim marking and exiting interfaces
Rename unmark_oom_victim() to exit_oom_victim().  Marking and unmarking
are related in functionality, but the interface is not symmetrical at
all: one is an internal OOM killer function used during the killing, the
other is for an OOM victim to signal its own death on exit later on.
This has locking implications, see follow-up changes.

While at it, rename mark_tsk_oom_victim() to mark_oom_victim(), which
is easier on the eye.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-24 17:49:43 -07:00
Johannes Weiner
f371763a79 mm: memcontrol: fix false-positive VM_BUG_ON() on -rt
On -rt, the VM_BUG_ON(!irqs_disabled()) triggers inside the memcg
swapout path because the spin_lock_irq(&mapping->tree_lock) in the
caller doesn't actually disable the hardware interrupts - which is fine,
because on -rt the tophalves run in process context and so we are still
safe from preemption while updating the statistics.

Remove the VM_BUG_ON() but keep the comment of what we rely on.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Clark Williams <williams@redhat.com>
Cc: Fernando Lopez-Lezcano <nando@ccrma.Stanford.EDU>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-10 16:43:43 -07:00
Vladimir Davydov
7d638093d4 memcg: do not call reclaim if !__GFP_WAIT
When trimming memcg consumption excess (see memory.high), we call
try_to_free_mem_cgroup_pages without checking if we are allowed to sleep
in the current context, which can result in a deadlock.  Fix this.

Fixes: 241994ed86 ("mm: memcontrol: default hierarchy interface for memory")
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-10 16:43:43 -07:00
Tejun Heo
c2aa723a60 writeback: implement memcg writeback domain based throttling
While cgroup writeback support now connects memcg and blkcg so that
writeback IOs are properly attributed and controlled, the IO back
pressure propagation mechanism implemented in balance_dirty_pages()
and its subroutines wasn't aware of cgroup writeback.

Processes belonging to a memcg may have access to only subset of total
memory available in the system and not factoring this into dirty
throttling rendered it completely ineffective for processes under
memcg limits and memcg ended up building a separate ad-hoc degenerate
mechanism directly into vmscan code to limit page dirtying.

The previous patches updated balance_dirty_pages() and its subroutines
so that they can deal with multiple wb_domain's (writeback domains)
and defined per-memcg wb_domain.  Processes belonging to a non-root
memcg are bound to two wb_domains, global wb_domain and memcg
wb_domain, and should be throttled according to IO pressures from both
domains.  This patch updates dirty throttling code so that it repeats
similar calculations for the two domains - the differences between the
two are few and minor - and applies the lower of the two sets of
resulting constraints.

wb_over_bg_thresh(), which controls when background writeback
terminates, is also updated to consider both global and memcg
wb_domains.  It returns true if dirty is over bg_thresh for either
domain.

This makes the dirty throttling mechanism operational for memcg
domains including writeback-bandwidth-proportional dirty page
distribution inside them but the ad-hoc memcg throttling mechanism in
vmscan is still in place.  The next patch will rip it out.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-06-02 08:38:13 -06:00
Tejun Heo
2529bb3aad writeback: reset wb_domain->dirty_limit[_tstmp] when memcg domain size changes
The amount of available memory to a memcg wb_domain can change as
memcg configuration changes.  A domain's ->dirty_limit exists to
smooth out sudden drops in dirty threshold; however, when a domain's
size actually drops significantly, it hinders the dirty throttling
from adjusting to the new configuration leading to unexpected
behaviors including unnecessary OOM kills.

This patch resolves the issue by adding wb_domain_size_changed() which
resets ->dirty_limit[_tstmp] and making memcg call it on configuration
changes.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-06-02 08:38:13 -06:00
Tejun Heo
841710aa6e writeback: implement memcg wb_domain
Dirtyable memory is distributed to a wb (bdi_writeback) according to
the relative bandwidth the wb is writing out in the whole system.
This distribution is global - each wb is measured against all other
wb's and gets the proportinately sized portion of the memory in the
whole system.

For cgroup writeback, the amount of dirtyable memory is scoped by
memcg and thus each wb would need to be measured and controlled in its
memcg.  IOW, a wb will belong to two writeback domains - the global
and memcg domains.

The previous patches laid the groundwork to support the two wb_domains
and this patch implements memcg wb_domain.  memcg->cgwb_domain is
initialized on css online and destroyed on css release,
wb->memcg_completions is added, and __wb_writeout_inc() is updated to
increment completions against both global and memcg wb_domains.

The following patches will update balance_dirty_pages() and its
subroutines to actually consider memcg wb_domain for throttling.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-06-02 08:38:13 -06:00
Tejun Heo
733a572e66 memcg: make mem_cgroup_read_{stat|event}() iterate possible cpus instead of online
cpu_possible_mask represents the CPUs which are actually possible
during that boot instance.  For systems which don't support CPU
hotplug, this will match cpu_online_mask exactly in most cases.  Even
for systems which support CPU hotplug, the number of possible CPU
slots is highly unlikely to diverge greatly from the number of online
CPUs.  The only cases where the difference between possible and online
caused problems were when the boot code failed to initialize the
possible mask and left it fully set at NR_CPUS - 1.

As such, most per-cpu constructs allocate for all possible CPUs and
often iterate over the possibles, which also has the benefit of
avoiding the blocking CPU hotplug synchronization.

memcg open codes per-cpu stat counting for mem_cgroup_read_stat() and
mem_cgroup_read_events(), which iterates over online CPUs and handles
CPU hotplug operations explicitly.  This complexity doesn't actually
buy anything.  Switch to iterating over the possibles and drop the
explicit CPU hotplug handling.

Eventually, we want to convert memcg to use percpu_counter instead of
its own custom implementation which also benefits from quick access
w/o summing for cases where larger error margin is acceptable.

This will allow mem_cgroup_read_stat() to be called from non-sleepable
contexts which will be used by cgroup writeback.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-06-02 08:38:12 -06:00
Tejun Heo
52ebea749a writeback: make backing_dev_info host cgroup-specific bdi_writebacks
For the planned cgroup writeback support, on each bdi
(backing_dev_info), each memcg will be served by a separate wb
(bdi_writeback).  This patch updates bdi so that a bdi can host
multiple wbs (bdi_writebacks).

On the default hierarchy, blkcg implicitly enables memcg.  This allows
using memcg's page ownership for attributing writeback IOs, and every
memcg - blkcg combination can be served by its own wb by assigning a
dedicated wb to each memcg.  This means that there may be multiple
wb's of a bdi mapped to the same blkcg.  As congested state is per
blkcg - bdi combination, those wb's should share the same congested
state.  This is achieved by tracking congested state via
bdi_writeback_congested structs which are keyed by blkcg.

bdi->wb remains unchanged and will keep serving the root cgroup.
cgwb's (cgroup wb's) for non-root cgroups are created on-demand or
looked up while dirtying an inode according to the memcg of the page
being dirtied or current task.  Each cgwb is indexed on bdi->cgwb_tree
by its memcg id.  Once an inode is associated with its wb, it can be
retrieved using inode_to_wb().

Currently, none of the filesystems has FS_CGROUP_WRITEBACK and all
pages will keep being associated with bdi->wb.

v3: inode_attach_wb() in account_page_dirtied() moved inside
    mapping_cap_account_dirty() block where it's known to be !NULL.
    Also, an unnecessary NULL check before kfree() removed.  Both
    detected by the kbuild bot.

v2: Updated so that wb association is per inode and wb is per memcg
    rather than blkcg.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: kbuild test robot <fengguang.wu@intel.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-06-02 08:33:35 -06:00
Tejun Heo
ad7fa852d3 memcg: implement mem_cgroup_css_from_page()
Implement mem_cgroup_css_from_page() which returns the
cgroup_subsys_state of the memcg associated with a given page on the
default hierarchy.  This will be used by cgroup writeback support.

This function assumes that page->mem_cgroup association doesn't change
until the page is released, which is true on the default hierarchy as
long as replace_page_cache_page() is not used.  As the only user of
replace_page_cache_page() is FUSE which won't support cgroup writeback
for the time being, this works for now, and replace_page_cache_page()
will soon be updated so that the invariant actually holds.

Note that the RCU protected page->mem_cgroup access is consistent with
other usages across memcg but ultimately incorrect.  These unlocked
accesses are missing required barriers.  page->mem_cgroup should be
made an RCU pointer and updated and accessed using RCU operations.

v4: Instead of triggering WARN, return the root css on the traditional
    hierarchies.  This makes the function a lot easier to deal with
    especially as there's no light way to synchronize against
    hierarchy rebinding.

v3: s/mem_cgroup_migrate()/mem_cgroup_css_from_page()/

v2: Trigger WARN if the function is used on the traditional
    hierarchies and add comment about the assumed invariant.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-06-02 08:33:34 -06:00
Tejun Heo
56161634e4 memcg: add mem_cgroup_root_css
Add global mem_cgroup_root_css which points to the root memcg css.
This will be used by cgroup writeback support.  If memcg is disabled,
it's defined as ERR_PTR(-EINVAL).

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
aCc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-06-02 08:33:33 -06:00
Greg Thelen
c4843a7593 memcg: add per cgroup dirty page accounting
When modifying PG_Dirty on cached file pages, update the new
MEM_CGROUP_STAT_DIRTY counter.  This is done in the same places where
global NR_FILE_DIRTY is managed.  The new memcg stat is visible in the
per memcg memory.stat cgroupfs file.  The most recent past attempt at
this was http://thread.gmane.org/gmane.linux.kernel.cgroups/8632

The new accounting supports future efforts to add per cgroup dirty
page throttling and writeback.  It also helps an administrator break
down a container's memory usage and provides evidence to understand
memcg oom kills (the new dirty count is included in memcg oom kill
messages).

The ability to move page accounting between memcg
(memory.move_charge_at_immigrate) makes this accounting more
complicated than the global counter.  The existing
mem_cgroup_{begin,end}_page_stat() lock is used to serialize move
accounting with stat updates.
Typical update operation:
	memcg = mem_cgroup_begin_page_stat(page)
	if (TestSetPageDirty()) {
		[...]
		mem_cgroup_update_page_stat(memcg)
	}
	mem_cgroup_end_page_stat(memcg)

Summary of mem_cgroup_end_page_stat() overhead:
- Without CONFIG_MEMCG it's a no-op
- With CONFIG_MEMCG and no inter memcg task movement, it's just
  rcu_read_lock()
- With CONFIG_MEMCG and inter memcg  task movement, it's
  rcu_read_lock() + spin_lock_irqsave()

A memcg parameter is added to several routines because their callers
now grab mem_cgroup_begin_page_stat() which returns the memcg later
needed by for mem_cgroup_update_page_stat().

Because mem_cgroup_begin_page_stat() may disable interrupts, some
adjustments are needed:
- move __mark_inode_dirty() from __set_page_dirty() to its caller.
  __mark_inode_dirty() locking does not want interrupts disabled.
- use spin_lock_irqsave(tree_lock) rather than spin_lock_irq() in
  __delete_from_page_cache(), replace_page_cache_page(),
  invalidate_complete_page2(), and __remove_mapping().

   text    data     bss      dec    hex filename
8925147 1774832 1785856 12485835 be84cb vmlinux-!CONFIG_MEMCG-before
8925339 1774832 1785856 12486027 be858b vmlinux-!CONFIG_MEMCG-after
                            +192 text bytes
8965977 1784992 1785856 12536825 bf4bf9 vmlinux-CONFIG_MEMCG-before
8966750 1784992 1785856 12537598 bf4efe vmlinux-CONFIG_MEMCG-after
                            +773 text bytes

Performance tests run on v4.0-rc1-36-g4f671fe2f952.  Lower is better for
all metrics, they're all wall clock or cycle counts.  The read and write
fault benchmarks just measure fault time, they do not include I/O time.

* CONFIG_MEMCG not set:
                            baseline                              patched
  kbuild                 1m25.030000(+-0.088% 3 samples)       1m25.426667(+-0.120% 3 samples)
  dd write 100 MiB          0.859211561 +-15.10%                  0.874162885 +-15.03%
  dd write 200 MiB          1.670653105 +-17.87%                  1.669384764 +-11.99%
  dd write 1000 MiB         8.434691190 +-14.15%                  8.474733215 +-14.77%
  read fault cycles       254.0(+-0.000% 10 samples)            253.0(+-0.000% 10 samples)
  write fault cycles     2021.2(+-3.070% 10 samples)           1984.5(+-1.036% 10 samples)

* CONFIG_MEMCG=y root_memcg:
                            baseline                              patched
  kbuild                 1m25.716667(+-0.105% 3 samples)       1m25.686667(+-0.153% 3 samples)
  dd write 100 MiB          0.855650830 +-14.90%                  0.887557919 +-14.90%
  dd write 200 MiB          1.688322953 +-12.72%                  1.667682724 +-13.33%
  dd write 1000 MiB         8.418601605 +-14.30%                  8.673532299 +-15.00%
  read fault cycles       266.0(+-0.000% 10 samples)            266.0(+-0.000% 10 samples)
  write fault cycles     2051.7(+-1.349% 10 samples)           2049.6(+-1.686% 10 samples)

* CONFIG_MEMCG=y non-root_memcg:
                            baseline                              patched
  kbuild                 1m26.120000(+-0.273% 3 samples)       1m25.763333(+-0.127% 3 samples)
  dd write 100 MiB          0.861723964 +-15.25%                  0.818129350 +-14.82%
  dd write 200 MiB          1.669887569 +-13.30%                  1.698645885 +-13.27%
  dd write 1000 MiB         8.383191730 +-14.65%                  8.351742280 +-14.52%
  read fault cycles       265.7(+-0.172% 10 samples)            267.0(+-0.000% 10 samples)
  write fault cycles     2070.6(+-1.512% 10 samples)           2084.4(+-2.148% 10 samples)

As expected anon page faults are not affected by this patch.

tj: Updated to apply on top of the recent cancel_dirty_page() changes.

Signed-off-by: Sha Zhengju <handai.szj@gmail.com>
Signed-off-by: Greg Thelen <gthelen@google.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-06-02 08:33:33 -06:00
Jason Low
4db0c3c298 mm: remove rest of ACCESS_ONCE() usages
We converted some of the usages of ACCESS_ONCE to READ_ONCE in the mm/
tree since it doesn't work reliably on non-scalar types.

This patch removes the rest of the usages of ACCESS_ONCE, and use the new
READ_ONCE API for the read accesses.  This makes things cleaner, instead
of using separate/multiple sets of APIs.

Signed-off-by: Jason Low <jason.low2@hp.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Davidlohr Bueso <dave@stgolabs.net>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 16:35:18 -07:00
Vladimir Davydov
2564f683d1 memcg: remove obsolete comment
Low and high watermarks, as they defined in the TODO to the mem_cgroup
struct, have already been implemented by Johannes, so remove the stale
comment.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 16:35:16 -07:00
Vladimir Davydov
adbe427b92 memcg: zap mem_cgroup_lookup()
mem_cgroup_lookup() is a wrapper around mem_cgroup_from_id(), which
checks that id != 0 before issuing the function call.  Today, there is
no point in this additional check apart from optimization, because there
is no css with id <= 0, so that css_from_id, called by
mem_cgroup_from_id, will return NULL for any id <= 0.

Since mem_cgroup_from_id is only called from mem_cgroup_lookup, let us
zap mem_cgroup_lookup, substituting calls to it with mem_cgroup_from_id
and moving the check if id > 0 to css_from_id.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 16:35:16 -07:00
Balasubramani Vivekanandan
2415b9f5cb memcg: print cgroup information when system panics due to panic_on_oom
If kernel panics due to oom, caused by a cgroup reaching its limit, when
'compulsory panic_on_oom' is enabled, then we will only see that the OOM
happened because of "compulsory panic_on_oom is enabled" but this doesn't
tell the difference between mempolicy and memcg.  And dumping system wide
information is plain wrong and more confusing.  This patch provides the
information of the cgroup whose limit triggerred panic

Signed-off-by: Balasubramani Vivekanandan <balasubramani_vivekanandan@mentor.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-14 16:49:05 -07:00
Chen Gang
b1b0deabbf mm: memcontrol: let mem_cgroup_move_account() have effect only if MMU enabled
When !MMU, it will report warning. The related warning with allmodconfig
under c6x:

    CC      mm/memcontrol.o
  mm/memcontrol.c:2802:12: warning: 'mem_cgroup_move_account' defined but not used [-Wunused-function]
   static int mem_cgroup_move_account(struct page *page,
              ^

Signed-off-by: Chen Gang <gang.chen.5i5j@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-14 16:49:04 -07:00
Johannes Weiner
1575e68b3c mm: memcontrol: update copyright notice
Add myself to the list of copyright holders.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-14 16:49:00 -07:00
Vladimir Davydov
7feee590bb memcg: disable hierarchy support if bound to the legacy cgroup hierarchy
If the memory cgroup controller is initially mounted in the scope of the
default cgroup hierarchy and then remounted to a legacy hierarchy, it will
still have hierarchy support enabled, which is incorrect.  We should
disable hierarchy support if bound to the legacy cgroup hierarchy.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-03-12 18:46:08 -07:00
Johannes Weiner
d2973697b3 mm: memcontrol: use "max" instead of "infinity" in control knobs
The memcg control knobs indicate the highest possible value using the
symbolic name "infinity", which is long and awkward to type.

Switch to the string "max", which is just as descriptive but shorter and
sweeter.

This changes a user interface, so do it before the release and before
the development flag is dropped from the default hierarchy.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-28 09:57:51 -08:00
Michal Hocko
4e54dede38 memcg: fix low limit calculation
A memcg is considered low limited even when the current usage is equal to
the low limit.  This leads to interesting side effects e.g.
groups/hierarchies with no memory accounted are considered protected and
so the reclaim will emit MEMCG_LOW event when encountering them.

Another and much bigger issue was reported by Joonsoo Kim.  He has hit a
NULL ptr dereference with the legacy cgroup API which even doesn't have
low limit exposed.  The limit is 0 by default but the initial check fails
for memcg with 0 consumption and parent_mem_cgroup() would return NULL if
use_hierarchy is 0 and so page_counter_read would try to dereference NULL.

I suppose that the current implementation is just an overlook because the
documentation in Documentation/cgroups/unified-hierarchy.txt says:

  "The memory.low boundary on the other hand is a top-down allocated
  reserve.  A cgroup enjoys reclaim protection when it and all its
  ancestors are below their low boundaries"

Fix the usage and the low limit comparision in mem_cgroup_low accordingly.

Fixes: 241994ed86 (mm: memcontrol: default hierarchy interface for memory)
Reported-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-28 09:57:51 -08:00
Vladimir Davydov
f48b80a5e2 memcg: cleanup static keys decrement
Move memcg_socket_limit_enabled decrement to tcp_destroy_cgroup (called
from memcg_destroy_kmem -> mem_cgroup_sockets_destroy) and zap a bunch of
wrapper functions.

Although this patch moves static keys decrement from __mem_cgroup_free to
mem_cgroup_css_free, it does not introduce any functional changes, because
the keys are incremented on setting the limit (tcp or kmem), which can
only happen after successful mem_cgroup_css_online.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Glauber Costa <glommer@parallels.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujtisu.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:10 -08:00
Vladimir Davydov
2788cf0c40 memcg: reparent list_lrus and free kmemcg_id on css offline
Now, the only reason to keep kmemcg_id till css free is list_lru, which
uses it to distribute elements between per-memcg lists.  However, it can
be easily sorted out - we only need to change kmemcg_id of an offline
cgroup to its parent's id, making further list_lru_add()'s add elements to
the parent's list, and then move all elements from the offline cgroup's
list to the one of its parent.  It will work, because a racing
list_lru_del() does not need to know the list it is deleting the element
from.  It can decrement the wrong nr_items counter though, but the ongoing
reparenting will fix it.  After list_lru reparenting is done we are free
to release kmemcg_id saving a valuable slot in a per-memcg array for new
cgroups.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:10 -08:00
Vladimir Davydov
2a4db7eb93 memcg: free memcg_caches slot on css offline
We need to look up a kmem_cache in ->memcg_params.memcg_caches arrays only
on allocations, so there is no need to have the array entries set until
css free - we can clear them on css offline.  This will allow us to reuse
array entries more efficiently and avoid costly array relocations.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:10 -08:00
Vladimir Davydov
f7ce3190c4 slab: embed memcg_cache_params to kmem_cache
Currently, kmem_cache stores a pointer to struct memcg_cache_params
instead of embedding it.  The rationale is to save memory when kmem
accounting is disabled.  However, the memcg_cache_params has shrivelled
drastically since it was first introduced:

* Initially:

struct memcg_cache_params {
	bool is_root_cache;
	union {
		struct kmem_cache *memcg_caches[0];
		struct {
			struct mem_cgroup *memcg;
			struct list_head list;
			struct kmem_cache *root_cache;
			bool dead;
			atomic_t nr_pages;
			struct work_struct destroy;
		};
	};
};

* Now:

struct memcg_cache_params {
	bool is_root_cache;
	union {
		struct {
			struct rcu_head rcu_head;
			struct kmem_cache *memcg_caches[0];
		};
		struct {
			struct mem_cgroup *memcg;
			struct kmem_cache *root_cache;
		};
	};
};

So the memory saving does not seem to be a clear win anymore.

OTOH, keeping a pointer to memcg_cache_params struct instead of embedding
it results in touching one more cache line on kmem alloc/free hot paths.
Besides, it makes linking kmem caches in a list chained by a field of
struct memcg_cache_params really painful due to a level of indirection,
while I want to make them linked in the following patch.  That said, let
us embed it.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:09 -08:00
Vladimir Davydov
60d3fd32a7 list_lru: introduce per-memcg lists
There are several FS shrinkers, including super_block::s_shrink, that
keep reclaimable objects in the list_lru structure.  Hence to turn them
to memcg-aware shrinkers, it is enough to make list_lru per-memcg.

This patch does the trick.  It adds an array of lru lists to the
list_lru_node structure (per-node part of the list_lru), one for each
kmem-active memcg, and dispatches every item addition or removal to the
list corresponding to the memcg which the item is accounted to.  So now
the list_lru structure is not just per node, but per node and per memcg.

Not all list_lrus need this feature, so this patch also adds a new
method, list_lru_init_memcg, which initializes a list_lru as memcg
aware.  Otherwise (i.e.  if initialized with old list_lru_init), the
list_lru won't have per memcg lists.

Just like per memcg caches arrays, the arrays of per-memcg lists are
indexed by memcg_cache_id, so we must grow them whenever
memcg_nr_cache_ids is increased.  So we introduce a callback,
memcg_update_all_list_lrus, invoked by memcg_alloc_cache_id if the id
space is full.

The locking is implemented in a manner similar to lruvecs, i.e.  we have
one lock per node that protects all lists (both global and per cgroup) on
the node.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:09 -08:00
Vladimir Davydov
05257a1a3d memcg: add rwsem to synchronize against memcg_caches arrays relocation
We need a stable value of memcg_nr_cache_ids in kmem_cache_create()
(memcg_alloc_cache_params() wants it for root caches), where we only
hold the slab_mutex and no memcg-related locks.  As a result, we have to
update memcg_nr_cache_ids under the slab_mutex, which we can only take
on the slab's side (see memcg_update_array_size).  This looks awkward
and will become even worse when per-memcg list_lru is introduced, which
also wants stable access to memcg_nr_cache_ids.

To get rid of this dependency between the memcg_nr_cache_ids and the
slab_mutex, this patch introduces a special rwsem.  The rwsem is held
for writing during memcg_caches arrays relocation and memcg_nr_cache_ids
updates.  Therefore one can take it for reading to get a stable access
to memcg_caches arrays and/or memcg_nr_cache_ids.

Currently the semaphore is taken for reading only from
kmem_cache_create, right before taking the slab_mutex, so right now
there's no much point in using rwsem instead of mutex.  However, once
list_lru is made per-memcg it will allow list_lru initializations to
proceed concurrently.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:09 -08:00
Vladimir Davydov
dbcf73e26c memcg: rename some cache id related variables
memcg_limited_groups_array_size, which defines the size of memcg_caches
arrays, sounds rather cumbersome.  Also it doesn't point anyhow that
it's related to kmem/caches stuff.  So let's rename it to
memcg_nr_cache_ids.  It's concise and points us directly to
memcg_cache_id.

Also, rename kmem_limited_groups to memcg_cache_ida.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:09 -08:00
Vladimir Davydov
cb731d6c62 vmscan: per memory cgroup slab shrinkers
This patch adds SHRINKER_MEMCG_AWARE flag.  If a shrinker has this flag
set, it will be called per memory cgroup.  The memory cgroup to scan
objects from is passed in shrink_control->memcg.  If the memory cgroup
is NULL, a memcg aware shrinker is supposed to scan objects from the
global list.  Unaware shrinkers are only called on global pressure with
memcg=NULL.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:09 -08:00
Naoya Horiguchi
26bcd64aa9 memcg: cleanup preparation for page table walk
pagewalk.c can handle vma in itself, so we don't have to pass vma via
walk->private.  And both of mem_cgroup_count_precharge() and
mem_cgroup_move_charge() do for each vma loop themselves, but now it's
done in pagewalk.c, so let's clean up them.

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:06 -08:00
Johannes Weiner
21afa38eed mm: memcontrol: consolidate swap controller code
The swap controller code is scattered all over the file.  Gather all
the code that isn't directly needed by the memory controller at the
end of the file in its own CONFIG_MEMCG_SWAP section.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:03 -08:00
Johannes Weiner
95a045f63d mm: memcontrol: consolidate memory controller initialization
The initialization code for the per-cpu charge stock and the soft
limit tree is compact enough to inline it into mem_cgroup_init().

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:03 -08:00
Johannes Weiner
9c608dbe6a mm: memcontrol: simplify soft limit tree init code
- No need to test the node for N_MEMORY.  node_online() is enough for
  node fallback to work in slab, use NUMA_NO_NODE for everything else.

- Remove the BUG_ON() for allocation failure.  A NULL pointer crash is
  just as descriptive, and the absent return value check is obvious.

- Move local variables to the inner-most blocks.

- Point to the tree structure after its initialized, not before, it's
  just more logical that way.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:03 -08:00
Michal Hocko
c32b3cbe0d oom, PM: make OOM detection in the freezer path raceless
Commit 5695be142e ("OOM, PM: OOM killed task shouldn't escape PM
suspend") has left a race window when OOM killer manages to
note_oom_kill after freeze_processes checks the counter.  The race
window is quite small and really unlikely and partial solution deemed
sufficient at the time of submission.

Tejun wasn't happy about this partial solution though and insisted on a
full solution.  That requires the full OOM and freezer's task freezing
exclusion, though.  This is done by this patch which introduces oom_sem
RW lock and turns oom_killer_disable() into a full OOM barrier.

oom_killer_disabled check is moved from the allocation path to the OOM
level and we take oom_sem for reading for both the check and the whole
OOM invocation.

oom_killer_disable() takes oom_sem for writing so it waits for all
currently running OOM killer invocations.  Then it disable all the further
OOMs by setting oom_killer_disabled and checks for any oom victims.
Victims are counted via mark_tsk_oom_victim resp.  unmark_oom_victim.  The
last victim wakes up all waiters enqueued by oom_killer_disable().
Therefore this function acts as the full OOM barrier.

The page fault path is covered now as well although it was assumed to be
safe before.  As per Tejun, "We used to have freezing points deep in file
system code which may be reacheable from page fault." so it would be
better and more robust to not rely on freezing points here.  Same applies
to the memcg OOM killer.

out_of_memory tells the caller whether the OOM was allowed to trigger and
the callers are supposed to handle the situation.  The page allocation
path simply fails the allocation same as before.  The page fault path will
retry the fault (more on that later) and Sysrq OOM trigger will simply
complain to the log.

Normally there wouldn't be any unfrozen user tasks after
try_to_freeze_tasks so the function will not block. But if there was an
OOM killer racing with try_to_freeze_tasks and the OOM victim didn't
finish yet then we have to wait for it. This should complete in a finite
time, though, because

	- the victim cannot loop in the page fault handler (it would die
	  on the way out from the exception)
	- it cannot loop in the page allocator because all the further
	  allocation would fail and __GFP_NOFAIL allocations are not
	  acceptable at this stage
	- it shouldn't be blocked on any locks held by frozen tasks
	  (try_to_freeze expects lockless context) and kernel threads and
	  work queues are not frozen yet

Signed-off-by: Michal Hocko <mhocko@suse.cz>
Suggested-by: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:03 -08:00
Michal Hocko
49550b6055 oom: add helpers for setting and clearing TIF_MEMDIE
This patchset addresses a race which was described in the changelog for
5695be142e ("OOM, PM: OOM killed task shouldn't escape PM suspend"):

: PM freezer relies on having all tasks frozen by the time devices are
: getting frozen so that no task will touch them while they are getting
: frozen.  But OOM killer is allowed to kill an already frozen task in order
: to handle OOM situtation.  In order to protect from late wake ups OOM
: killer is disabled after all tasks are frozen.  This, however, still keeps
: a window open when a killed task didn't manage to die by the time
: freeze_processes finishes.

The original patch hasn't closed the race window completely because that
would require a more complex solution as it can be seen by this patchset.

The primary motivation was to close the race condition between OOM killer
and PM freezer _completely_.  As Tejun pointed out, even though the race
condition is unlikely the harder it would be to debug weird bugs deep in
the PM freezer when the debugging options are reduced considerably.  I can
only speculate what might happen when a task is still runnable
unexpectedly.

On a plus side and as a side effect the oom enable/disable has a better
(full barrier) semantic without polluting hot paths.

I have tested the series in KVM with 100M RAM:
- many small tasks (20M anon mmap) which are triggering OOM continually
- s2ram which resumes automatically is triggered in a loop
	echo processors > /sys/power/pm_test
	while true
	do
		echo mem > /sys/power/state
		sleep 1s
	done
- simple module which allocates and frees 20M in 8K chunks. If it sees
  freezing(current) then it tries another round of allocation before calling
  try_to_freeze
- debugging messages of PM stages and OOM killer enable/disable/fail added
  and unmark_oom_victim is delayed by 1s after it clears TIF_MEMDIE and before
  it wakes up waiters.
- rebased on top of the current mmotm which means some necessary updates
  in mm/oom_kill.c. mark_tsk_oom_victim is now called under task_lock but
  I think this should be OK because __thaw_task shouldn't interfere with any
  locking down wake_up_process. Oleg?

As expected there are no OOM killed tasks after oom is disabled and
allocations requested by the kernel thread are failing after all the tasks
are frozen and OOM disabled.  I wasn't able to catch a race where
oom_killer_disable would really have to wait but I kinda expected the race
is really unlikely.

[  242.609330] Killed process 2992 (mem_eater) total-vm:24412kB, anon-rss:2164kB, file-rss:4kB
[  243.628071] Unmarking 2992 OOM victim. oom_victims: 1
[  243.636072] (elapsed 2.837 seconds) done.
[  243.641985] Trying to disable OOM killer
[  243.643032] Waiting for concurent OOM victims
[  243.644342] OOM killer disabled
[  243.645447] Freezing remaining freezable tasks ... (elapsed 0.005 seconds) done.
[  243.652983] Suspending console(s) (use no_console_suspend to debug)
[  243.903299] kmem_eater: page allocation failure: order:1, mode:0x204010
[...]
[  243.992600] PM: suspend of devices complete after 336.667 msecs
[  243.993264] PM: late suspend of devices complete after 0.660 msecs
[  243.994713] PM: noirq suspend of devices complete after 1.446 msecs
[  243.994717] ACPI: Preparing to enter system sleep state S3
[  243.994795] PM: Saving platform NVS memory
[  243.994796] Disabling non-boot CPUs ...

The first 2 patches are simple cleanups for OOM.  They should go in
regardless the rest IMO.

Patches 3 and 4 are trivial printk -> pr_info conversion and they should
go in ditto.

The main patch is the last one and I would appreciate acks from Tejun and
Rafael.  I think the OOM part should be OK (except for __thaw_task vs.
task_lock where a look from Oleg would appreciated) but I am not so sure I
haven't screwed anything in the freezer code.  I have found several
surprises there.

This patch (of 5):

This patch is just a preparatory and it doesn't introduce any functional
change.

Note:
I am utterly unhappy about lowmemory killer abusing TIF_MEMDIE just to
wait for the oom victim and to prevent from new killing. This is
just a side effect of the flag. The primary meaning is to give the oom
victim access to the memory reserves and that shouldn't be necessary
here.

Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:03 -08:00
Johannes Weiner
1dfab5abcd mm: memcontrol: fold move_anon() and move_file()
Turn the move type enum into flags and give the flags field a shorter
name.  Once that is done, move_anon() and move_file() are simple enough to
just fold them into the callsites.

[akpm@linux-foundation.org: tweak MOVE_MASK definition, per Michal]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:02 -08:00
Johannes Weiner
241994ed86 mm: memcontrol: default hierarchy interface for memory
Introduce the basic control files to account, partition, and limit
memory using cgroups in default hierarchy mode.

This interface versioning allows us to address fundamental design
issues in the existing memory cgroup interface, further explained
below.  The old interface will be maintained indefinitely, but a
clearer model and improved workload performance should encourage
existing users to switch over to the new one eventually.

The control files are thus:

  - memory.current shows the current consumption of the cgroup and its
    descendants, in bytes.

  - memory.low configures the lower end of the cgroup's expected
    memory consumption range.  The kernel considers memory below that
    boundary to be a reserve - the minimum that the workload needs in
    order to make forward progress - and generally avoids reclaiming
    it, unless there is an imminent risk of entering an OOM situation.

  - memory.high configures the upper end of the cgroup's expected
    memory consumption range.  A cgroup whose consumption grows beyond
    this threshold is forced into direct reclaim, to work off the
    excess and to throttle new allocations heavily, but is generally
    allowed to continue and the OOM killer is not invoked.

  - memory.max configures the hard maximum amount of memory that the
    cgroup is allowed to consume before the OOM killer is invoked.

  - memory.events shows event counters that indicate how often the
    cgroup was reclaimed while below memory.low, how often it was
    forced to reclaim excess beyond memory.high, how often it hit
    memory.max, and how often it entered OOM due to memory.max.  This
    allows users to identify configuration problems when observing a
    degradation in workload performance.  An overcommitted system will
    have an increased rate of low boundary breaches, whereas increased
    rates of high limit breaches, maximum hits, or even OOM situations
    will indicate internally overcommitted cgroups.

For existing users of memory cgroups, the following deviations from
the current interface are worth pointing out and explaining:

  - The original lower boundary, the soft limit, is defined as a limit
    that is per default unset.  As a result, the set of cgroups that
    global reclaim prefers is opt-in, rather than opt-out.  The costs
    for optimizing these mostly negative lookups are so high that the
    implementation, despite its enormous size, does not even provide
    the basic desirable behavior.  First off, the soft limit has no
    hierarchical meaning.  All configured groups are organized in a
    global rbtree and treated like equal peers, regardless where they
    are located in the hierarchy.  This makes subtree delegation
    impossible.  Second, the soft limit reclaim pass is so aggressive
    that it not just introduces high allocation latencies into the
    system, but also impacts system performance due to overreclaim, to
    the point where the feature becomes self-defeating.

    The memory.low boundary on the other hand is a top-down allocated
    reserve.  A cgroup enjoys reclaim protection when it and all its
    ancestors are below their low boundaries, which makes delegation
    of subtrees possible.  Secondly, new cgroups have no reserve per
    default and in the common case most cgroups are eligible for the
    preferred reclaim pass.  This allows the new low boundary to be
    efficiently implemented with just a minor addition to the generic
    reclaim code, without the need for out-of-band data structures and
    reclaim passes.  Because the generic reclaim code considers all
    cgroups except for the ones running low in the preferred first
    reclaim pass, overreclaim of individual groups is eliminated as
    well, resulting in much better overall workload performance.

  - The original high boundary, the hard limit, is defined as a strict
    limit that can not budge, even if the OOM killer has to be called.
    But this generally goes against the goal of making the most out of
    the available memory.  The memory consumption of workloads varies
    during runtime, and that requires users to overcommit.  But doing
    that with a strict upper limit requires either a fairly accurate
    prediction of the working set size or adding slack to the limit.
    Since working set size estimation is hard and error prone, and
    getting it wrong results in OOM kills, most users tend to err on
    the side of a looser limit and end up wasting precious resources.

    The memory.high boundary on the other hand can be set much more
    conservatively.  When hit, it throttles allocations by forcing
    them into direct reclaim to work off the excess, but it never
    invokes the OOM killer.  As a result, a high boundary that is
    chosen too aggressively will not terminate the processes, but
    instead it will lead to gradual performance degradation.  The user
    can monitor this and make corrections until the minimal memory
    footprint that still gives acceptable performance is found.

    In extreme cases, with many concurrent allocations and a complete
    breakdown of reclaim progress within the group, the high boundary
    can be exceeded.  But even then it's mostly better to satisfy the
    allocation from the slack available in other groups or the rest of
    the system than killing the group.  Otherwise, memory.max is there
    to limit this type of spillover and ultimately contain buggy or
    even malicious applications.

  - The original control file names are unwieldy and inconsistent in
    many different ways.  For example, the upper boundary hit count is
    exported in the memory.failcnt file, but an OOM event count has to
    be manually counted by listening to memory.oom_control events, and
    lower boundary / soft limit events have to be counted by first
    setting a threshold for that value and then counting those events.
    Also, usage and limit files encode their units in the filename.
    That makes the filenames very long, even though this is not
    information that a user needs to be reminded of every time they
    type out those names.

    To address these naming issues, as well as to signal clearly that
    the new interface carries a new configuration model, the naming
    conventions in it necessarily differ from the old interface.

  - The original limit files indicate the state of an unset limit with
    a very high number, and a configured limit can be unset by echoing
    -1 into those files.  But that very high number is implementation
    and architecture dependent and not very descriptive.  And while -1
    can be understood as an underflow into the highest possible value,
    -2 or -10M etc. do not work, so it's not inconsistent.

    memory.low, memory.high, and memory.max will use the string
    "infinity" to indicate and set the highest possible value.

[akpm@linux-foundation.org: use seq_puts() for basic strings]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:02 -08:00
Johannes Weiner
650c5e5654 mm: page_counter: pull "-1" handling out of page_counter_memparse()
The unified hierarchy interface for memory cgroups will no longer use "-1"
to mean maximum possible resource value.  In preparation for this, make
the string an argument and let the caller supply it.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:02 -08:00
Greg Thelen
0ca44b148e memcg: add BUILD_BUG_ON() for string tables
Use BUILD_BUG_ON() to compile assert that memcg string tables are in sync
with corresponding enums.  There aren't currently any issues with these
tables.  This is just defensive.

Signed-off-by: Greg Thelen <gthelen@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:02 -08:00
Vladimir Davydov
90cbc25088 vmscan: force scan offline memory cgroups
Since commit b2052564e6 ("mm: memcontrol: continue cache reclaim from
offlined groups") pages charged to a memory cgroup are not reparented when
the cgroup is removed.  Instead, they are supposed to be reclaimed in a
regular way, along with pages accounted to online memory cgroups.

However, an lruvec of an offline memory cgroup will sooner or later get so
small that it will be scanned only at low scan priorities (see
get_scan_count()).  Therefore, if there are enough reclaimable pages in
big lruvecs, pages accounted to offline memory cgroups will never be
scanned at all, wasting memory.

Fix this by unconditionally forcing scanning dead lruvecs from kswapd.

[akpm@linux-foundation.org: fix build]
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:02 -08:00
Johannes Weiner
6de226191d mm: memcontrol: track move_lock state internally
The complexity of memcg page stat synchronization is currently leaking
into the callsites, forcing them to keep track of the move_lock state and
the IRQ flags.  Simplify the API by tracking it in the memcg.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:00 -08:00
Vladimir Davydov
d5b3cf7139 memcg: zap memcg_slab_caches and memcg_slab_mutex
mem_cgroup->memcg_slab_caches is a list of kmem caches corresponding to
the given cgroup.  Currently, it is only used on css free in order to
destroy all caches corresponding to the memory cgroup being freed.  The
list is protected by memcg_slab_mutex.  The mutex is also used to protect
kmem_cache->memcg_params->memcg_caches arrays and synchronizes
kmem_cache_destroy vs memcg_unregister_all_caches.

However, we can perfectly get on without these two.  To destroy all caches
corresponding to a memory cgroup, we can walk over the global list of kmem
caches, slab_caches, and we can do all the synchronization stuff using the
slab_mutex instead of the memcg_slab_mutex.  This patch therefore gets rid
of the memcg_slab_caches and memcg_slab_mutex.

Apart from this nice cleanup, it also:

 - assures that rcu_barrier() is called once at max when a root cache is
   destroyed or a memory cgroup is freed, no matter how many caches have
   SLAB_DESTROY_BY_RCU flag set;

 - fixes the race between kmem_cache_destroy and kmem_cache_create that
   exists, because memcg_cleanup_cache_params, which is called from
   kmem_cache_destroy after checking that kmem_cache->refcount=0,
   releases the slab_mutex, which gives kmem_cache_create a chance to
   make an alias to a cache doomed to be destroyed.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-10 14:30:34 -08:00
Vladimir Davydov
3e0350a364 memcg: zap memcg_name argument of memcg_create_kmem_cache
Instead of passing the name of the memory cgroup which the cache is
created for in the memcg_name_argument, let's obtain it immediately in
memcg_create_kmem_cache.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-10 14:30:34 -08:00
Vladimir Davydov
dbf22eb6d8 memcg: zap __memcg_{charge,uncharge}_slab
They are simple wrappers around memcg_{charge,uncharge}_kmem, so let's
zap them and call these functions directly.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-10 14:30:34 -08:00
Kirill A. Shutemov
0661a33611 mm: remove rest usage of VM_NONLINEAR and pte_file()
One bit in ->vm_flags is unused now!

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-10 14:30:31 -08:00
Michal Hocko
f5e03a4989 memcg, shmem: fix shmem migration to use lrucare
It has been reported that 965GM might trigger

  VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage)

in mem_cgroup_migrate when shmem wants to replace a swap cache page
because of shmem_should_replace_page (the page is allocated from an
inappropriate zone).  shmem_replace_page expects that the oldpage is not
on LRU list and calls mem_cgroup_migrate without lrucare.  This is
obviously incorrect because swapcache pages might be on the LRU list
(e.g. swapin readahead page).

Fix this by enabling lrucare for the migration in shmem_replace_page.
Also clarify that lrucare should be used even if one of the pages might
be on LRU list.

The BUG_ON will trigger only when CONFIG_DEBUG_VM is enabled but even
without that the migration code might leave the old page on an
inappropriate memcg' LRU which is not that critical because the page
would get removed with its last reference but it is still confusing.

Fixes: 0a31bc97c8 ("mm: memcontrol: rewrite uncharge API")
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reported-by: Chris Wilson <chris@chris-wilson.co.uk>
Reported-by: Dave Airlie <airlied@gmail.com>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>	[3.17+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-05 13:35:29 -08:00
Greg Thelen
0346dadbf0 memcg: remove extra newlines from memcg oom kill log
Commit e61734c55c ("cgroup: remove cgroup->name") added two extra
newlines to memcg oom kill log messages.  This makes dmesg hard to read
and parse.  The issue affects 3.15+.

Example:

  Task in /t                          <<< extra #1
   killed as a result of limit of /t
                                      <<< extra #2
  memory: usage 102400kB, limit 102400kB, failcnt 274712

Remove the extra newlines from memcg oom kill messages, so the messages
look like:

  Task in /t killed as a result of limit of /t
  memory: usage 102400kB, limit 102400kB, failcnt 240649

Fixes: e61734c55c ("cgroup: remove cgroup->name")
Signed-off-by: Greg Thelen <gthelen@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-01-26 13:37:18 -08:00
Vladimir Davydov
4bdfc1c4a9 memcg: fix destination cgroup leak on task charges migration
We are supposed to take one css reference per each memory page and per
each swap entry accounted to a memory cgroup.  However, during task
charges migration we take a reference to the destination cgroup twice
per each swap entry: first in mem_cgroup_do_precharge()->try_charge()
and then in mem_cgroup_move_swap_account(), permanently leaking the
destination cgroup.

The hunk taking the second reference seems to be a leftover from the
pre-00501b531c472 ("mm: memcontrol: rewrite charge API") era.  Remove it
to fix the leak.

Fixes: e8ea14cc6e (mm: memcontrol: take a css reference for each charged page)
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-01-08 15:10:52 -08:00
Johannes Weiner
24d404dc10 mm: memcontrol: switch soft limit default back to infinity
Commit 3e32cb2e0a ("mm: memcontrol: lockless page counters")
accidentally switched the soft limit default from infinity to zero,
which turns all memcgs with even a single page into soft limit excessors
and engages soft limit reclaim on all of them during global memory
pressure.  This makes global reclaim generally more aggressive, but also
inverts the meaning of existing soft limit configurations where unset
soft limits are usually more generous than set ones.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-01-08 15:10:52 -08:00
Rickard Strandqvist
70bc068c4f mm/memcontrol.c: remove unused mem_cgroup_lru_names_not_uptodate()
Remove unused mem_cgroup_lru_names_not_uptodate() and move BUILD_BUG_ON()
to the beginning of memcg_stat_show().

This was partially found by using a static code analysis program called
cppcheck.

Signed-off-by: Rickard Strandqvist <rickard_strandqvist@spectrumdigital.se>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 12:42:49 -08:00
Vladimir Davydov
8135be5a80 memcg: fix possible use-after-free in memcg_kmem_get_cache()
Suppose task @t that belongs to a memory cgroup @memcg is going to
allocate an object from a kmem cache @c.  The copy of @c corresponding to
@memcg, @mc, is empty.  Then if kmem_cache_alloc races with the memory
cgroup destruction we can access the memory cgroup's copy of the cache
after it was destroyed:

CPU0				CPU1
----				----
[ current=@t
  @mc->memcg_params->nr_pages=0 ]

kmem_cache_alloc(@c):
  call memcg_kmem_get_cache(@c);
  proceed to allocation from @mc:
    alloc a page for @mc:
      ...

				move @t from @memcg
				destroy @memcg:
				  mem_cgroup_css_offline(@memcg):
				    memcg_unregister_all_caches(@memcg):
				      kmem_cache_destroy(@mc)

    add page to @mc

We could fix this issue by taking a reference to a per-memcg cache, but
that would require adding a per-cpu reference counter to per-memcg caches,
which would look cumbersome.

Instead, let's take a reference to a memory cgroup, which already has a
per-cpu reference counter, in the beginning of kmem_cache_alloc to be
dropped in the end, and move per memcg caches destruction from css offline
to css free.  As a side effect, per-memcg caches will be destroyed not one
by one, but all at once when the last page accounted to the memory cgroup
is freed.  This doesn't sound as a high price for code readability though.

Note, this patch does add some overhead to the kmem_cache_alloc hot path,
but it is pretty negligible - it's just a function call plus a per cpu
counter decrement, which is comparable to what we already have in
memcg_kmem_get_cache.  Besides, it's only relevant if there are memory
cgroups with kmem accounting enabled.  I don't think we can find a way to
handle this race w/o it, because alloc_page called from kmem_cache_alloc
may sleep so we can't flush all pending kmallocs w/o reference counting.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 12:42:49 -08:00
Michele Curti
ae6e71d3d9 mm/memcontrol.c: fix defined but not used compiler warning
test_mem_cgroup_node_reclaimable() is used only when MAX_NUMNODES > 1, so
move it into the compiler if statement

[akpm@linux-foundation.org: clean up layout]
Signed-off-by: Michele Curti <michele.curti@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 12:42:49 -08:00
Oleg Nesterov
d003f371b2 oom: don't assume that a coredumping thread will exit soon
oom_kill.c assumes that PF_EXITING task should exit and free the memory
soon.  This is wrong in many ways and one important case is the coredump.
A task can sleep in exit_mm() "forever" while the coredumping sub-thread
can need more memory.

Change the PF_EXITING checks to take SIGNAL_GROUP_COREDUMP into account,
we add the new trivial helper for that.

Note: this is only the first step, this patch doesn't try to solve other
problems.  The SIGNAL_GROUP_COREDUMP check is obviously racy, a task can
participate in coredump after it was already observed in PF_EXITING state,
so TIF_MEMDIE (which also blocks oom-killer) still can be wrongly set.
fatal_signal_pending() can be true because of SIGNAL_GROUP_COREDUMP so
out_of_memory() and mem_cgroup_out_of_memory() shouldn't blindly trust it.
 And even the name/usage of the new helper is confusing, an exiting thread
can only free its ->mm if it is the only/last task in thread group.

[akpm@linux-foundation.org: add comment]
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 12:42:49 -08:00
Zhang Zhen
056b7ccef4 mm/memcontrol.c: remove the unused arg in __memcg_kmem_get_cache()
The gfp was passed in but never used in this function.

Signed-off-by: Zhang Zhen <zhenzhang.zhang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 12:42:47 -08:00
Vladimir Davydov
6f185c290e memcg: turn memcg_kmem_skip_account into a bit field
It isn't supposed to stack, so turn it into a bit-field to save 4 bytes on
the task_struct.

Also, remove the memcg_stop/resume_kmem_account helpers - it is clearer to
set/clear the flag inline.  Regarding the overwhelming comment to the
helpers, which is removed by this patch too, we already have a compact yet
accurate explanation in memcg_schedule_cache_create, no need in yet
another one.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 12:42:47 -08:00
Vladimir Davydov
4e701d7b37 memcg: only check memcg_kmem_skip_account in __memcg_kmem_get_cache
__memcg_kmem_get_cache can recurse if it calls kmalloc (which it does if
the cgroup's kmem cache doesn't exist), because kmalloc may call
__memcg_kmem_get_cache internally again.  To avoid the recursion, we use
the task_struct->memcg_kmem_skip_account flag.

However, there's no need checking the flag in memcg_kmem_newpage_charge,
because there's no way how this function could result in recursion, if
called from memcg_kmem_get_cache.  So let's remove the redundant code.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 12:42:47 -08:00
Vladimir Davydov
900a38f027 memcg: zap kmem_account_flags
The only such flag is KMEM_ACCOUNTED_ACTIVE, but it's set iff
mem_cgroup->kmemcg_id is initialized, so we can check kmemcg_id instead of
having a separate flags field.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 12:42:46 -08:00
Vladimir Davydov
95fc3c5010 memcg: do not abuse memcg_kmem_skip_account
task_struct->memcg_kmem_skip_account was initially introduced to avoid
recursion during kmem cache creation: memcg_kmem_get_cache, which is
called by kmem_cache_alloc to determine the per-memcg cache to account
allocation to, may issue lazy cache creation if the needed cache doesn't
exist, which means issuing yet another kmem_cache_alloc.  We can't just
pass a flag to the nested kmem_cache_alloc disabling kmem accounting,
because there are hidden allocations, e.g.  in INIT_WORK.  So we
introduced a flag on the task_struct, memcg_kmem_skip_account, making
memcg_kmem_get_cache return immediately.

By its nature, the flag may also be used to disable accounting for
allocations shared among different cgroups, and currently it is used this
way in memcg_activate_kmem.  Using it like this looks like abusing it to
me.  If we want to disable accounting for some allocations (which we will
definitely want one day), we should either add GFP_NO_MEMCG or GFP_MEMCG
flag in order to blacklist/whitelist some allocations.

For now, let's simply remove memcg_stop/resume_kmem_account from
memcg_activate_kmem.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 12:42:46 -08:00
Vladimir Davydov
9d100c5e47 memcg: don't check mm in __memcg_kmem_{get_cache,newpage_charge}
We already assured the current task has mm in memcg_kmem_should_charge,
no need to double check.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 12:42:46 -08:00
Vladimir Davydov
bfda7e8fe4 memcg: __mem_cgroup_free: remove stale disarm_static_keys comment
cpuset code stopped using cgroup_lock in favor of cpuset_mutex long ago.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 12:42:46 -08:00
Linus Torvalds
b6da0076ba Merge branch 'akpm' (patchbomb from Andrew)
Merge first patchbomb from Andrew Morton:
 - a few minor cifs fixes
 - dma-debug upadtes
 - ocfs2
 - slab
 - about half of MM
 - procfs
 - kernel/exit.c
 - panic.c tweaks
 - printk upates
 - lib/ updates
 - checkpatch updates
 - fs/binfmt updates
 - the drivers/rtc tree
 - nilfs
 - kmod fixes
 - more kernel/exit.c
 - various other misc tweaks and fixes

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (190 commits)
  exit: pidns: fix/update the comments in zap_pid_ns_processes()
  exit: pidns: alloc_pid() leaks pid_namespace if child_reaper is exiting
  exit: exit_notify: re-use "dead" list to autoreap current
  exit: reparent: call forget_original_parent() under tasklist_lock
  exit: reparent: avoid find_new_reaper() if no children
  exit: reparent: introduce find_alive_thread()
  exit: reparent: introduce find_child_reaper()
  exit: reparent: document the ->has_child_subreaper checks
  exit: reparent: s/while_each_thread/for_each_thread/ in find_new_reaper()
  exit: reparent: fix the cross-namespace PR_SET_CHILD_SUBREAPER reparenting
  exit: reparent: fix the dead-parent PR_SET_CHILD_SUBREAPER reparenting
  exit: proc: don't try to flush /proc/tgid/task/tgid
  exit: release_task: fix the comment about group leader accounting
  exit: wait: drop tasklist_lock before psig->c* accounting
  exit: wait: don't use zombie->real_parent
  exit: wait: cleanup the ptrace_reparented() checks
  usermodehelper: kill the kmod_thread_locker logic
  usermodehelper: don't use CLONE_VFORK for ____call_usermodehelper()
  fs/hfs/catalog.c: fix comparison bug in hfs_cat_keycmp
  nilfs2: fix the nilfs_iget() vs. nilfs_new_inode() races
  ...
2014-12-10 18:34:42 -08:00
Johannes Weiner
9edad6ea0f mm: move page->mem_cgroup bad page handling into generic code
Now that the external page_cgroup data structure and its lookup is
gone, let the generic bad_page() check for page->mem_cgroup sanity.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: David S. Miller <davem@davemloft.net>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Tejun Heo <tj@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:09 -08:00
Johannes Weiner
5d1ea48bdd mm: page_cgroup: rename file to mm/swap_cgroup.c
Now that the external page_cgroup data structure and its lookup is gone,
the only code remaining in there is swap slot accounting.

Rename it and move the conditional compilation into mm/Makefile.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: David S. Miller <davem@davemloft.net>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Tejun Heo <tj@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:09 -08:00
Johannes Weiner
1306a85aed mm: embed the memcg pointer directly into struct page
Memory cgroups used to have 5 per-page pointers.  To allow users to
disable that amount of overhead during runtime, those pointers were
allocated in a separate array, with a translation layer between them and
struct page.

There is now only one page pointer remaining: the memcg pointer, that
indicates which cgroup the page is associated with when charged.  The
complexity of runtime allocation and the runtime translation overhead is
no longer justified to save that *potential* 0.19% of memory.  With
CONFIG_SLUB, page->mem_cgroup actually sits in the doubleword padding
after the page->private member and doesn't even increase struct page,
and then this patch actually saves space.  Remaining users that care can
still compile their kernels without CONFIG_MEMCG.

     text    data     bss     dec     hex     filename
  8828345 1725264  983040 11536649 b00909  vmlinux.old
  8827425 1725264  966656 11519345 afc571  vmlinux.new

[mhocko@suse.cz: update Documentation/cgroups/memory.txt]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: David S. Miller <davem@davemloft.net>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:09 -08:00
Johannes Weiner
22811c6bc3 mm: memcontrol: remove stale page_cgroup_lock comment
There is no cgroup-specific page lock anymore.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:08 -08:00
Michal Hocko
e4bd6a0248 mm, memcg: fix potential undefined behaviour in page stat accounting
Since commit d7365e783e ("mm: memcontrol: fix missed end-writeback
page accounting") mem_cgroup_end_page_stat consumes locked and flags
variables directly rather than via pointers which might trigger C
undefined behavior as those variables are initialized only in the slow
path of mem_cgroup_begin_page_stat.

Although mem_cgroup_end_page_stat handles parameters correctly and
touches them only when they hold a sensible value it is caller which
loads a potentially uninitialized value which then might allow compiler
to do crazy things.

I haven't seen any warning from gcc and it seems that the current
version (4.9) doesn't exploit this type undefined behavior but Sasha has
reported the following:

  UBSan: Undefined behaviour in mm/rmap.c:1084:2
  load of value 255 is not a valid value for type '_Bool'
  CPU: 4 PID: 8304 Comm: rngd Not tainted 3.18.0-rc2-next-20141029-sasha-00039-g77ed13d-dirty #1427
  Call Trace:
    dump_stack (lib/dump_stack.c:52)
    ubsan_epilogue (lib/ubsan.c:159)
    __ubsan_handle_load_invalid_value (lib/ubsan.c:482)
    page_remove_rmap (mm/rmap.c:1084 mm/rmap.c:1096)
    unmap_page_range (./arch/x86/include/asm/atomic.h:27 include/linux/mm.h:463 mm/memory.c:1146 mm/memory.c:1258 mm/memory.c:1279 mm/memory.c:1303)
    unmap_single_vma (mm/memory.c:1348)
    unmap_vmas (mm/memory.c:1377 (discriminator 3))
    exit_mmap (mm/mmap.c:2837)
    mmput (kernel/fork.c:659)
    do_exit (./arch/x86/include/asm/thread_info.h:168 kernel/exit.c:462 kernel/exit.c:747)
    do_group_exit (include/linux/sched.h:775 kernel/exit.c:873)
    SyS_exit_group (kernel/exit.c:901)
    tracesys_phase2 (arch/x86/kernel/entry_64.S:529)

Fix this by using pointer parameters for both locked and flags and be
more robust for future compiler changes even though the current code is
implemented correctly.

Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:08 -08:00
Johannes Weiner
2314b42db6 mm: memcontrol: drop bogus RCU locking from mem_cgroup_same_or_subtree()
None of the mem_cgroup_same_or_subtree() callers actually require it to
take the RCU lock, either because they hold it themselves or they have css
references.  Remove it.

To make the API change clear, rename the leftover helper to
mem_cgroup_is_descendant() to match cgroup_is_descendant().

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:08 -08:00
Johannes Weiner
413918bb61 mm: memcontrol: pull the NULL check from __mem_cgroup_same_or_subtree()
The NULL in mm_match_cgroup() comes from a possibly exiting mm->owner.  It
makes a lot more sense to check where it's looked up, rather than check
for it in __mem_cgroup_same_or_subtree() where it's unexpected.

No other callsite passes NULL to __mem_cgroup_same_or_subtree().

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:08 -08:00
Johannes Weiner
c01f46c7c7 mm: memcontrol: remove bogus NULL check after mem_cgroup_from_task()
That function acts like a typecast - unless NULL is passed in, no NULL can
come out.  task_in_mem_cgroup() callers don't pass NULL tasks.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:08 -08:00
Johannes Weiner
312722cbb2 mm: memcontrol: shorten the page statistics update slowpath
While moving charges from one memcg to another, page stat updates must
acquire the old memcg's move_lock to prevent double accounting.  That
situation is denoted by an increased memcg->move_accounting.  However, the
charge moving code declares this way too early for now, even before
summing up the RSS and pre-allocating destination charges.

Shorten this slowpath mode by increasing memcg->move_accounting only right
before walking the task's address space with the intention of actually
moving the pages.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:08 -08:00
Vladimir Davydov
b047501cd9 memcg: use generic slab iterators for showing slabinfo
Let's use generic slab_start/next/stop for showing memcg caches info.  In
contrast to the current implementation, this will work even if all memcg
caches' info doesn't fit into a seq buffer (a page), plus it simply looks
neater.

Actually, the main reason I do this isn't mere cleanup.  I'm going to zap
the memcg_slab_caches list, because I find it useless provided we have the
slab_caches list, and this patch is a step in this direction.

It should be noted that before this patch an attempt to read
memory.kmem.slabinfo of a cgroup that doesn't have kmem limit set resulted
in -EIO, while after this patch it will silently show nothing except the
header, but I don't think it will frustrate anyone.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:07 -08:00
Vladimir Davydov
4ef461e8f4 memcg: remove mem_cgroup_reclaimable check from soft reclaim
mem_cgroup_reclaimable() checks whether a cgroup has reclaimable pages on
*any* NUMA node.  However, the only place where it's called is
mem_cgroup_soft_reclaim(), which tries to reclaim memory from a *specific*
zone.  So the way it is used is incorrect - it will return true even if
the cgroup doesn't have pages on the zone we're scanning.

I think we can get rid of this check completely, because
mem_cgroup_shrink_node_zone(), which is called by
mem_cgroup_soft_reclaim() if mem_cgroup_reclaimable() returns true, is
equivalent to shrink_lruvec(), which exits almost immediately if the
lruvec passed to it is empty.  So there's no need to optimize anything
here.  Besides, we don't have such a check in the general scan path
(shrink_zone) either.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:07 -08:00
Johannes Weiner
247b1447b6 mm: memcontrol: fold mem_cgroup_start_move()/mem_cgroup_end_move()
Having these functions and their documentation split out and somewhere
makes it harder, not easier, to follow what's going on.

Inline them directly where charge moving is prepared and finished, and put
an explanation right next to it.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:07 -08:00
Johannes Weiner
4e2f245d38 mm: memcontrol: don't pass a NULL memcg to mem_cgroup_end_move()
mem_cgroup_end_move() checks if the passed memcg is NULL, along with a
lengthy comment to explain why this seemingly non-sensical situation is
even possible.

Check in cancel_attach() itself whether can_attach() set up the move
context or not, it's a lot more obvious from there.  Then remove the check
and comment in mem_cgroup_end_move().

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:07 -08:00
Johannes Weiner
354a4783a2 mm: memcontrol: inline memcg->move_lock locking
The wrappers around taking and dropping the memcg->move_lock spinlock add
nothing of value.  Inline the spinlock calls into the callsites.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:07 -08:00
Johannes Weiner
2983331575 mm: memcontrol: remove unnecessary PCG_USED pc->mem_cgroup valid flag
pc->mem_cgroup had to be left intact after uncharge for the final LRU
removal, and !PCG_USED indicated whether the page was uncharged.  But
since commit 0a31bc97c8 ("mm: memcontrol: rewrite uncharge API") pages
are uncharged after the final LRU removal.  Uncharge can simply clear
the pointer and the PCG_USED/PageCgroupUsed sites can test that instead.

Because this is the last page_cgroup flag, this patch reduces the memcg
per-page overhead to a single pointer.

[akpm@linux-foundation.org: remove unneeded initialization of `memcg', per Michal]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:07 -08:00
Johannes Weiner
f4aaa8b43d mm: memcontrol: remove unnecessary PCG_MEM memory charge flag
PCG_MEM is a remnant from an earlier version of 0a31bc97c8 ("mm:
memcontrol: rewrite uncharge API"), used to tell whether migration cleared
a charge while leaving pc->mem_cgroup valid and PCG_USED set.  But in the
final version, mem_cgroup_migrate() directly uncharges the source page,
rendering this distinction unnecessary.  Remove it.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:07 -08:00
Johannes Weiner
18eca2e636 mm: memcontrol: remove unnecessary PCG_MEMSW memory+swap charge flag
Now that mem_cgroup_swapout() fully uncharges the page, every page that is
still in use when reaching mem_cgroup_uncharge() is known to carry both
the memory and the memory+swap charge.  Simplify the uncharge path and
remove the PCG_MEMSW page flag accordingly.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:07 -08:00
Johannes Weiner
7bdd143c37 mm: memcontrol: uncharge pages on swapout
This series gets rid of the remaining page_cgroup flags, thus cutting the
memcg per-page overhead down to one pointer.

This patch (of 4):

mem_cgroup_swapout() is called with exclusive access to the page at the
end of the page's lifetime.  Instead of clearing the PCG_MEMSW flag and
deferring the uncharge, just do it right away.  This allows follow-up
patches to simplify the uncharge code.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:07 -08:00
Michal Hocko
b9982f8d27 mm: memcontrol: micro-optimize mem_cgroup_split_huge_fixup()
Don't call lookup_page_cgroup() when memcg is disabled.

Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:07 -08:00
Vladimir Davydov
8c0145b62e memcg: remove activate_kmem_mutex
The activate_kmem_mutex is used to serialize memcg.kmem.limit updates, but
we already serialize them with memcg_limit_mutex so let's remove the
former.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:07 -08:00
Johannes Weiner
7d5e324573 mm: memcontrol: clarify migration where old page is uncharged
Better explain re-entrant migration when compaction races with reclaim,
and also mention swapcache readahead pages as possible uncharged migration
sources.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:06 -08:00
Johannes Weiner
dfe0e773d0 mm: memcontrol: update mem_cgroup_page_lruvec() documentation
Commit 7512102cf6 ("memcg: fix GPF when cgroup removal races with last
exit") added a pc->mem_cgroup reset into mem_cgroup_page_lruvec() to
prevent a crash where an anon page gets uncharged on unmap, the memcg is
released, and then the final LRU isolation on free dereferences the
stale pc->mem_cgroup pointer.

But since commit 0a31bc97c8 ("mm: memcontrol: rewrite uncharge API"),
pages are only uncharged AFTER that final LRU isolation, which
guarantees the memcg's lifetime until then.  pc->mem_cgroup now only
needs to be reset for swapcache readahead pages.

Update the comment and callsite requirements accordingly.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:06 -08:00
Vladimir Davydov
bc2f2e7ffe memcg: simplify unreclaimable groups handling in soft limit reclaim
If we fail to reclaim anything from a cgroup during a soft reclaim pass
we want to get the next largest cgroup exceeding its soft limit. To
achieve this, we should obviously remove the current group from the tree
and then pick the largest group. Currently we have a weird loop instead.
Let's simplify it.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:06 -08:00
Johannes Weiner
6d3d6aa22a mm: memcontrol: remove synchronous stock draining code
With charge reparenting, the last synchronous stock drainer left.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:05 -08:00
Johannes Weiner
b2052564e6 mm: memcontrol: continue cache reclaim from offlined groups
On cgroup deletion, outstanding page cache charges are moved to the parent
group so that they're not lost and can be reclaimed during pressure
on/inside said parent.  But this reparenting is fairly tricky and its
synchroneous nature has led to several lock-ups in the past.

Since c2931b70a3 ("cgroup: iterate cgroup_subsys_states directly") css
iterators now also include offlined css, so memcg iterators can be changed
to include offlined children during reclaim of a group, and leftover cache
can just stay put.

There is a slight change of behavior in that charges of deleted groups no
longer show up as local charges in the parent.  But they are still
included in the parent's hierarchical statistics.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:05 -08:00
Johannes Weiner
64f2199389 mm: memcontrol: remove obsolete kmemcg pinning tricks
As charges now pin the css explicitely, there is no more need for kmemcg
to acquire a proxy reference for outstanding pages during offlining, or
maintain state to identify such "dead" groups.

This was the last user of the uncharge functions' return values, so remove
them as well.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:05 -08:00
Johannes Weiner
e8ea14cc6e mm: memcontrol: take a css reference for each charged page
Charges currently pin the css indirectly by playing tricks during
css_offline(): user pages stall the offlining process until all of them
have been reparented, whereas kmemcg acquires a keep-alive reference if
outstanding kernel pages are detected at that point.

In preparation for removing all this complexity, make the pinning explicit
and acquire a css references for every charged page.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:05 -08:00
Johannes Weiner
5ac8fb31ad mm: memcontrol: convert reclaim iterator to simple css refcounting
The memcg reclaim iterators use a complicated weak reference scheme to
prevent pinning cgroups indefinitely in the absence of memory pressure.

However, during the ongoing cgroup core rework, css lifetime has been
decoupled such that a pinned css no longer interferes with removal of
the user-visible cgroup, and all this complexity is now unnecessary.

[mhocko@suse.cz: ensure that the cached reference is always released]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:05 -08:00
Johannes Weiner
3e32cb2e0a mm: memcontrol: lockless page counters
Memory is internally accounted in bytes, using spinlock-protected 64-bit
counters, even though the smallest accounting delta is a page.  The
counter interface is also convoluted and does too many things.

Introduce a new lockless word-sized page counter API, then change all
memory accounting over to it.  The translation from and to bytes then only
happens when interfacing with userspace.

The removed locking overhead is noticable when scaling beyond the per-cpu
charge caches - on a 4-socket machine with 144-threads, the following test
shows the performance differences of 288 memcgs concurrently running a
page fault benchmark:

vanilla:

   18631648.500498      task-clock (msec)         #  140.643 CPUs utilized            ( +-  0.33% )
         1,380,638      context-switches          #    0.074 K/sec                    ( +-  0.75% )
            24,390      cpu-migrations            #    0.001 K/sec                    ( +-  8.44% )
     1,843,305,768      page-faults               #    0.099 M/sec                    ( +-  0.00% )
50,134,994,088,218      cycles                    #    2.691 GHz                      ( +-  0.33% )
   <not supported>      stalled-cycles-frontend
   <not supported>      stalled-cycles-backend
 8,049,712,224,651      instructions              #    0.16  insns per cycle          ( +-  0.04% )
 1,586,970,584,979      branches                  #   85.176 M/sec                    ( +-  0.05% )
     1,724,989,949      branch-misses             #    0.11% of all branches          ( +-  0.48% )

     132.474343877 seconds time elapsed                                          ( +-  0.21% )

lockless:

   12195979.037525      task-clock (msec)         #  133.480 CPUs utilized            ( +-  0.18% )
           832,850      context-switches          #    0.068 K/sec                    ( +-  0.54% )
            15,624      cpu-migrations            #    0.001 K/sec                    ( +- 10.17% )
     1,843,304,774      page-faults               #    0.151 M/sec                    ( +-  0.00% )
32,811,216,801,141      cycles                    #    2.690 GHz                      ( +-  0.18% )
   <not supported>      stalled-cycles-frontend
   <not supported>      stalled-cycles-backend
 9,999,265,091,727      instructions              #    0.30  insns per cycle          ( +-  0.10% )
 2,076,759,325,203      branches                  #  170.282 M/sec                    ( +-  0.12% )
     1,656,917,214      branch-misses             #    0.08% of all branches          ( +-  0.55% )

      91.369330729 seconds time elapsed                                          ( +-  0.45% )

On top of improved scalability, this also gets rid of the icky long long
types in the very heart of memcg, which is great for 32 bit and also makes
the code a lot more readable.

Notable differences between the old and new API:

- res_counter_charge() and res_counter_charge_nofail() become
  page_counter_try_charge() and page_counter_charge() resp. to match
  the more common kernel naming scheme of try_do()/do()

- res_counter_uncharge_until() is only ever used to cancel a local
  counter and never to uncharge bigger segments of a hierarchy, so
  it's replaced by the simpler page_counter_cancel()

- res_counter_set_limit() is replaced by page_counter_limit(), which
  expects its callers to serialize against themselves

- res_counter_memparse_write_strategy() is replaced by
  page_counter_limit(), which rounds down to the nearest page size -
  rather than up.  This is more reasonable for explicitely requested
  hard upper limits.

- to keep charging light-weight, page_counter_try_charge() charges
  speculatively, only to roll back if the result exceeds the limit.
  Because of this, a failing bigger charge can temporarily lock out
  smaller charges that would otherwise succeed.  The error is bounded
  to the difference between the smallest and the biggest possible
  charge size, so for memcg, this means that a failing THP charge can
  send base page charges into reclaim upto 2MB (4MB) before the limit
  would have been reached.  This should be acceptable.

[akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse]
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:04 -08:00
Al Viro
ba00410b81 Merge branch 'iov_iter' into for-next 2014-12-08 20:39:29 -05:00
Al Viro
b583043e99 kill f_dentry uses
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2014-11-19 13:01:25 -05:00
Johannes Weiner
d7365e783e mm: memcontrol: fix missed end-writeback page accounting
Commit 0a31bc97c8 ("mm: memcontrol: rewrite uncharge API") changed
page migration to uncharge the old page right away.  The page is locked,
unmapped, truncated, and off the LRU, but it could race with writeback
ending, which then doesn't unaccount the page properly:

test_clear_page_writeback()              migration
                                           wait_on_page_writeback()
  TestClearPageWriteback()
                                           mem_cgroup_migrate()
                                             clear PCG_USED
  mem_cgroup_update_page_stat()
    if (PageCgroupUsed(pc))
      decrease memcg pages under writeback

  release pc->mem_cgroup->move_lock

The per-page statistics interface is heavily optimized to avoid a
function call and a lookup_page_cgroup() in the file unmap fast path,
which means it doesn't verify whether a page is still charged before
clearing PageWriteback() and it has to do it in the stat update later.

Rework it so that it looks up the page's memcg once at the beginning of
the transaction and then uses it throughout.  The charge will be
verified before clearing PageWriteback() and migration can't uncharge
the page as long as that is still set.  The RCU lock will protect the
memcg past uncharge.

As far as losing the optimization goes, the following test results are
from a microbenchmark that maps, faults, and unmaps a 4GB sparse file
three times in a nested fashion, so that there are two negative passes
that don't account but still go through the new transaction overhead.
There is no actual difference:

 old:     33.195102545 seconds time elapsed       ( +-  0.01% )
 new:     33.199231369 seconds time elapsed       ( +-  0.03% )

The time spent in page_remove_rmap()'s callees still adds up to the
same, but the time spent in the function itself seems reduced:

     # Children      Self  Command        Shared Object       Symbol
 old:     0.12%     0.11%  filemapstress  [kernel.kallsyms]   [k] page_remove_rmap
 new:     0.12%     0.08%  filemapstress  [kernel.kallsyms]   [k] page_remove_rmap

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: <stable@vger.kernel.org>	[3.17.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-29 16:33:15 -07:00
Vladimir Davydov
cf2b8fbf1d memcg: zap memcg_can_account_kmem
memcg_can_account_kmem() returns true iff

    !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
                                   memcg_kmem_is_active(memcg);

To begin with the !mem_cgroup_is_root(memcg) check is useless, because one
can't enable kmem accounting for the root cgroup (mem_cgroup_write()
returns EINVAL on an attempt to set the limit on the root cgroup).

Furthermore, the !mem_cgroup_disabled() check also seems to be redundant.
The point is memcg_can_account_kmem() is called from three places:
mem_cgroup_salbinfo_read(), __memcg_kmem_get_cache(), and
__memcg_kmem_newpage_charge().  The latter two functions are only invoked
if memcg_kmem_enabled() returns true, which implies that the memory cgroup
subsystem is enabled.  And mem_cgroup_slabinfo_read() shows the output of
memory.kmem.slabinfo, which won't exist if the memory cgroup is completely
disabled.

So let's substitute all the calls to memcg_can_account_kmem() with plain
memcg_kmem_is_active(), and kill the former.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:26:00 -04:00
Johannes Weiner
b70a2a21dc mm: memcontrol: fix transparent huge page allocations under pressure
In a memcg with even just moderate cache pressure, success rates for
transparent huge page allocations drop to zero, wasting a lot of effort
that the allocator puts into assembling these pages.

The reason for this is that the memcg reclaim code was never designed for
higher-order charges.  It reclaims in small batches until there is room
for at least one page.  Huge page charges only succeed when these batches
add up over a series of huge faults, which is unlikely under any
significant load involving order-0 allocations in the group.

Remove that loop on the memcg side in favor of passing the actual reclaim
goal to direct reclaim, which is already set up and optimized to meet
higher-order goals efficiently.

This brings memcg's THP policy in line with the system policy: if the
allocator painstakingly assembles a hugepage, memcg will at least make an
honest effort to charge it.  As a result, transparent hugepage allocation
rates amid cache activity are drastically improved:

                                      vanilla                 patched
pgalloc                 4717530.80 (  +0.00%)   4451376.40 (  -5.64%)
pgfault                  491370.60 (  +0.00%)    225477.40 ( -54.11%)
pgmajfault                    2.00 (  +0.00%)         1.80 (  -6.67%)
thp_fault_alloc               0.00 (  +0.00%)       531.60 (+100.00%)
thp_fault_fallback          749.00 (  +0.00%)       217.40 ( -70.88%)

[ Note: this may in turn increase memory consumption from internal
  fragmentation, which is an inherent risk of transparent hugepages.
  Some setups may have to adjust the memcg limits accordingly to
  accomodate this - or, if the machine is already packed to capacity,
  disable the transparent huge page feature. ]

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Dave Hansen <dave@sr71.net>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:25:59 -04:00
Johannes Weiner
3fbe724424 mm: memcontrol: simplify detecting when the memory+swap limit is hit
When attempting to charge pages, we first charge the memory counter and
then the memory+swap counter.  If one of the counters is at its limit, we
enter reclaim, but if it's the memory+swap counter, reclaim shouldn't swap
because that wouldn't change the situation.  However, if the counters have
the same limits, we never get to the memory+swap limit.  To know whether
reclaim should swap or not, there is a state flag that indicates whether
the limits are equal and whether hitting the memory limit implies hitting
the memory+swap limit.

Just try the memory+swap counter first.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Dave Hansen <dave@sr71.net>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:25:59 -04:00
Vladimir Davydov
6f817f4cda memcg: move memcg_update_cache_size() to slab_common.c
`While growing per memcg caches arrays, we jump between memcontrol.c and
slab_common.c in a weird way:

  memcg_alloc_cache_id - memcontrol.c
    memcg_update_all_caches - slab_common.c
      memcg_update_cache_size - memcontrol.c

There's absolutely no reason why memcg_update_cache_size can't live on the
slab's side though.  So let's move it there and settle it comfortably amid
per-memcg cache allocation functions.

Besides, this patch cleans this function up a bit, removing all the
useless comments from it, and renames it to memcg_update_cache_params to
conform to memcg_alloc/free_cache_params, which we already have in
slab_common.c.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:25:59 -04:00
Vladimir Davydov
f3bb3043a0 memcg: don't call memcg_update_all_caches if new cache id fits
memcg_update_all_caches grows arrays of per-memcg caches, so we only need
to call it when memcg_limited_groups_array_size is increased.  However,
currently we invoke it each time a new kmem-active memory cgroup is
created.  Then it just iterates over all slab_caches and does nothing
(memcg_update_cache_size returns immediately).

This patch fixes this insanity.  In the meantime it moves the code dealing
with id allocations to separate functions, memcg_alloc_cache_id and
memcg_free_cache_id.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:25:59 -04:00
Vladimir Davydov
33a690c45b memcg: move memcg_{alloc,free}_cache_params to slab_common.c
The only reason why they live in memcontrol.c is that we get/put css
reference to the owner memory cgroup in them.  However, we can do that in
memcg_{un,}register_cache.  OTOH, there are several reasons to move them
to slab_common.c.

First, I think that the less public interface functions we have in
memcontrol.h the better.  Since the functions I move don't depend on
memcontrol, I think it's worth making them private to slab, especially
taking into account that the arrays are defined on the slab's side too.

Second, the way how per-memcg arrays are updated looks rather awkward: it
proceeds from memcontrol.c (__memcg_activate_kmem) to slab_common.c
(memcg_update_all_caches) and back to memcontrol.c again
(memcg_update_array_size).  In the following patches I move the function
relocating the arrays (memcg_update_array_size) to slab_common.c and
therefore get rid this circular call path.  I think we should have the
cache allocation stuff in the same place where we have relocation, because
it's easier to follow the code then.  So I move arrays alloc/free
functions to slab_common.c too.

The third point isn't obvious.  I'm going to make the list_lru structure
per-memcg to allow targeted kmem reclaim.  That means we will have
per-memcg arrays in list_lrus too.  It turns out that it's much easier to
update these arrays in list_lru.c rather than in memcontrol.c, because all
the stuff we need is defined there.  This patch makes memcg caches arrays
allocation path conform that of the upcoming list_lru.

So let's move these functions to slab_common.c and make them static.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:25:59 -04:00
Johannes Weiner
2f7dd7a410 mm: memcontrol: do not iterate uninitialized memcgs
The cgroup iterators yield css objects that have not yet gone through
css_online(), but they are not complete memcgs at this point and so the
memcg iterators should not return them.  Commit d8ad305597 ("mm/memcg:
iteration skip memcgs not yet fully initialized") set out to implement
exactly this, but it uses CSS_ONLINE, a cgroup-internal flag that does
not meet the ordering requirements for memcg, and so the iterator may
skip over initialized groups, or return partially initialized memcgs.

The cgroup core can not reasonably provide a clear answer on whether the
object around the css has been fully initialized, as that depends on
controller-specific locking and lifetime rules.  Thus, introduce a
memcg-specific flag that is set after the memcg has been initialized in
css_online(), and read before mem_cgroup_iter() callers access the memcg
members.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@vger.kernel.org>	[3.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-02 16:28:44 -07:00
Johannes Weiner
ce00a96737 mm: memcontrol: revert use of root_mem_cgroup res_counter
Dave Hansen reports a massive scalability regression in an uncontained
page fault benchmark with more than 30 concurrent threads, which he
bisected down to 05b8430123 ("mm: memcontrol: use root_mem_cgroup
res_counter") and pin-pointed on res_counter spinlock contention.

That change relied on the per-cpu charge caches to mostly swallow the
res_counter costs, but it's apparent that the caches don't scale yet.

Revert memcg back to bypassing res_counters on the root level in order
to restore performance for uncontained workloads.

Reported-by: Dave Hansen <dave@sr71.net>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Tested-by: Dave Hansen <dave.hansen@intel.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-09-05 08:19:02 -07:00
Johannes Weiner
6abb5a867b mm: memcontrol: avoid charge statistics churn during page migration
Charge migration currently disables IRQs twice to update the charge
statistics for the old page and then again for the new page.

But migration is a seamless transition of a charge from one physical
page to another one of the same size, so this should be a non-event from
an accounting point of view.  Leave the statistics alone.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-08 15:57:18 -07:00
Johannes Weiner
747db954ca mm: memcontrol: use page lists for uncharge batching
Pages are now uncharged at release time, and all sources of batched
uncharges operate on lists of pages.  Directly use those lists, and
get rid of the per-task batching state.

This also batches statistics accounting, in addition to the res
counter charges, to reduce IRQ-disabling and re-enabling.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-08 15:57:18 -07:00
Johannes Weiner
0a31bc97c8 mm: memcontrol: rewrite uncharge API
The memcg uncharging code that is involved towards the end of a page's
lifetime - truncation, reclaim, swapout, migration - is impressively
complicated and fragile.

Because anonymous and file pages were always charged before they had their
page->mapping established, uncharges had to happen when the page type
could still be known from the context; as in unmap for anonymous, page
cache removal for file and shmem pages, and swap cache truncation for swap
pages.  However, these operations happen well before the page is actually
freed, and so a lot of synchronization is necessary:

- Charging, uncharging, page migration, and charge migration all need
  to take a per-page bit spinlock as they could race with uncharging.

- Swap cache truncation happens during both swap-in and swap-out, and
  possibly repeatedly before the page is actually freed.  This means
  that the memcg swapout code is called from many contexts that make
  no sense and it has to figure out the direction from page state to
  make sure memory and memory+swap are always correctly charged.

- On page migration, the old page might be unmapped but then reused,
  so memcg code has to prevent untimely uncharging in that case.
  Because this code - which should be a simple charge transfer - is so
  special-cased, it is not reusable for replace_page_cache().

But now that charged pages always have a page->mapping, introduce
mem_cgroup_uncharge(), which is called after the final put_page(), when we
know for sure that nobody is looking at the page anymore.

For page migration, introduce mem_cgroup_migrate(), which is called after
the migration is successful and the new page is fully rmapped.  Because
the old page is no longer uncharged after migration, prevent double
charges by decoupling the page's memcg association (PCG_USED and
pc->mem_cgroup) from the page holding an actual charge.  The new bits
PCG_MEM and PCG_MEMSW represent the respective charges and are transferred
to the new page during migration.

mem_cgroup_migrate() is suitable for replace_page_cache() as well,
which gets rid of mem_cgroup_replace_page_cache().  However, care
needs to be taken because both the source and the target page can
already be charged and on the LRU when fuse is splicing: grab the page
lock on the charge moving side to prevent changing pc->mem_cgroup of a
page under migration.  Also, the lruvecs of both pages change as we
uncharge the old and charge the new during migration, and putback may
race with us, so grab the lru lock and isolate the pages iff on LRU to
prevent races and ensure the pages are on the right lruvec afterward.

Swap accounting is massively simplified: because the page is no longer
uncharged as early as swap cache deletion, a new mem_cgroup_swapout() can
transfer the page's memory+swap charge (PCG_MEMSW) to the swap entry
before the final put_page() in page reclaim.

Finally, page_cgroup changes are now protected by whatever protection the
page itself offers: anonymous pages are charged under the page table lock,
whereas page cache insertions, swapin, and migration hold the page lock.
Uncharging happens under full exclusion with no outstanding references.
Charging and uncharging also ensure that the page is off-LRU, which
serializes against charge migration.  Remove the very costly page_cgroup
lock and set pc->flags non-atomically.

[mhocko@suse.cz: mem_cgroup_charge_statistics needs preempt_disable]
[vdavydov@parallels.com: fix flags definition]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Tested-by: Jet Chen <jet.chen@intel.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Tested-by: Felipe Balbi <balbi@ti.com>
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-08 15:57:17 -07:00
Johannes Weiner
00501b531c mm: memcontrol: rewrite charge API
These patches rework memcg charge lifetime to integrate more naturally
with the lifetime of user pages.  This drastically simplifies the code and
reduces charging and uncharging overhead.  The most expensive part of
charging and uncharging is the page_cgroup bit spinlock, which is removed
entirely after this series.

Here are the top-10 profile entries of a stress test that reads a 128G
sparse file on a freshly booted box, without even a dedicated cgroup (i.e.
 executing in the root memcg).  Before:

    15.36%              cat  [kernel.kallsyms]   [k] copy_user_generic_string
    13.31%              cat  [kernel.kallsyms]   [k] memset
    11.48%              cat  [kernel.kallsyms]   [k] do_mpage_readpage
     4.23%              cat  [kernel.kallsyms]   [k] get_page_from_freelist
     2.38%              cat  [kernel.kallsyms]   [k] put_page
     2.32%              cat  [kernel.kallsyms]   [k] __mem_cgroup_commit_charge
     2.18%          kswapd0  [kernel.kallsyms]   [k] __mem_cgroup_uncharge_common
     1.92%          kswapd0  [kernel.kallsyms]   [k] shrink_page_list
     1.86%              cat  [kernel.kallsyms]   [k] __radix_tree_lookup
     1.62%              cat  [kernel.kallsyms]   [k] __pagevec_lru_add_fn

After:

    15.67%           cat  [kernel.kallsyms]   [k] copy_user_generic_string
    13.48%           cat  [kernel.kallsyms]   [k] memset
    11.42%           cat  [kernel.kallsyms]   [k] do_mpage_readpage
     3.98%           cat  [kernel.kallsyms]   [k] get_page_from_freelist
     2.46%           cat  [kernel.kallsyms]   [k] put_page
     2.13%       kswapd0  [kernel.kallsyms]   [k] shrink_page_list
     1.88%           cat  [kernel.kallsyms]   [k] __radix_tree_lookup
     1.67%           cat  [kernel.kallsyms]   [k] __pagevec_lru_add_fn
     1.39%       kswapd0  [kernel.kallsyms]   [k] free_pcppages_bulk
     1.30%           cat  [kernel.kallsyms]   [k] kfree

As you can see, the memcg footprint has shrunk quite a bit.

   text    data     bss     dec     hex filename
  37970    9892     400   48262    bc86 mm/memcontrol.o.old
  35239    9892     400   45531    b1db mm/memcontrol.o

This patch (of 4):

The memcg charge API charges pages before they are rmapped - i.e.  have an
actual "type" - and so every callsite needs its own set of charge and
uncharge functions to know what type is being operated on.  Worse,
uncharge has to happen from a context that is still type-specific, rather
than at the end of the page's lifetime with exclusive access, and so
requires a lot of synchronization.

Rewrite the charge API to provide a generic set of try_charge(),
commit_charge() and cancel_charge() transaction operations, much like
what's currently done for swap-in:

  mem_cgroup_try_charge() attempts to reserve a charge, reclaiming
  pages from the memcg if necessary.

  mem_cgroup_commit_charge() commits the page to the charge once it
  has a valid page->mapping and PageAnon() reliably tells the type.

  mem_cgroup_cancel_charge() aborts the transaction.

This reduces the charge API and enables subsequent patches to
drastically simplify uncharging.

As pages need to be committed after rmap is established but before they
are added to the LRU, page_add_new_anon_rmap() must stop doing LRU
additions again.  Revive lru_cache_add_active_or_unevictable().

[hughd@google.com: fix shmem_unuse]
[hughd@google.com: Add comments on the private use of -EAGAIN]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-08 15:57:17 -07:00
Johannes Weiner
61e02c7457 mm: memcontrol: clean up reclaim size variable use in try_charge()
Charge reclaim and OOM currently use the charge batch variable, but
batching is already disabled at that point.  To simplify the charge
logic, the batch variable is reset to the original request size when
reclaim is entered, so it's functionally equal, but it's misleading.

Switch reclaim/OOM to nr_pages, which is the original request size.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 18:01:22 -07:00
Johannes Weiner
a840cda63e mm: memcontrol: do not acquire page_cgroup lock for kmem pages
Kmem page charging and uncharging is serialized by means of exclusive
access to the page.  Do not take the page_cgroup lock and don't set
pc->flags atomically.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 18:01:17 -07:00
Johannes Weiner
9a2385eef9 mm: memcontrol: remove ordering between pc->mem_cgroup and PageCgroupUsed
There is a write barrier between setting pc->mem_cgroup and
PageCgroupUsed, which was added to allow LRU operations to lookup the
memcg LRU list of a page without acquiring the page_cgroup lock.

But ever since commit 38c5d72f3e ("memcg: simplify LRU handling by new
rule"), pages are ensured to be off-LRU while charging, so nobody else
is changing LRU state while pc->mem_cgroup is being written, and there
are no read barriers anymore.

Remove the unnecessary write barrier.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 18:01:17 -07:00
Johannes Weiner
05b8430123 mm: memcontrol: use root_mem_cgroup res_counter
Due to an old optimization to keep expensive res_counter changes at a
minimum, the root_mem_cgroup res_counter is never charged; there is no
limit at that level anyway, and any statistics can be generated on
demand by summing up the counters of all other cgroups.

However, with per-cpu charge caches, res_counter operations do not even
show up in profiles anymore, so this optimization is no longer
necessary.

Remove it to simplify the code.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 18:01:17 -07:00
Johannes Weiner
692e7c45d9 mm: memcontrol: catch root bypass in move precharge
When mem_cgroup_try_charge() returns -EINTR, it bypassed the charge to
the root memcg.  But move precharging does not catch this and treats
this case as if no charge had happened, thus leaking a charge against
root.  Because of an old optimization, the root memcg's res_counter is
not actually charged right now, but it's still an imbalance and
subsequent patches will charge the root memcg again.

Catch those bypasses to the root memcg and properly cancel them before
giving up the move.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 18:01:17 -07:00
Johannes Weiner
9476db974d mm: memcontrol: simplify move precharge function
The move precharge function does some baroque things: it tries raw
res_counter charging of the entire amount first, and then falls back to
a loop of one-by-one charges, with checks for pending signals and
cond_resched() batching.

Just use mem_cgroup_try_charge() without __GFP_WAIT for the first bulk
charge attempt.  In the one-by-one loop, remove the signal check (this
is already checked in try_charge), and simply call cond_resched() after
every charge - it's not that expensive.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 18:01:17 -07:00
Michal Hocko
0029e19ebf mm: memcontrol: remove explicit OOM parameter in charge path
For the page allocator, __GFP_NORETRY implies that no OOM should be
triggered, whereas memcg has an explicit parameter to disable OOM.

The only callsites that want OOM disabled are THP charges and charge
moving.  THP already uses __GFP_NORETRY and charge moving can use it as
well - one full reclaim cycle should be plenty.  Switch it over, then
remove the OOM parameter.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 18:01:17 -07:00
Johannes Weiner
9b1306192d mm: memcontrol: retry reclaim for oom-disabled and __GFP_NOFAIL charges
There is no reason why oom-disabled and __GFP_NOFAIL charges should try
to reclaim only once when every other charge tries several times before
giving up.  Make them all retry the same number of times.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 18:01:17 -07:00
Johannes Weiner
28c34c291e mm: memcontrol: reclaim at least once for __GFP_NORETRY
Currently, __GFP_NORETRY tries charging once and gives up before even
trying to reclaim.  Bring the behavior on par with the page allocator
and reclaim at least once before giving up.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 18:01:17 -07:00
Johannes Weiner
06b078fc06 mm: memcontrol: rearrange charging fast path
The charging path currently starts out with OOM condition checks when
OOM is the rarest possible case.

Rearrange this code to run OOM/task dying checks only after trying the
percpu charge and the res_counter charge and bail out before entering
reclaim.  Attempting a charge does not hurt an (oom-)killed task as much
as every charge attempt having to check OOM conditions.  Also, only
check __GFP_NOFAIL when the charge would actually fail.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 18:01:17 -07:00
Johannes Weiner
6539cc0538 mm: memcontrol: fold mem_cgroup_do_charge()
These patches rework memcg charge lifetime to integrate more naturally
with the lifetime of user pages.  This drastically simplifies the code
and reduces charging and uncharging overhead.  The most expensive part
of charging and uncharging is the page_cgroup bit spinlock, which is
removed entirely after this series.

Here are the top-10 profile entries of a stress test that reads a 128G
sparse file on a freshly booted box, without even a dedicated cgroup
(i.e. executing in the root memcg).  Before:

    15.36%              cat  [kernel.kallsyms]   [k] copy_user_generic_string
    13.31%              cat  [kernel.kallsyms]   [k] memset
    11.48%              cat  [kernel.kallsyms]   [k] do_mpage_readpage
     4.23%              cat  [kernel.kallsyms]   [k] get_page_from_freelist
     2.38%              cat  [kernel.kallsyms]   [k] put_page
     2.32%              cat  [kernel.kallsyms]   [k] __mem_cgroup_commit_charge
     2.18%          kswapd0  [kernel.kallsyms]   [k] __mem_cgroup_uncharge_common
     1.92%          kswapd0  [kernel.kallsyms]   [k] shrink_page_list
     1.86%              cat  [kernel.kallsyms]   [k] __radix_tree_lookup
     1.62%              cat  [kernel.kallsyms]   [k] __pagevec_lru_add_fn

After:

    15.67%           cat  [kernel.kallsyms]   [k] copy_user_generic_string
    13.48%           cat  [kernel.kallsyms]   [k] memset
    11.42%           cat  [kernel.kallsyms]   [k] do_mpage_readpage
     3.98%           cat  [kernel.kallsyms]   [k] get_page_from_freelist
     2.46%           cat  [kernel.kallsyms]   [k] put_page
     2.13%       kswapd0  [kernel.kallsyms]   [k] shrink_page_list
     1.88%           cat  [kernel.kallsyms]   [k] __radix_tree_lookup
     1.67%           cat  [kernel.kallsyms]   [k] __pagevec_lru_add_fn
     1.39%       kswapd0  [kernel.kallsyms]   [k] free_pcppages_bulk
     1.30%           cat  [kernel.kallsyms]   [k] kfree

As you can see, the memcg footprint has shrunk quite a bit.

   text    data     bss     dec     hex filename
  37970    9892     400   48262    bc86 mm/memcontrol.o.old
  35239    9892     400   45531    b1db mm/memcontrol.o

This patch (of 13):

This function was split out because mem_cgroup_try_charge() got too big.
But having essentially one sequence of operations arbitrarily split in
half is not good for reworking the code.  Fold it back in.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 18:01:17 -07:00
Linus Torvalds
47dfe4037e Merge branch 'for-3.17' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup changes from Tejun Heo:
 "Mostly changes to get the v2 interface ready.  The core features are
  mostly ready now and I think it's reasonable to expect to drop the
  devel mask in one or two devel cycles at least for a subset of
  controllers.

   - cgroup added a controller dependency mechanism so that block cgroup
     can depend on memory cgroup.  This will be used to finally support
     IO provisioning on the writeback traffic, which is currently being
     implemented.

   - The v2 interface now uses a separate table so that the interface
     files for the new interface are explicitly declared in one place.
     Each controller will explicitly review and add the files for the
     new interface.

   - cpuset is getting ready for the hierarchical behavior which is in
     the similar style with other controllers so that an ancestor's
     configuration change doesn't change the descendants' configurations
     irreversibly and processes aren't silently migrated when a CPU or
     node goes down.

  All the changes are to the new interface and no behavior changed for
  the multiple hierarchies"

* 'for-3.17' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (29 commits)
  cpuset: fix the WARN_ON() in update_nodemasks_hier()
  cgroup: initialize cgrp_dfl_root_inhibit_ss_mask from !->dfl_files test
  cgroup: make CFTYPE_ONLY_ON_DFL and CFTYPE_NO_ internal to cgroup core
  cgroup: distinguish the default and legacy hierarchies when handling cftypes
  cgroup: replace cgroup_add_cftypes() with cgroup_add_legacy_cftypes()
  cgroup: rename cgroup_subsys->base_cftypes to ->legacy_cftypes
  cgroup: split cgroup_base_files[] into cgroup_{dfl|legacy}_base_files[]
  cpuset: export effective masks to userspace
  cpuset: allow writing offlined masks to cpuset.cpus/mems
  cpuset: enable onlined cpu/node in effective masks
  cpuset: refactor cpuset_hotplug_update_tasks()
  cpuset: make cs->{cpus, mems}_allowed as user-configured masks
  cpuset: apply cs->effective_{cpus,mems}
  cpuset: initialize top_cpuset's configured masks at mount
  cpuset: use effective cpumask to build sched domains
  cpuset: inherit ancestor's masks if effective_{cpus, mems} becomes empty
  cpuset: update cs->effective_{cpus, mems} when config changes
  cpuset: update cpuset->effective_{cpus,mems} at hotplug
  cpuset: add cs->effective_cpus and cs->effective_mems
  cgroup: clean up sane_behavior handling
  ...
2014-08-04 10:11:28 -07:00
Michal Hocko
2bcf2e92c3 memcg: oom_notify use-after-free fix
Paul Furtado has reported the following GPF:

  general protection fault: 0000 [#1] SMP
  Modules linked in: ipv6 dm_mod xen_netfront coretemp hwmon x86_pkg_temp_thermal crc32_pclmul crc32c_intel ghash_clmulni_intel aesni_intel ablk_helper cryptd lrw gf128mul glue_helper aes_x86_64 microcode pcspkr ext4 jbd2 mbcache raid0 xen_blkfront
  CPU: 3 PID: 3062 Comm: java Not tainted 3.16.0-rc5 #1
  task: ffff8801cfe8f170 ti: ffff8801d2ec4000 task.ti: ffff8801d2ec4000
  RIP: e030:mem_cgroup_oom_synchronize+0x140/0x240
  RSP: e02b:ffff8801d2ec7d48  EFLAGS: 00010283
  RAX: 0000000000000001 RBX: ffff88009d633800 RCX: 000000000000000e
  RDX: fffffffffffffffe RSI: ffff88009d630200 RDI: ffff88009d630200
  RBP: ffff8801d2ec7da8 R08: 0000000000000012 R09: 00000000fffffffe
  R10: 0000000000000000 R11: 0000000000000000 R12: ffff88009d633800
  R13: ffff8801d2ec7d48 R14: dead000000100100 R15: ffff88009d633a30
  FS:  00007f1748bb4700(0000) GS:ffff8801def80000(0000) knlGS:0000000000000000
  CS:  e033 DS: 0000 ES: 0000 CR0: 000000008005003b
  CR2: 00007f4110300308 CR3: 00000000c05f7000 CR4: 0000000000002660
  Call Trace:
    pagefault_out_of_memory+0x18/0x90
    mm_fault_error+0xa9/0x1a0
    __do_page_fault+0x478/0x4c0
    do_page_fault+0x2c/0x40
    page_fault+0x28/0x30
  Code: 44 00 00 48 89 df e8 40 ca ff ff 48 85 c0 49 89 c4 74 35 4c 8b b0 30 02 00 00 4c 8d b8 30 02 00 00 4d 39 fe 74 1b 0f 1f 44 00 00 <49> 8b 7e 10 be 01 00 00 00 e8 42 d2 04 00 4d 8b 36 4d 39 fe 75
  RIP  mem_cgroup_oom_synchronize+0x140/0x240

Commit fb2a6fc56b ("mm: memcg: rework and document OOM waiting and
wakeup") has moved mem_cgroup_oom_notify outside of memcg_oom_lock
assuming it is protected by the hierarchical OOM-lock.

Although this is true for the notification part the protection doesn't
cover unregistration of event which can happen in parallel now so
mem_cgroup_oom_notify can see already unlinked and/or freed
mem_cgroup_eventfd_list.

Fix this by using memcg_oom_lock also in mem_cgroup_oom_notify.

Addresses https://bugzilla.kernel.org/show_bug.cgi?id=80881

Fixes: fb2a6fc56b (mm: memcg: rework and document OOM waiting and wakeup)
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reported-by: Paul Furtado <paulfurtado91@gmail.com>
Tested-by: Paul Furtado <paulfurtado91@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>	[3.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-07-30 17:16:13 -07:00
Tejun Heo
a8ddc8215e cgroup: distinguish the default and legacy hierarchies when handling cftypes
Until now, cftype arrays carried files for both the default and legacy
hierarchies and the files which needed to be used on only one of them
were flagged with either CFTYPE_ONLY_ON_DFL or CFTYPE_INSANE.  This
gets confusing very quickly and we may end up exposing interface files
to the default hierarchy without thinking it through.

This patch makes cgroup core provide separate sets of interfaces for
cftype handling so that the cftypes for the default and legacy
hierarchies are clearly distinguished.  The previous two patches
renamed the existing ones so that they clearly indicate that they're
for the legacy hierarchies.  This patch adds the interface for the
default hierarchy and apply them selectively depending on the
hierarchy type.

* cftypes added through cgroup_subsys->dfl_cftypes and
  cgroup_add_dfl_cftypes() only show up on the default hierarchy.

* cftypes added through cgroup_subsys->legacy_cftypes and
  cgroup_add_legacy_cftypes() only show up on the legacy hierarchies.

* cgroup_subsys->dfl_cftypes and ->legacy_cftypes can point to the
  same array for the cases where the interface files are identical on
  both types of hierarchies.

* This makes all the existing subsystem interface files legacy-only by
  default and all subsystems will have no interface file created when
  enabled on the default hierarchy.  Each subsystem should explicitly
  review and compose the interface for the default hierarchy.

* A boot param "cgroup__DEVEL__legacy_files_on_dfl" is added which
  makes subsystems which haven't decided the interface files for the
  default hierarchy to present the legacy files on the default
  hierarchy so that its behavior on the default hierarchy can be
  tested.  As the awkward name suggests, this is for development only.

* memcg's CFTYPE_INSANE on "use_hierarchy" is noop now as the whole
  array isn't used on the default hierarchy.  The flag is removed.

v2: Updated documentation for cgroup__DEVEL__legacy_files_on_dfl.

v3: Clear CFTYPE_ONLY_ON_DFL and CFTYPE_INSANE when cfts are removed
    as suggested by Li.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Aristeu Rozanski <aris@redhat.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
2014-07-15 11:05:10 -04:00
Tejun Heo
2cf669a58d cgroup: replace cgroup_add_cftypes() with cgroup_add_legacy_cftypes()
Currently, cftypes added by cgroup_add_cftypes() are used for both the
unified default hierarchy and legacy ones and subsystems can mark each
file with either CFTYPE_ONLY_ON_DFL or CFTYPE_INSANE if it has to
appear only on one of them.  This is quite hairy and error-prone.
Also, we may end up exposing interface files to the default hierarchy
without thinking it through.

cgroup_subsys will grow two separate cftype addition functions and
apply each only on the hierarchies of the matching type.  This will
allow organizing cftypes in a lot clearer way and encourage subsystems
to scrutinize the interface which is being exposed in the new default
hierarchy.

In preparation, this patch adds cgroup_add_legacy_cftypes() which
currently is a simple wrapper around cgroup_add_cftypes() and replaces
all cgroup_add_cftypes() usages with it.

While at it, this patch drops a completely spurious return from
__hugetlb_cgroup_file_init().

This patch doesn't introduce any functional differences.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
2014-07-15 11:05:09 -04:00
Tejun Heo
5577964e64 cgroup: rename cgroup_subsys->base_cftypes to ->legacy_cftypes
Currently, cgroup_subsys->base_cftypes is used for both the unified
default hierarchy and legacy ones and subsystems can mark each file
with either CFTYPE_ONLY_ON_DFL or CFTYPE_INSANE if it has to appear
only on one of them.  This is quite hairy and error-prone.  Also, we
may end up exposing interface files to the default hierarchy without
thinking it through.

cgroup_subsys will grow two separate cftype arrays and apply each only
on the hierarchies of the matching type.  This will allow organizing
cftypes in a lot clearer way and encourage subsystems to scrutinize
the interface which is being exposed in the new default hierarchy.

In preparation, this patch renames cgroup_subsys->base_cftypes to
cgroup_subsys->legacy_cftypes.  This patch is pure rename.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Aristeu Rozanski <aris@redhat.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
2014-07-15 11:05:09 -04:00
Tejun Heo
aa6ec29bee cgroup: remove sane_behavior support on non-default hierarchies
sane_behavior has been used as a development vehicle for the default
unified hierarchy.  Now that the default hierarchy is in place, the
flag became redundant and confusing as its usage is allowed on all
hierarchies.  There are gonna be either the default hierarchy or
legacy ones.  Let's make that clear by removing sane_behavior support
on non-default hierarchies.

This patch replaces cgroup_sane_behavior() with cgroup_on_dfl().  The
comment on top of CGRP_ROOT_SANE_BEHAVIOR is moved to on top of
cgroup_on_dfl() with sane_behavior specific part dropped.

On the default and legacy hierarchies w/o sane_behavior, this
shouldn't cause any behavior differences.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
2014-07-09 10:08:08 -04:00
Tejun Heo
1ced953b17 blkcg, memcg: make blkcg depend on memcg on the default hierarchy
Currently, the blkio subsystem attributes all of writeback IOs to the
root.  One of the issues is that there's no way to tell who originated
a writeback IO from block layer.  Those IOs are usually issued
asynchronously from a task which didn't have anything to do with
actually generating the dirty pages.  The memory subsystem, when
enabled, already keeps track of the ownership of each dirty page and
it's desirable for blkio to piggyback instead of adding its own
per-page tag.

cgroup now has a mechanism to express such dependency -
cgroup_subsys->depends_on.  This patch declares that blkcg depends on
memcg so that memcg is enabled automatically on the default hierarchy
when available.  Future changes will make blkcg map the memcg tag to
find out the cgroup to blame for writeback IOs.

As this means that a memcg may be made invisible, this patch also
implements css_reset() for memcg which resets its basic
configurations.  This implementation will probably need to be expanded
to cover other states which are used in the default hierarchy.

v2: blkcg's dependency on memcg is wrapped with CONFIG_MEMCG to avoid
    build failure.  Reported by kbuild test robot.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
2014-07-08 18:02:57 -04:00
Linus Torvalds
14208b0ec5 Merge branch 'for-3.16' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup updates from Tejun Heo:
 "A lot of activities on cgroup side.  Heavy restructuring including
  locking simplification took place to improve the code base and enable
  implementation of the unified hierarchy, which currently exists behind
  a __DEVEL__ mount option.  The core support is mostly complete but
  individual controllers need further work.  To explain the design and
  rationales of the the unified hierarchy

        Documentation/cgroups/unified-hierarchy.txt

  is added.

  Another notable change is css (cgroup_subsys_state - what each
  controller uses to identify and interact with a cgroup) iteration
  update.  This is part of continuing updates on css object lifetime and
  visibility.  cgroup started with reference count draining on removal
  way back and is now reaching a point where csses behave and are
  iterated like normal refcnted objects albeit with some complexities to
  allow distinguishing the state where they're being deleted.  The css
  iteration update isn't taken advantage of yet but is planned to be
  used to simplify memcg significantly"

* 'for-3.16' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (77 commits)
  cgroup: disallow disabled controllers on the default hierarchy
  cgroup: don't destroy the default root
  cgroup: disallow debug controller on the default hierarchy
  cgroup: clean up MAINTAINERS entries
  cgroup: implement css_tryget()
  device_cgroup: use css_has_online_children() instead of has_children()
  cgroup: convert cgroup_has_live_children() into css_has_online_children()
  cgroup: use CSS_ONLINE instead of CGRP_DEAD
  cgroup: iterate cgroup_subsys_states directly
  cgroup: introduce CSS_RELEASED and reduce css iteration fallback window
  cgroup: move cgroup->serial_nr into cgroup_subsys_state
  cgroup: link all cgroup_subsys_states in their sibling lists
  cgroup: move cgroup->sibling and ->children into cgroup_subsys_state
  cgroup: remove cgroup->parent
  device_cgroup: remove direct access to cgroup->children
  memcg: update memcg_has_children() to use css_next_child()
  memcg: remove tasks/children test from mem_cgroup_force_empty()
  cgroup: remove css_parent()
  cgroup: skip refcnting on normal root csses and cgrp_dfl_root self css
  cgroup: use cgroup->self.refcnt for cgroup refcnting
  ...
2014-06-09 15:03:33 -07:00
Johannes Weiner
cf2c81279e mm: memcontrol: remove unnecessary memcg argument from soft limit functions
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Jianyu Zhan <nasa4836@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-06 16:08:17 -07:00
Jianyu Zhan
e231875ba7 mm: memcontrol: clean up memcg zoneinfo lookup
Memcg zoneinfo lookup sites have either the page, the zone, or the node
id and zone index, but sites that only have the zone have to look up the
node id and zone index themselves, whereas sites that already have those
two integers use a function for a simple pointer chase.

Provide mem_cgroup_zone_zoneinfo() that takes a zone pointer and let
sites that already have node id and zone index - all for each node, for
each zone iterators - use &memcg->nodeinfo[nid]->zoneinfo[zid].

Rename page_cgroup_zoneinfo() to mem_cgroup_page_zoneinfo() to match.

Signed-off-by: Jianyu Zhan <nasa4836@gmail.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-06 16:08:17 -07:00
Michal Hocko
688eb988d1 vmscan: memcg: always use swappiness of the reclaimed memcg
Memory reclaim always uses swappiness of the reclaim target memcg
(origin of the memory pressure) or vm_swappiness for global memory
reclaim.  This behavior was consistent (except for difference between
global and hard limit reclaim) because swappiness was enforced to be
consistent within each memcg hierarchy.

After "mm: memcontrol: remove hierarchy restrictions for swappiness and
oom_control" each memcg can have its own swappiness independent of
hierarchical parents, though, so the consistency guarantee is gone.
This can lead to an unexpected behavior.  Say that a group is explicitly
configured to not swapout by memory.swappiness=0 but its memory gets
swapped out anyway when the memory pressure comes from its parent with a
It is also unexpected that the knob is meaningless without setting the
hard limit which would trigger the reclaim and enforce the swappiness.
There are setups where the hard limit is configured higher in the
hierarchy by an administrator and children groups are under control of
somebody else who is interested in the swapout behavior but not
necessarily about the memory limit.

From a semantic point of view swappiness is an attribute defining anon
vs.
 file proportional scanning of LRU which is memcg specific (unlike
charges which are propagated up the hierarchy) so it should be applied
to the particular memcg's LRU regardless where the memory pressure comes
from.

This patch removes vmscan_swappiness() and stores the swappiness into
the scan_control structure.  mem_cgroup_swappiness is then used to
provide the correct value before shrink_lruvec is called.  The global
vm_swappiness is used for the root memcg.

[hughd@google.com: oopses immediately when booted with cgroup_disable=memory]
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-06 16:08:17 -07:00
Hugh Dickins
2a7a0e0fdc mm, memcg: periodically schedule when emptying page list
mem_cgroup_force_empty_list() can iterate a large number of pages on an
lru and mem_cgroup_move_parent() doesn't return an errno unless certain
criteria, none of which indicate that the iteration may be taking too
long, is met.

We have encountered the following stack trace many times indicating
"need_resched set for > 51000020 ns (51 ticks) without schedule", for
example:

	scheduler_tick()
	<timer irq>
	mem_cgroup_move_account+0x4d/0x1d5
	mem_cgroup_move_parent+0x8d/0x109
	mem_cgroup_reparent_charges+0x149/0x2ba
	mem_cgroup_css_offline+0xeb/0x11b
	cgroup_offline_fn+0x68/0x16b
	process_one_work+0x129/0x350

If this iteration is taking too long, we still need to do cond_resched()
even when an individual page is not busy.

[rientjes@google.com: changelog]
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:13 -07:00
Vladimir Davydov
776ed0f037 memcg: cleanup kmem cache creation/destruction functions naming
Current names are rather inconsistent. Let's try to improve them.

Brief change log:

** old name **                          ** new name **

kmem_cache_create_memcg                 memcg_create_kmem_cache
memcg_kmem_create_cache                 memcg_regsiter_cache
memcg_kmem_destroy_cache                memcg_unregister_cache

kmem_cache_destroy_memcg_children       memcg_cleanup_cache_params
mem_cgroup_destroy_all_caches           memcg_unregister_all_caches

create_work                             memcg_register_cache_work
memcg_create_cache_work_func            memcg_register_cache_func
memcg_create_cache_enqueue              memcg_schedule_register_cache

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:08 -07:00
Vladimir Davydov
93f39eea9c memcg: memcg_kmem_create_cache: make memcg_name_buf statically allocated
It isn't worth complicating the code by allocating it on the first access,
because it only takes 256 bytes.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:06 -07:00
Vladimir Davydov
073ee1c6cd memcg: get rid of memcg_create_cache_name
Instead of calling back to memcontrol.c from kmem_cache_create_memcg in
order to just create the name of a per memcg cache, let's allocate it in
place.  We only need to pass the memcg name to kmem_cache_create_memcg for
that - everything else can be done in slab_common.c.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:06 -07:00
Qiang Huang
b5ffc8560c memcg: correct comments for __mem_cgroup_begin_update_page_stat
Signed-off-by: Qiang Huang <h.huangqiang@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:06 -07:00
Qiang Huang
bdcbb659fe memcg: fold mem_cgroup_stolen
It is only used in __mem_cgroup_begin_update_page_stat(), the name is
confusing and 2 routines for one thing also confuse people, so fold this
function seems more clear.

[akpm@linux-foundation.org: fix typo, per Michal]
Signed-off-by: Qiang Huang <h.huangqiang@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:05 -07:00
Fabian Frederick
ada4ba5914 mm/memcontrol.c: remove NULL assignment on static
static values are automatically initialized to NULL

Signed-off-by: Fabian Frederick <fabf@skynet.be>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:04 -07:00
Christoph Lameter
7c8e0181e6 mm: replace __get_cpu_var uses with this_cpu_ptr
Replace places where __get_cpu_var() is used for an address calculation
with this_cpu_ptr().

Signed-off-by: Christoph Lameter <cl@linux.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:03 -07:00
Vladimir Davydov
bd67314586 memcg, slab: simplify synchronization scheme
At present, we have the following mutexes protecting data related to per
memcg kmem caches:

 - slab_mutex.  This one is held during the whole kmem cache creation
   and destruction paths.  We also take it when updating per root cache
   memcg_caches arrays (see memcg_update_all_caches).  As a result, taking
   it guarantees there will be no changes to any kmem cache (including per
   memcg).  Why do we need something else then?  The point is it is
   private to slab implementation and has some internal dependencies with
   other mutexes (get_online_cpus).  So we just don't want to rely upon it
   and prefer to introduce additional mutexes instead.

 - activate_kmem_mutex.  Initially it was added to synchronize
   initializing kmem limit (memcg_activate_kmem).  However, since we can
   grow per root cache memcg_caches arrays only on kmem limit
   initialization (see memcg_update_all_caches), we also employ it to
   protect against memcg_caches arrays relocation (e.g.  see
   __kmem_cache_destroy_memcg_children).

 - We have a convention not to take slab_mutex in memcontrol.c, but we
   want to walk over per memcg memcg_slab_caches lists there (e.g.  for
   destroying all memcg caches on offline).  So we have per memcg
   slab_caches_mutex's protecting those lists.

The mutexes are taken in the following order:

   activate_kmem_mutex -> slab_mutex -> memcg::slab_caches_mutex

Such a syncrhonization scheme has a number of flaws, for instance:

 - We can't call kmem_cache_{destroy,shrink} while walking over a
   memcg::memcg_slab_caches list due to locking order.  As a result, in
   mem_cgroup_destroy_all_caches we schedule the
   memcg_cache_params::destroy work shrinking and destroying the cache.

 - We don't have a mutex to synchronize per memcg caches destruction
   between memcg offline (mem_cgroup_destroy_all_caches) and root cache
   destruction (__kmem_cache_destroy_memcg_children).  Currently we just
   don't bother about it.

This patch simplifies it by substituting per memcg slab_caches_mutex's
with the global memcg_slab_mutex.  It will be held whenever a new per
memcg cache is created or destroyed, so it protects per root cache
memcg_caches arrays and per memcg memcg_slab_caches lists.  The locking
order is following:

   activate_kmem_mutex -> memcg_slab_mutex -> slab_mutex

This allows us to call kmem_cache_{create,shrink,destroy} under the
memcg_slab_mutex.  As a result, we don't need memcg_cache_params::destroy
work any more - we can simply destroy caches while iterating over a per
memcg slab caches list.

Also using the global mutex simplifies synchronization between concurrent
per memcg caches creation/destruction, e.g.  mem_cgroup_destroy_all_caches
vs __kmem_cache_destroy_memcg_children.

The downside of this is that we substitute per-memcg slab_caches_mutex's
with a hummer-like global mutex, but since we already take either the
slab_mutex or the cgroup_mutex along with a memcg::slab_caches_mutex, it
shouldn't hurt concurrency a lot.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:01 -07:00
Vladimir Davydov
c67a8a685a memcg, slab: merge memcg_{bind,release}_pages to memcg_{un}charge_slab
Currently we have two pairs of kmemcg-related functions that are called on
slab alloc/free.  The first is memcg_{bind,release}_pages that count the
total number of pages allocated on a kmem cache.  The second is
memcg_{un}charge_slab that {un}charge slab pages to kmemcg resource
counter.  Let's just merge them to keep the code clean.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:01 -07:00
Vladimir Davydov
1e32e77f95 memcg, slab: do not schedule cache destruction when last page goes away
This patchset is a part of preparations for kmemcg re-parenting.  It
targets at simplifying kmemcg work-flows and synchronization.

First, it removes async per memcg cache destruction (see patches 1, 2).
Now caches are only destroyed on memcg offline.  That means the caches
that are not empty on memcg offline will be leaked.  However, they are
already leaked, because memcg_cache_params::nr_pages normally never drops
to 0 so the destruction work is never scheduled except kmem_cache_shrink
is called explicitly.  In the future I'm planning reaping such dead caches
on vmpressure or periodically.

Second, it substitutes per memcg slab_caches_mutex's with the global
memcg_slab_mutex, which should be taken during the whole per memcg cache
creation/destruction path before the slab_mutex (see patch 3).  This
greatly simplifies synchronization among various per memcg cache
creation/destruction paths.

I'm still not quite sure about the end picture, in particular I don't know
whether we should reap dead memcgs' kmem caches periodically or try to
merge them with their parents (see https://lkml.org/lkml/2014/4/20/38 for
more details), but whichever way we choose, this set looks like a
reasonable change to me, because it greatly simplifies kmemcg work-flows
and eases further development.

This patch (of 3):

After a memcg is offlined, we mark its kmem caches that cannot be deleted
right now due to pending objects as dead by setting the
memcg_cache_params::dead flag, so that memcg_release_pages will schedule
cache destruction (memcg_cache_params::destroy) as soon as the last slab
of the cache is freed (memcg_cache_params::nr_pages drops to zero).

I guess the idea was to destroy the caches as soon as possible, i.e.
immediately after freeing the last object.  However, it just doesn't work
that way, because kmem caches always preserve some pages for the sake of
performance, so that nr_pages never gets to zero unless the cache is
shrunk explicitly using kmem_cache_shrink.  Of course, we could account
the total number of objects on the cache or check if all the slabs
allocated for the cache are empty on kmem_cache_free and schedule
destruction if so, but that would be too costly.

Thus we have a piece of code that works only when we explicitly call
kmem_cache_shrink, but complicates the whole picture a lot.  Moreover,
it's racy in fact.  For instance, kmem_cache_shrink may free the last slab
and thus schedule cache destruction before it finishes checking that the
cache is empty, which can lead to use-after-free.

So I propose to remove this async cache destruction from
memcg_release_pages, and check if the cache is empty explicitly after
calling kmem_cache_shrink instead.  This will simplify things a lot w/o
introducing any functional changes.

And regarding dead memcg caches (i.e.  those that are left hanging around
after memcg offline for they have objects), I suppose we should reap them
either periodically or on vmpressure as Glauber suggested initially.  I'm
going to implement this later.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:01 -07:00
Michal Hocko
d8dc595ce3 memcg: do not hang on OOM when killed by userspace OOM access to memory reserves
Eric has reported that he can see task(s) stuck in memcg OOM handler
regularly.  The only way out is to

	echo 0 > $GROUP/memory.oom_control

His usecase is:

- Setup a hierarchy with memory and the freezer (disable kernel oom and
  have a process watch for oom).

- In that memory cgroup add a process with one thread per cpu.

- In one thread slowly allocate once per second I think it is 16M of ram
  and mlock and dirty it (just to force the pages into ram and stay
  there).

- When oom is achieved loop:
  * attempt to freeze all of the tasks.
  * if frozen send every task SIGKILL, unfreeze, remove the directory in
    cgroupfs.

Eric has then pinpointed the issue to be memcg specific.

All tasks are sitting on the memcg_oom_waitq when memcg oom is disabled.
Those that have received fatal signal will bypass the charge and should
continue on their way out.  The tricky part is that the exit path might
trigger a page fault (e.g.  exit_robust_list), thus the memcg charge,
while its memcg is still under OOM because nobody has released any charges
yet.

Unlike with the in-kernel OOM handler the exiting task doesn't get
TIF_MEMDIE set so it doesn't shortcut further charges of the killed task
and falls to the memcg OOM again without any way out of it as there are no
fatal signals pending anymore.

This patch fixes the issue by checking PF_EXITING early in
mem_cgroup_try_charge and bypass the charge same as if it had fatal
signal pending or TIF_MEMDIE set.

Normally exiting tasks (aka not killed) will bypass the charge now but
this should be OK as the task is leaving and will release memory and
increasing the memory pressure just to release it in a moment seems
dubious wasting of cycles.  Besides that charges after exit_signals should
be rare.

I am bringing this patch again (rebased on the current mmotm tree). I
hope we can move forward finally. If there is still an opposition then
I would really appreciate a concurrent approach so that we can discuss
alternatives.

http://comments.gmane.org/gmane.linux.kernel.stable/77650 is a reference
to the followup discussion when the patch has been dropped from the mmotm
last time.

Reported-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:01 -07:00
Vladimir Davydov
e8d9df3aba memcg: un-export __memcg_kmem_get_cache
It is only used in slab and should not be used anywhere else so there is
no need in exporting it.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:59 -07:00
Johannes Weiner
3dae7fec5e mm: memcontrol: remove hierarchy restrictions for swappiness and oom_control
Per-memcg swappiness and oom killing can currently not be tweaked on a
memcg that is part of a hierarchy, but not the root of that hierarchy.
Users have complained that they can't configure this when they turned on
hierarchy mode.  In fact, with hierarchy mode becoming the default, this
restriction disables the tunables entirely.

But there is no good reason for this restriction.  The settings for
swappiness and OOM killing are taken from whatever memcg whose limit
triggered reclaim and OOM invocation, regardless of its position in the
hierarchy tree.

Allow setting swappiness on any group.  The knob on the root memcg
already reads the global VM swappiness, make it writable as well.

Allow disabling the OOM killer on any non-root memcg.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:58 -07:00
Vladimir Davydov
52383431b3 mm: get rid of __GFP_KMEMCG
Currently to allocate a page that should be charged to kmemcg (e.g.
threadinfo), we pass __GFP_KMEMCG flag to the page allocator.  The page
allocated is then to be freed by free_memcg_kmem_pages.  Apart from
looking asymmetrical, this also requires intrusion to the general
allocation path.  So let's introduce separate functions that will
alloc/free pages charged to kmemcg.

The new functions are called alloc_kmem_pages and free_kmem_pages.  They
should be used when the caller actually would like to use kmalloc, but
has to fall back to the page allocator for the allocation is large.
They only differ from alloc_pages and free_pages in that besides
allocating or freeing pages they also charge them to the kmem resource
counter of the current memory cgroup.

[sfr@canb.auug.org.au: export kmalloc_order() to modules]
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:56 -07:00
Vladimir Davydov
5dfb417509 sl[au]b: charge slabs to kmemcg explicitly
We have only a few places where we actually want to charge kmem so
instead of intruding into the general page allocation path with
__GFP_KMEMCG it's better to explictly charge kmem there.  All kmem
charges will be easier to follow that way.

This is a step towards removing __GFP_KMEMCG.  It removes __GFP_KMEMCG
from memcg caches' allocflags.  Instead it makes slab allocation path
call memcg_charge_kmem directly getting memcg to charge from the cache's
memcg params.

This also eliminates any possibility of misaccounting an allocation
going from one memcg's cache to another memcg, because now we always
charge slabs against the memcg the cache belongs to.  That's why this
patch removes the big comment to memcg_kmem_get_cache.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:56 -07:00
Michal Hocko
6f6acb0051 memcg: fix swapcache charge from kernel thread context
Commit 284f39afea ("mm: memcg: push !mm handling out to page cache
charge function") explicitly checks for page cache charges without any
mm context (from kernel thread context[1]).

This seemed to be the only possible case where memory could be charged
without mm context so commit 03583f1a63 ("memcg: remove unnecessary
!mm check from try_get_mem_cgroup_from_mm()") removed the mm check from
get_mem_cgroup_from_mm().  This however caused another NULL ptr
dereference during early boot when loopback kernel thread splices to
tmpfs as reported by Stephan Kulow:

  BUG: unable to handle kernel NULL pointer dereference at 0000000000000360
  IP: get_mem_cgroup_from_mm.isra.42+0x2b/0x60
  Oops: 0000 [#1] SMP
  Modules linked in: btrfs dm_multipath dm_mod scsi_dh multipath raid10 raid456 async_raid6_recov async_memcpy async_pq raid6_pq async_xor xor async_tx raid1 raid0 md_mod parport_pc parport nls_utf8 isofs usb_storage iscsi_ibft iscsi_boot_sysfs arc4 ecb fan thermal nfs lockd fscache nls_iso8859_1 nls_cp437 sg st hid_generic usbhid af_packet sunrpc sr_mod cdrom ata_generic uhci_hcd virtio_net virtio_blk ehci_hcd usbcore ata_piix floppy processor button usb_common virtio_pci virtio_ring virtio edd squashfs loop ppa]
  CPU: 0 PID: 97 Comm: loop1 Not tainted 3.15.0-rc5-5-default #1
  Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011
  Call Trace:
    __mem_cgroup_try_charge_swapin+0x40/0xe0
    mem_cgroup_charge_file+0x8b/0xd0
    shmem_getpage_gfp+0x66b/0x7b0
    shmem_file_splice_read+0x18f/0x430
    splice_direct_to_actor+0xa2/0x1c0
    do_lo_receive+0x5a/0x60 [loop]
    loop_thread+0x298/0x720 [loop]
    kthread+0xc6/0xe0
    ret_from_fork+0x7c/0xb0

Also Branimir Maksimovic reported the following oops which is tiggered
for the swapcache charge path from the accounting code for kernel threads:

  CPU: 1 PID: 160 Comm: kworker/u8:5 Tainted: P           OE 3.15.0-rc5-core2-custom #159
  Hardware name: System manufacturer System Product Name/MAXIMUSV GENE, BIOS 1903 08/19/2013
  task: ffff880404e349b0 ti: ffff88040486a000 task.ti: ffff88040486a000
  RIP: get_mem_cgroup_from_mm.isra.42+0x2b/0x60
  Call Trace:
    __mem_cgroup_try_charge_swapin+0x45/0xf0
    mem_cgroup_charge_file+0x9c/0xe0
    shmem_getpage_gfp+0x62c/0x770
    shmem_write_begin+0x38/0x40
    generic_perform_write+0xc5/0x1c0
    __generic_file_aio_write+0x1d1/0x3f0
    generic_file_aio_write+0x4f/0xc0
    do_sync_write+0x5a/0x90
    do_acct_process+0x4b1/0x550
    acct_process+0x6d/0xa0
    do_exit+0x827/0xa70
    kthread+0xc3/0xf0

This patch fixes the issue by reintroducing mm check into
get_mem_cgroup_from_mm.  We could do the same trick in
__mem_cgroup_try_charge_swapin as we do for the regular page cache path
but it is not worth troubles.  The check is not that expensive and it is
better to have get_mem_cgroup_from_mm more robust.

[1] - http://marc.info/?l=linux-mm&m=139463617808941&w=2

Fixes: 03583f1a63 ("memcg: remove unnecessary !mm check from try_get_mem_cgroup_from_mm()")
Reported-and-tested-by: Stephan Kulow <coolo@suse.com>
Reported-by: Branimir Maksimovic <branimir.maksimovic@gmail.com>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-05-23 09:37:29 -07:00
Tejun Heo
ea280e7b40 memcg: update memcg_has_children() to use css_next_child()
Currently, memcg_has_children() and mem_cgroup_hierarchy_write()
directly test cgroup->children for list emptiness.  It's semantically
correct in traditional hierarchies as it actually wants to test for
any children dead or alive; however, cgroup->children is not a
published field and scheduled to go away.

This patch moves out .use_hierarchy test out of memcg_has_children()
and updates it to use css_next_child() to test whether there exists
any children.  With .use_hierarchy test moved out, it can also be used
by mem_cgroup_hierarchy_write().

A side note: As .use_hierarchy is going away, it doesn't really matter
but I'm not sure about how it's used in __memcg_activate_kmem().  The
condition tested by memcg_has_children() is mushy when seen from
userland as its result is affected by dead csses which aren't visible
from userland.  I think the rule would be a lot clearer if we have a
dedicated "freshly minted" flag which gets cleared when the first task
is migrated into it or the first child is created and then gate
activation with that.

v2: Added comment noting that testing use_hierarchy is the
    responsibility of the callers of memcg_has_children() as suggested
    by Michal Hocko.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
2014-05-16 13:22:48 -04:00
Michal Hocko
f61c42a7d9 memcg: remove tasks/children test from mem_cgroup_force_empty()
Tejun has correctly pointed out that tasks/children test in
mem_cgroup_force_empty is not correct because there is no other locking
which preserves this state throughout the rest of the function so both
new tasks can join the group or new children groups can be added while
somebody is writing to memory.force_empty. A new task would break
mem_cgroup_reparent_charges expectation that all failures as described
by mem_cgroup_force_empty_list are temporal and there is no way out.

The main use case for the knob as described by
Documentation/cgroups/memory.txt is to:
"
  The typical use case for this interface is before calling rmdir().
  Because rmdir() moves all pages to parent, some out-of-use page caches can be
  moved to the parent. If you want to avoid that, force_empty will be useful.
"

This means that reparenting is not really required as rmdir will
reparent pages implicitly from the safe context. If we remove it from
mem_cgroup_force_empty then we are safe even with existing tasks because
the number of reclaim attempts is bounded. Moreover the knob still does
what the documentation claims (modulo reparenting which doesn't make any
difference) and users might expect. Longterm we want to deprecate the
whole knob and put the reparented pages to the tail of parent LRU during
cgroup removal.

tj: Removed unused variable @cgrp from mem_cgroup_force_empty()

Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-05-16 13:22:48 -04:00
Tejun Heo
5c9d535b89 cgroup: remove css_parent()
cgroup in general is moving towards using cgroup_subsys_state as the
fundamental structural component and css_parent() was introduced to
convert from using cgroup->parent to css->parent.  It was quite some
time ago and we're moving forward with making css more prominent.

This patch drops the trivial wrapper css_parent() and let the users
dereference css->parent.  While at it, explicitly mark fields of css
which are public and immutable.

v2: New usage from device_cgroup.c converted.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Acked-by: "David S. Miller" <davem@davemloft.net>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Johannes Weiner <hannes@cmpxchg.org>
2014-05-16 13:22:48 -04:00
Tejun Heo
6770c64e5c cgroup: replace cftype->trigger() with cftype->write()
cftype->trigger() is pointless.  It's trivial to ignore the input
buffer from a regular ->write() operation.  Convert all ->trigger()
users to ->write() and remove ->trigger().

This patch doesn't introduce any visible behavior changes.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
2014-05-13 12:16:21 -04:00