10947 Commits

Author SHA1 Message Date
Linus Torvalds
e34bac726d Merge branch 'akpm' (patches from Andrew)
Merge updates from Andrew Morton:

 - various misc bits

 - most of MM (quite a lot of MM material is awaiting the merge of
   linux-next dependencies)

 - kasan

 - printk updates

 - procfs updates

 - MAINTAINERS

 - /lib updates

 - checkpatch updates

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (123 commits)
  init: reduce rootwait polling interval time to 5ms
  binfmt_elf: use vmalloc() for allocation of vma_filesz
  checkpatch: don't emit unified-diff error for rename-only patches
  checkpatch: don't check c99 types like uint8_t under tools
  checkpatch: avoid multiple line dereferences
  checkpatch: don't check .pl files, improve absolute path commit log test
  scripts/checkpatch.pl: fix spelling
  checkpatch: don't try to get maintained status when --no-tree is given
  lib/ida: document locking requirements a bit better
  lib/rbtree.c: fix typo in comment of ____rb_erase_color
  lib/Kconfig.debug: make CONFIG_STRICT_DEVMEM depend on CONFIG_DEVMEM
  MAINTAINERS: add drm and drm/i915 irc channels
  MAINTAINERS: add "C:" for URI for chat where developers hang out
  MAINTAINERS: add drm and drm/i915 bug filing info
  MAINTAINERS: add "B:" for URI where to file bugs
  get_maintainer: look for arbitrary letter prefixes in sections
  printk: add Kconfig option to set default console loglevel
  printk/sound: handle more message headers
  printk/btrfs: handle more message headers
  printk/kdb: handle more message headers
  ...
2016-12-12 20:50:02 -08:00
Linus Torvalds
e71c3978d6 Merge branch 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull smp hotplug updates from Thomas Gleixner:
 "This is the final round of converting the notifier mess to the state
  machine. The removal of the notifiers and the related infrastructure
  will happen around rc1, as there are conversions outstanding in other
  trees.

  The whole exercise removed about 2000 lines of code in total and in
  course of the conversion several dozen bugs got fixed. The new
  mechanism allows to test almost every hotplug step standalone, so
  usage sites can exercise all transitions extensively.

  There is more room for improvement, like integrating all the
  pointlessly different architecture mechanisms of synchronizing,
  setting cpus online etc into the core code"

* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (60 commits)
  tracing/rb: Init the CPU mask on allocation
  soc/fsl/qbman: Convert to hotplug state machine
  soc/fsl/qbman: Convert to hotplug state machine
  zram: Convert to hotplug state machine
  KVM/PPC/Book3S HV: Convert to hotplug state machine
  arm64/cpuinfo: Convert to hotplug state machine
  arm64/cpuinfo: Make hotplug notifier symmetric
  mm/compaction: Convert to hotplug state machine
  iommu/vt-d: Convert to hotplug state machine
  mm/zswap: Convert pool to hotplug state machine
  mm/zswap: Convert dst-mem to hotplug state machine
  mm/zsmalloc: Convert to hotplug state machine
  mm/vmstat: Convert to hotplug state machine
  mm/vmstat: Avoid on each online CPU loops
  mm/vmstat: Drop get_online_cpus() from init_cpu_node_state/vmstat_cpu_dead()
  tracing/rb: Convert to hotplug state machine
  oprofile/nmi timer: Convert to hotplug state machine
  net/iucv: Use explicit clean up labels in iucv_init()
  x86/pci/amd-bus: Convert to hotplug state machine
  x86/oprofile/nmi: Convert to hotplug state machine
  ...
2016-12-12 19:25:04 -08:00
zijun_hu
8f6066049c mm/percpu.c: fix panic triggered by BUG_ON() falsely
As shown by pcpu_build_alloc_info(), the number of units within a percpu
group is deduced by rounding up the number of CPUs within the group to
@upa boundary/ Therefore, the number of CPUs isn't equal to the units's
if it isn't aligned to @upa normally.  However, pcpu_page_first_chunk()
uses BUG_ON() to assert that one number is equal to the other roughly,
so a panic is maybe triggered by the BUG_ON() incorrectly.

In order to fix this issue, the number of CPUs is rounded up then
compared with units's and the BUG_ON() is replaced with a warning and
return of an error code as well, to keep system alive as much as
possible.

Link: http://lkml.kernel.org/r/57FCF07C.2020103@zoho.com
Signed-off-by: zijun_hu <zijun_hu@htc.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:09 -08:00
Dmitry Vyukov
64abdcb243 kasan: eliminate long stalls during quarantine reduction
Currently we dedicate 1/32 of RAM for quarantine and then reduce it by
1/4 of total quarantine size.  This can be a significant amount of
memory.  For example, with 4GB of RAM total quarantine size is 128MB and
it is reduced by 32MB at a time.  With 128GB of RAM total quarantine
size is 4GB and it is reduced by 1GB.  This leads to several problems:

 - freeing 1GB can take tens of seconds, causes rcu stall warnings and
   just introduces unexpected long delays at random places
 - if kmalloc() is called under a mutex, other threads stall on that
   mutex while a thread reduces quarantine
 - threads wait on quarantine_lock while one thread grabs a large batch
   of objects to evict
 - we walk the uncached list of object to free twice which makes all of
   the above worse
 - when a thread frees objects, they are already not accounted against
   global_quarantine.bytes; as the result we can have quarantine_size
   bytes in quarantine + unbounded amount of memory in large batches in
   threads that are in process of freeing

Reduce size of quarantine in smaller batches to reduce the delays.  The
only reason to reduce it in batches is amortization of overheads, the
new batch size of 1MB should be well enough to amortize spinlock
lock/unlock and few function calls.

Plus organize quarantine as a FIFO array of batches.  This allows to not
walk the list in quarantine_reduce() under quarantine_lock, which in
turn reduces contention and is just faster.

This improves performance of heavy load (syzkaller fuzzing) by ~20% with
4 CPUs and 32GB of RAM.  Also this eliminates frequent (every 5 sec)
drops of CPU consumption from ~400% to ~100% (one thread reduces
quarantine while others are waiting on a mutex).

Some reference numbers:
1. Machine with 4 CPUs and 4GB of memory. Quarantine size 128MB.
   Currently we free 32MB at at time.
   With new code we free 1MB at a time (1024 batches, ~128 are used).
2. Machine with 32 CPUs and 128GB of memory. Quarantine size 4GB.
   Currently we free 1GB at at time.
   With new code we free 8MB at a time (1024 batches, ~512 are used).
3. Machine with 4096 CPUs and 1TB of memory. Quarantine size 32GB.
   Currently we free 8GB at at time.
   With new code we free 4MB at a time (16K batches, ~8K are used).

Link: http://lkml.kernel.org/r/1478756952-18695-1-git-send-email-dvyukov@google.com
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:09 -08:00
Dmitry Vyukov
5c5c1f36ce kasan: support panic_on_warn
If user sets panic_on_warn, he wants kernel to panic if there is
anything barely wrong with the kernel.  KASAN-detected errors are
definitely not less benign than an arbitrary kernel WARNING.

Panic after KASAN errors if panic_on_warn is set.

We use this for continuous fuzzing where we want kernel to stop and
reboot on any error.

Link: http://lkml.kernel.org/r/1476694764-31986-1-git-send-email-dvyukov@google.com
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:09 -08:00
Hugh Dickins
49920d2878 mm: make transparent hugepage size public
Test programs want to know the size of a transparent hugepage.  While it
is commonly the same as the size of a hugetlbfs page (shown as
Hugepagesize in /proc/meminfo), that is not always so: powerpc
implements transparent hugepages in a different way from hugetlbfs
pages, so it's coincidence when their sizes are the same; and x86 and
others can support more than one hugetlbfs page size.

Add /sys/kernel/mm/transparent_hugepage/hpage_pmd_size to show the THP
size in bytes - it's the same for Anonymous and Shmem hugepages.  Call
it hpage_pmd_size (after HPAGE_PMD_SIZE) rather than hpage_size, in case
some transparent support for pud and pgd pages is added later.

Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1612052200290.13021@eggly.anvils
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:09 -08:00
Hugh Dickins
dc644a0737 mm: add three more cond_resched() in swapoff
Add a cond_resched() in the unuse_pmd_range() loop (so as to call it
even when pmd none or trans_huge, like zap_pmd_range() does); and in the
unuse_mm() loop (since that might skip over many vmas).  shmem_unuse()
and radix_tree_locate_item() look good enough already.

Those were the obvious places, but in fact the stalls came from
find_next_to_unuse(), which sometimes scans through many unused entries.
Apply scan_swap_map()'s LATENCY_LIMIT of 256 there too; and only go off
to test frontswap_map when a used entry is found.

Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1612052155140.13021@eggly.anvils
Signed-off-by: Hugh Dickins <hughd@google.com>
Reported-by: Eric Dumazet <edumazet@google.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:08 -08:00
Mel Gorman
a6de734bc0 mm, page_alloc: keep pcp count and list contents in sync if struct page is corrupted
Vlastimil Babka pointed out that commit 479f854a207c ("mm, page_alloc:
defer debugging checks of pages allocated from the PCP") will allow the
per-cpu list counter to be out of sync with the per-cpu list contents if
a struct page is corrupted.

The consequence is an infinite loop if the per-cpu lists get fully
drained by free_pcppages_bulk because all the lists are empty but the
count is positive.  The infinite loop occurs here

                do {
                        batch_free++;
                        if (++migratetype == MIGRATE_PCPTYPES)
                                migratetype = 0;
                        list = &pcp->lists[migratetype];
                } while (list_empty(list));

What the user sees is a bad page warning followed by a soft lockup with
interrupts disabled in free_pcppages_bulk().

This patch keeps the accounting in sync.

Fixes: 479f854a207c ("mm, page_alloc: defer debugging checks of pages allocated from the PCP")
Link: http://lkml.kernel.org/r/20161202112951.23346-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: <stable@vger.kernel.org>	[4.7+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:08 -08:00
Vlastimil Babka
d5a187daf5 mm, rmap: handle anon_vma_prepare() common case inline
anon_vma_prepare() is mostly a large "if (unlikely(...))" block, as the
expected common case is that an anon_vma already exists.  We could turn
the condition around and return 0, but it also makes sense to do it
inline and avoid a call for the common case.

Bloat-o-meter naturally shows that inlining the check has some code size
costs:

add/remove: 1/1 grow/shrink: 4/0 up/down: 475/-373 (102)
function                                     old     new   delta
__anon_vma_prepare                             -     359    +359
handle_mm_fault                             2744    2796     +52
hugetlb_cow                                 1146    1170     +24
hugetlb_fault                               2123    2145     +22
wp_page_copy                                1469    1487     +18
anon_vma_prepare                             373       -    -373

Checking the asm however confirms that the hot paths now avoid a call,
which is moved away.

[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20161116074005.22768-1-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:08 -08:00
Vlastimil Babka
46e8a3a08c mm, debug: print raw struct page data in __dump_page()
__dump_page() is used when a page metadata inconsistency is detected,
either by standard runtime checks, or extra checks in CONFIG_DEBUG_VM
builds.  It prints some of the relevant metadata, but not the whole
struct page, which is based on unions and interpretation is dependent on
the context.

This means that sometimes e.g.  a VM_BUG_ON_PAGE() checks certain field,
which is however not printed by __dump_page() and the resulting bug
report may then lack clues that could help in determining the root
cause.  This patch solves the problem by simply printing the whole
struct page word by word, so no part is missing, but the interpretation
of the data is left to developers.  This is similar to e.g.  x86_64 raw
stack dumps.

Example output:

 page:ffffea00000475c0 count:1 mapcount:0 mapping:          (null) index:0x0
 flags: 0x100000000000400(reserved)
 raw: 0100000000000400 0000000000000000 0000000000000000 00000001ffffffff
 raw: ffffea00000475e0 ffffea00000475e0 0000000000000000 0000000000000000
 page dumped because: VM_BUG_ON_PAGE(1)

[aryabinin@virtuozzo.com: suggested print_hex_dump()]
Link: http://lkml.kernel.org/r/2ff83214-70fe-741e-bf05-fe4a4073ec3e@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:08 -08:00
Aneesh Kumar K.V
953c66c2b2 mm: THP page cache support for ppc64
Add arch specific callback in the generic THP page cache code that will
deposit and withdarw preallocated page table.  Archs like ppc64 use this
preallocated table to store the hash pte slot information.

Testing:
kernel build of the patch series on tmpfs mounted with option huge=always

The related thp stat:
thp_fault_alloc 72939
thp_fault_fallback 60547
thp_collapse_alloc 603
thp_collapse_alloc_failed 0
thp_file_alloc 253763
thp_file_mapped 4251
thp_split_page 51518
thp_split_page_failed 1
thp_deferred_split_page 73566
thp_split_pmd 665
thp_zero_page_alloc 3
thp_zero_page_alloc_failed 0

[akpm@linux-foundation.org: remove unneeded parentheses, per Kirill]
Link: http://lkml.kernel.org/r/20161113150025.17942-2-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Michael Neuling <mikey@neuling.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:08 -08:00
Aneesh Kumar K.V
1dd38b6c27 mm: move vma_is_anonymous check within pmd_move_must_withdraw
Independent of whether the vma is for anonymous memory, some arches like
ppc64 would like to override pmd_move_must_withdraw().

One option is to encapsulate the vma_is_anonymous() check for general
architectures inside pmd_move_must_withdraw() so that is always called
and architectures that need unconditional overriding can override this
function.  ppc64 needs to override the function when the MMU is
configured to use hash PTE's.

[bsingharora@gmail.com: reworked changelog]
Link: http://lkml.kernel.org/r/20161113150025.17942-1-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Michael Neuling <mikey@neuling.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:08 -08:00
Joel Fernandes
763b218ddf mm: add preempt points into __purge_vmap_area_lazy()
Use cond_resched_lock to avoid holding the vmap_area_lock for a
potentially long time and thus creating bad latencies for various
workloads.

[hch: split from a larger patch by Joel, wrote the crappy changelog]
Link: http://lkml.kernel.org/r/1479474236-4139-11-git-send-email-hch@lst.de
Signed-off-by: Joel Fernandes <joelaf@google.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Tested-by: Jisheng Zhang <jszhang@marvell.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: John Dias <joaodias@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:08 -08:00
Christoph Hellwig
f9e0997767 mm: turn vmap_purge_lock into a mutex
The purge_lock spinlock causes high latencies with non RT kernel.  This
has been reported multiple times on lkml [1] [2] and affects
applications like audio.

This patch replaces it with a mutex to allow preemption while holding
the lock.

Thanks to Joel Fernandes for the detailed report and analysis as well as
an earlier attempt at fixing this issue.

[1] http://lists.openwall.net/linux-kernel/2016/03/23/29
[2] https://lkml.org/lkml/2016/10/9/59

Link: http://lkml.kernel.org/r/1479474236-4139-10-git-send-email-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Tested-by: Jisheng Zhang <jszhang@marvell.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: John Dias <joaodias@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:08 -08:00
Christoph Hellwig
5803ed292e mm: mark all calls into the vmalloc subsystem as potentially sleeping
We will take a sleeping lock in later in this series, so this adds the
proper safeguards.

Link: http://lkml.kernel.org/r/1479474236-4139-9-git-send-email-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Tested-by: Jisheng Zhang <jszhang@marvell.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: John Dias <joaodias@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:08 -08:00
Andrey Ryabinin
bf22e37a64 mm: add vfree_atomic()
We are going to use sleeping lock for freeing vmap.  However some
vfree() users want to free memory from atomic (but not from interrupt)
context.  For this we add vfree_atomic() - deferred variation of vfree()
which can be used in any atomic context (except NMIs).

[akpm@linux-foundation.org: tweak comment grammar]
[aryabinin@virtuozzo.com: use raw_cpu_ptr() instead of this_cpu_ptr()]
  Link: http://lkml.kernel.org/r/1481553981-3856-1-git-send-email-aryabinin@virtuozzo.com
Link: http://lkml.kernel.org/r/1479474236-4139-5-git-send-email-hch@lst.de
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Jisheng Zhang <jszhang@marvell.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: John Dias <joaodias@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:08 -08:00
Christoph Hellwig
0574ecd141 mm: refactor __purge_vmap_area_lazy()
Move the purge_lock synchronization to the callers, move the call to
purge_fragmented_blocks_allcpus at the beginning of the function to the
callers that need it, move the force_flush behavior to the caller that
needs it, and pass start and end by value instead of by reference.

No change in behavior.

Link: http://lkml.kernel.org/r/1479474236-4139-4-git-send-email-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Tested-by: Jisheng Zhang <jszhang@marvell.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: John Dias <joaodias@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:08 -08:00
Christoph Hellwig
9c3acf6043 mm: remove free_unmap_vmap_area_addr()
Just inline it into the only caller.

Link: http://lkml.kernel.org/r/1479474236-4139-3-git-send-email-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Tested-by: Jisheng Zhang <jszhang@marvell.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: John Dias <joaodias@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:08 -08:00
Christoph Hellwig
c8eef01e2f mm: remove free_unmap_vmap_area_noflush()
Patch series "reduce latency in __purge_vmap_area_lazy", v2.

This patch (of 10):

Sort out the long lock hold times in __purge_vmap_area_lazy.  It is
based on a patch from Joel.

Inline free_unmap_vmap_area_noflush() it into the only caller.

Link: http://lkml.kernel.org/r/1479474236-4139-2-git-send-email-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Tested-by: Jisheng Zhang <jszhang@marvell.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: John Dias <joaodias@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:08 -08:00
Johannes Weiner
b538899878 mm: workingset: update shadow limit to reflect bigger active list
Since commit 59dc76b0d4df ("mm: vmscan: reduce size of inactive file
list") the size of the active file list is no longer limited to half of
memory.  Increase the shadow node limit accordingly to avoid throwing
out shadow entries that might still result in eligible refaults.

The exact size of the active list now depends on the overall size of the
page cache, but converges toward taking up most of the space:

In mm/vmscan.c::inactive_list_is_low(),

 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB

It would be possible to apply the same precise ratios when determining
the limit for radix tree nodes containing shadow entries, but since it
is merely an approximation of the oldest refault distances in the wild
and the code also makes assumptions about the node population density,
keep it simple and always target the full cache size.

While at it, clarify the comment and the formula for memory footprint.

Link: http://lkml.kernel.org/r/20161117214701.29000-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:08 -08:00
Johannes Weiner
dbc446b88e mm: workingset: restore refault tracking for single-page files
Shadow entries in the page cache used to be accounted behind the radix
tree implementation's back in the upper bits of node->count, and the
radix tree code extending a single-entry tree with a shadow entry in
root->rnode would corrupt that counter.  As a result, we could not put
shadow entries at index 0 if the tree didn't have any other entries, and
that means no refault detection for any single-page file.

Now that the shadow entries are tracked natively in the radix tree's
exceptional counter, this is no longer necessary.  Extending and
shrinking the tree from and to single entries in root->rnode now does
the right thing when the entry is exceptional, remove that limitation.

Link: http://lkml.kernel.org/r/20161117193244.GF23430@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <mawilcox@linuxonhyperv.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:08 -08:00
Johannes Weiner
14b468791f mm: workingset: move shadow entry tracking to radix tree exceptional tracking
Currently, we track the shadow entries in the page cache in the upper
bits of the radix_tree_node->count, behind the back of the radix tree
implementation.  Because the radix tree code has no awareness of them,
we rely on random subtleties throughout the implementation (such as the
node->count != 1 check in the shrinking code, which is meant to exclude
multi-entry nodes but also happens to skip nodes with only one shadow
entry, as that's accounted in the upper bits).  This is error prone and
has, in fact, caused the bug fixed in d3798ae8c6f3 ("mm: filemap: don't
plant shadow entries without radix tree node").

To remove these subtleties, this patch moves shadow entry tracking from
the upper bits of node->count to the existing counter for exceptional
entries.  node->count goes back to being a simple counter of valid
entries in the tree node and can be shrunk to a single byte.

This vastly simplifies the page cache code.  All accounting happens
natively inside the radix tree implementation, and maintaining the LRU
linkage of shadow nodes is consolidated into a single function in the
workingset code that is called for leaf nodes affected by a change in
the page cache tree.

This also removes the last user of the __radix_delete_node() return
value.  Eliminate it.

Link: http://lkml.kernel.org/r/20161117193211.GE23430@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <mawilcox@linuxonhyperv.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:08 -08:00
Johannes Weiner
4d693d0860 lib: radix-tree: update callback for changing leaf nodes
Support handing __radix_tree_replace() a callback that gets invoked for
all leaf nodes that change or get freed as a result of the slot
replacement, to assist users tracking nodes with node->private_list.

This prepares for putting page cache shadow entries into the radix tree
root again and drastically simplifying the shadow tracking.

Link: http://lkml.kernel.org/r/20161117193134.GD23430@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Jan Kara <jack@suse.cz>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <mawilcox@linuxonhyperv.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:08 -08:00
Johannes Weiner
6d75f366b9 lib: radix-tree: check accounting of existing slot replacement users
The bug in khugepaged fixed earlier in this series shows that radix tree
slot replacement is fragile; and it will become more so when not only
NULL<->!NULL transitions need to be caught but transitions from and to
exceptional entries as well.  We need checks.

Re-implement radix_tree_replace_slot() on top of the sanity-checked
__radix_tree_replace().  This requires existing callers to also pass the
radix tree root, but it'll warn us when somebody replaces slots with
contents that need proper accounting (transitions between NULL entries,
real entries, exceptional entries) and where a replacement through the
slot pointer would corrupt the radix tree node counts.

Link: http://lkml.kernel.org/r/20161117193021.GB23430@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Jan Kara <jack@suse.cz>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <mawilcox@linuxonhyperv.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:08 -08:00
Johannes Weiner
f7942430e4 lib: radix-tree: native accounting of exceptional entries
The way the page cache is sneaking shadow entries of evicted pages into
the radix tree past the node entry accounting and tracking them manually
in the upper bits of node->count is fraught with problems.

These shadow entries are marked in the tree as exceptional entries,
which are a native concept to the radix tree.  Maintain an explicit
counter of exceptional entries in the radix tree node.  Subsequent
patches will switch shadow entry tracking over to that counter.

DAX and shmem are the other users of exceptional entries.  Since slot
replacements that change the entry type from regular to exceptional must
now be accounted, introduce a __radix_tree_replace() function that does
replacement and accounting, and switch DAX and shmem over.

The increase in radix tree node size is temporary.  A followup patch
switches the shadow tracking to this new scheme and we'll no longer need
the upper bits in node->count and shrink that back to one byte.

Link: http://lkml.kernel.org/r/20161117192945.GA23430@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <mawilcox@linuxonhyperv.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:08 -08:00
Johannes Weiner
b936887e87 mm: workingset: turn shadow node shrinker bugs into warnings
When the shadow page shrinker tries to reclaim a radix tree node but
finds it in an unexpected state - it should contain no pages, and
non-zero shadow entries - there is no need to kill the executing task or
even the entire system.  Warn about the invalid state, then leave that
tree node be.  Simply don't put it back on the shadow LRU for future
reclaim and move on.

Link: http://lkml.kernel.org/r/20161117191138.22769-4-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <mawilcox@linuxonhyperv.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:08 -08:00
Johannes Weiner
59749e6ce5 mm: khugepaged: fix radix tree node leak in shmem collapse error path
The radix tree counts valid entries in each tree node.  Entries stored
in the tree cannot be removed by simpling storing NULL in the slot or
the internal counters will be off and the node never gets freed again.

When collapsing a shmem page fails, restore the holes that were filled
with radix_tree_insert() with a proper radix tree deletion.

Fixes: f3f0e1d2150b ("khugepaged: add support of collapse for tmpfs/shmem pages")
Link: http://lkml.kernel.org/r/20161117191138.22769-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Jan Kara <jack@suse.cz>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <mawilcox@linuxonhyperv.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:08 -08:00
Johannes Weiner
91a45f7107 mm: khugepaged: close use-after-free race during shmem collapsing
Patch series "mm: workingset: radix tree subtleties & single-page file
refaults", v3.

This is another revision of the radix tree / workingset patches based on
feedback from Jan and Kirill.

This is a follow-up to d3798ae8c6f3 ("mm: filemap: don't plant shadow
entries without radix tree node").  That patch fixed an issue that was
caused mainly by the page cache sneaking special shadow page entries
into the radix tree and relying on subtleties in the radix tree code to
make that work.  The fix also had to stop tracking refaults for
single-page files because shadow pages stored as direct pointers in
radix_tree_root->rnode weren't properly handled during tree extension.

These patches make the radix tree code explicitely support and track
such special entries, to eliminate the subtleties and to restore the
thrash detection for single-page files.

This patch (of 9):

When a radix tree iteration drops the tree lock, another thread might
swoop in and free the node holding the current slot.  The iteration
needs to do another tree lookup from the current index to continue.

[kirill.shutemov@linux.intel.com: re-lookup for replacement]
Fixes: f3f0e1d2150b ("khugepaged: add support of collapse for tmpfs/shmem pages")
Link: http://lkml.kernel.org/r/20161117191138.22769-2-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <mawilcox@linuxonhyperv.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:08 -08:00
Jens Axboe
9491ae4aad mm: don't cap request size based on read-ahead setting
We ran into a funky issue, where someone doing 256K buffered reads saw
128K requests at the device level.  Turns out it is read-ahead capping
the request size, since we use 128K as the default setting.  This
doesn't make a lot of sense - if someone is issuing 256K reads, they
should see 256K reads, regardless of the read-ahead setting, if the
underlying device can support a 256K read in a single command.

This patch introduces a bdi hint, io_pages.  This is the soft max IO
size for the lower level, I've hooked it up to the bdev settings here.
Read-ahead is modified to issue the maximum of the user request size,
and the read-ahead max size, but capped to the max request size on the
device side.  The latter is done to avoid reading ahead too much, if the
application asks for a huge read.  With this patch, the kernel behaves
like the application expects.

Link: http://lkml.kernel.org/r/1479498073-8657-1-git-send-email-axboe@fb.com
Signed-off-by: Jens Axboe <axboe@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:08 -08:00
Jérémy Lefaure
f1f5929cd9 shmem: fix compilation warnings on unused functions
Compiling shmem.c with SHMEM and TRANSAPRENT_HUGE_PAGECACHE enabled
raises warnings on two unused functions when CONFIG_TMPFS and
CONFIG_SYSFS are both disabled:

  mm/shmem.c:390:20: warning: `shmem_format_huge' defined but not used [-Wunused-function]
   static const char *shmem_format_huge(int huge)
                      ^~~~~~~~~~~~~~~~~
  mm/shmem.c:373:12: warning: `shmem_parse_huge' defined but not used [-Wunused-function]
   static int shmem_parse_huge(const char *str)
               ^~~~~~~~~~~~~~~~

A conditional compilation on tmpfs or sysfs removes the warnings.

Link: http://lkml.kernel.org/r/20161118055749.11313-1-jeremy.lefaure@lse.epita.fr
Signed-off-by: Jérémy Lefaure <jeremy.lefaure@lse.epita.fr>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:08 -08:00
Kirill A. Shutemov
c70b647d38 mm/filemap.c: add comment for confusing logic in page_cache_tree_insert()
Unlike THP, hugetlb pages are represented by one entry in the
radix-tree.

[akpm@linux-foundation.org: tweak comment]
Link: http://lkml.kernel.org/r/20161110163640.126124-1-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:08 -08:00
Heiko Carstens
c7142aead8 mm/pkeys: generate pkey system call code only if ARCH_HAS_PKEYS is selected
Having code for the pkey_mprotect, pkey_alloc and pkey_free system calls
makes only sense if ARCH_HAS_PKEYS is selected.  If not selected these
system calls will always return -ENOSPC or -EINVAL.

To simplify things and have less code generate the pkey system call code
only if ARCH_HAS_PKEYS is selected.

For architectures which have already wired up the system calls, but do
not select ARCH_HAS_PKEYS this will result in less generated code and a
different return code: the three system calls will now always return
-ENOSYS, using the cond_syscall mechanism.

For architectures which have not wired up the system calls less
unreachable code will be generated.

Link: http://lkml.kernel.org/r/20161114111251.70084-1-heiko.carstens@de.ibm.com
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:07 -08:00
Reza Arbab
41a9ada3e6 of/fdt: mark hotpluggable memory
When movable nodes are enabled, any node containing only hotpluggable
memory is made movable at boot time.

On x86, hotpluggable memory is discovered by parsing the ACPI SRAT,
making corresponding calls to memblock_mark_hotplug().

If we introduce a dt property to describe memory as hotpluggable,
configs supporting early fdt may then also do this marking and use
movable nodes.

Link: http://lkml.kernel.org/r/1479160961-25840-5-git-send-email-arbab@linux.vnet.ibm.com
Signed-off-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Tested-by: Balbir Singh <bsingharora@gmail.com>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Alistair Popple <apopple@au1.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Cc: Frank Rowand <frowand.list@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Stewart Smith <stewart@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:07 -08:00
Reza Arbab
114cf3cc55 mm: enable CONFIG_MOVABLE_NODE on non-x86 arches
To support movable memory nodes (CONFIG_MOVABLE_NODE), at least one of
the following must be true:

1. This config has the capability to identify movable nodes at boot.
   Right now, only x86 can do this.

2. Our config supports memory hotplug, which means that a movable node
   can be created by hotplugging all of its memory into ZONE_MOVABLE.

Fix the Kconfig definition of CONFIG_MOVABLE_NODE, which currently
recognizes (1), but not (2).

Link: http://lkml.kernel.org/r/1479160961-25840-4-git-send-email-arbab@linux.vnet.ibm.com
Signed-off-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Alistair Popple <apopple@au1.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Cc: Frank Rowand <frowand.list@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Stewart Smith <stewart@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:07 -08:00
Reza Arbab
39fa104d5b mm: remove x86-only restriction of movable_node
In commit c5320926e370 ("mem-hotplug: introduce movable_node boot
option"), the memblock allocation direction is changed to bottom-up and
then back to top-down like this:

1. memblock_set_bottom_up(true), called by cmdline_parse_movable_node().
2. memblock_set_bottom_up(false), called by x86's numa_init().

Even though (1) occurs in generic mm code, it is wrapped by #ifdef
CONFIG_MOVABLE_NODE, which depends on X86_64.

This means that when we extend CONFIG_MOVABLE_NODE to non-x86 arches,
things will be unbalanced.  (1) will happen for them, but (2) will not.

This toggle was added in the first place because x86 has a delay between
adding memblocks and marking them as hotpluggable.  Since other arches
do this marking either immediately or not at all, they do not require
the bottom-up toggle.

So, resolve things by moving (1) from cmdline_parse_movable_node() to
x86's setup_arch(), immediately after the movable_node parameter has
been parsed.

Link: http://lkml.kernel.org/r/1479160961-25840-3-git-send-email-arbab@linux.vnet.ibm.com
Signed-off-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Alistair Popple <apopple@au1.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Cc: Frank Rowand <frowand.list@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Stewart Smith <stewart@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:07 -08:00
Piotr Kwapulinski
8d303e44e9 mm/mempolicy.c: forbid static or relative flags for local NUMA mode
The MPOL_F_STATIC_NODES and MPOL_F_RELATIVE_NODES flags are irrelevant
when setting them for MPOL_LOCAL NUMA memory policy via set_mempolicy or
mbind.

Return the "invalid argument" from set_mempolicy and mbind whenever any
of these flags is passed along with MPOL_LOCAL.

It is consistent with MPOL_PREFERRED passed with empty nodemask.

It slightly shortens the execution time in paths where these flags are
used e.g.  when trying to rebind the NUMA nodes for changes in cgroups
cpuset mems (mpol_rebind_preferred()) or when just printing the mempolicy
structure (/proc/PID/numa_maps).  Isolated tests done.

Link: http://lkml.kernel.org/r/20161027163037.4089-1-kwapulinski.piotr@gmail.com
Signed-off-by: Piotr Kwapulinski <kwapulinski.piotr@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Liang Chen <liangchen.linux@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Nathan Zimmer <nzimmer@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:07 -08:00
Lorenzo Stoakes
80a7951627 mm: fix up get_user_pages* comments
In the previous round of get_user_pages* changes comments attached to
__get_user_pages_unlocked() and get_user_pages_unlocked() were rendered
incorrect, this patch corrects them.

In addition the get_user_pages_unlocked() comment seems to have already
been outdated as it referred to tsk, mm parameters which were removed in
c12d2da5 ("mm/gup: Remove the macro overload API migration helpers from
the get_user*() APIs"), this patch fixes this also.

Link: http://lkml.kernel.org/r/20161025233435.5338-1-lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:07 -08:00
Aneesh Kumar K.V
692a68c154 mm: remove the page size change check in tlb_remove_page
Now that we check for page size change early in the loop, we can
partially revert e9d55e157034a ("mm: change the interface for
__tlb_remove_page").

This simplies the code much, by removing the need to track the last
address with which we adjusted the range.  We also go back to the older
way of filling the mmu_gather array, ie, we add an entry and then check
whether the gather batch is full.

Link: http://lkml.kernel.org/r/20161026084839.27299-6-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:07 -08:00
Aneesh Kumar K.V
07e326610e mm: add tlb_remove_check_page_size_change to track page size change
With commit e77b0852b551 ("mm/mmu_gather: track page size with mmu
gather and force flush if page size change") we added the ability to
force a tlb flush when the page size change in a mmu_gather loop.  We
did that by checking for a page size change every time we added a page
to mmu_gather for lazy flush/remove.  We can improve that by moving the
page size change check early and not doing it every time we add a page.

This also helps us to do tlb flush when invalidating a range covering
dax mapping.  Wrt dax mapping we don't have a backing struct page and
hence we don't call tlb_remove_page, which earlier forced the tlb flush
on page size change.  Moving the page size change check earlier means we
will do the same even for dax mapping.

We also avoid doing this check on architecture other than powerpc.

In a later patch we will remove page size check from tlb_remove_page().

Link: http://lkml.kernel.org/r/20161026084839.27299-5-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:07 -08:00
Aneesh Kumar K.V
b528e4b640 mm/hugetlb: add tlb_remove_hugetlb_entry for handling hugetlb pages
This add tlb_remove_hugetlb_entry similar to tlb_remove_pmd_tlb_entry.

Link: http://lkml.kernel.org/r/20161026084839.27299-4-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:07 -08:00
Aneesh Kumar K.V
c0f2e176f8 mm: use the correct page size when removing the page
We are removing a pmd hugepage here.  Use the correct page size.

Link: http://lkml.kernel.org/r/20161026084839.27299-2-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:07 -08:00
Arnd Bergmann
23f919d4ad shmem: avoid maybe-uninitialized warning
After enabling -Wmaybe-uninitialized warnings, we get a false-postive
warning for shmem:

  mm/shmem.c: In function `shmem_getpage_gfp':
  include/linux/spinlock.h:332:21: error: `info' may be used uninitialized in this function [-Werror=maybe-uninitialized]

This can be easily avoided, since the correct 'info' pointer is known at
the time we first enter the function, so we can simply move the
initialization up.  Moving it before the first label avoids the warning
and lets us remove two later initializations.

Note that the function is so hard to read that it not only confuses the
compiler, but also most readers and without this patch it could\ easily
break if one of the 'goto's changed.

Link: https://www.spinics.net/lists/kernel/msg2368133.html
Link: http://lkml.kernel.org/r/20161024205725.786455-1-arnd@arndb.de
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:07 -08:00
Ming Ling
6afcf8ef0c mm, compaction: fix NR_ISOLATED_* stats for pfn based migration
Since commit bda807d44454 ("mm: migrate: support non-lru movable page
migration") isolate_migratepages_block) can isolate !PageLRU pages which
would acct_isolated account as NR_ISOLATED_*.  Accounting these non-lru
pages NR_ISOLATED_{ANON,FILE} doesn't make any sense and it can misguide
heuristics based on those counters such as pgdat_reclaimable_pages resp.
too_many_isolated which would lead to unexpected stalls during the
direct reclaim without any good reason.  Note that
__alloc_contig_migrate_range can isolate a lot of pages at once.

On mobile devices such as 512M ram android Phone, it may use a big zram
swap.  In some cases zram(zsmalloc) uses too many non-lru but
migratedable pages, such as:

      MemTotal: 468148 kB
      Normal free:5620kB
      Free swap:4736kB
      Total swap:409596kB
      ZRAM: 164616kB(zsmalloc non-lru pages)
      active_anon:60700kB
      inactive_anon:60744kB
      active_file:34420kB
      inactive_file:37532kB

Fix this by only accounting lru pages to NR_ISOLATED_* in
isolate_migratepages_block right after they were isolated and we still
know they were on LRU.  Drop acct_isolated because it is called after
the fact and we've lost that information.  Batching per-cpu counter
doesn't make much improvement anyway.  Also make sure that we uncharge
only LRU pages when putting them back on the LRU in
putback_movable_pages resp.  when unmap_and_move migrates the page.

[mhocko@suse.com: replace acct_isolated() with direct counting]
Fixes: bda807d44454 ("mm: migrate: support non-lru movable page migration")
Link: http://lkml.kernel.org/r/20161019080240.9682-1-mhocko@kernel.org
Signed-off-by: Ming Ling <ming.ling@spreadtrum.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:07 -08:00
Michal Hocko
6d8409580b mm, mempolicy: clean up __GFP_THISNODE confusion in policy_zonelist
__GFP_THISNODE is documented to enforce the allocation to be satisified
from the requested node with no fallbacks or placement policy
enforcements.  policy_zonelist seemingly breaks this semantic if the
current policy is MPOL_MBIND and instead of taking the node it will
fallback to the first node in the mask if the requested one is not in
the mask.  This is confusing to say the least because it fact we
shouldn't ever go that path.  First tasks shouldn't be scheduled on CPUs
with nodes outside of their mempolicy binding.  And secondly
policy_zonelist is called only from 3 places:

 - huge_zonelist - never should do __GFP_THISNODE when going this path

 - alloc_pages_vma - which shouldn't depend on __GFP_THISNODE either

 - alloc_pages_current - which uses default_policy id __GFP_THISNODE is
   used

So we shouldn't even need to care about this possibility and can drop
the confusing code.  Let's keep a WARN_ON_ONCE in place to catch
potential users and fix them up properly (aka use a different allocation
function which ignores mempolicy).

[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20161013125958.32155-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:07 -08:00
David Rientjes
fd60775aea mm, thp: avoid unlikely branches for split_huge_pmd
While doing MADV_DONTNEED on a large area of thp memory, I noticed we
encountered many unlikely() branches in profiles for each backing
hugepage.  This is because zap_pmd_range() would call split_huge_pmd(),
which rechecked the conditions that were already validated, but as part
of an unlikely() branch.

Avoid the unlikely() branch when in a context where pmd is known to be
good for __split_huge_pmd() directly.

Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1610181600300.84525@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:07 -08:00
zijun_hu
3f5000693f mm/vmalloc.c: simplify /proc/vmallocinfo implementation
Many seq_file helpers exist for simplifying implementation of virtual
files especially, for /proc nodes.  however, the helpers for iteration
over list_head are available but aren't adopted to implement
/proc/vmallocinfo currently.

Simplify /proc/vmallocinfo implementation by using existing seq_file
helpers.

Link: http://lkml.kernel.org/r/57FDF2E5.1000201@zoho.com
Signed-off-by: zijun_hu <zijun_hu@htc.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:07 -08:00
Minchan Kim
29fac03bef mm: make unreserve highatomic functions reliable
Currently, unreserve_highatomic_pageblock bails out if it found
highatomic pageblock regardless of really moving free pages from the one
so that it could mitigate unreserve logic's goal which saves OOM of a
process.

This patch makes unreserve functions bail out only if it moves some
pages out of !highatomic free list to avoid such false positive.

Another potential problem is that by race between page freeing and
reserve highatomic function, pages could be in highatomic free list even
though the pageblock is !high atomic migratetype.  In that case,
unreserve_highatomic_pageblock can be void if count of highatomic
reserve is less than pageblock_nr_pages.  We could solve it simply via
draining all of reserved pages before the OOM.  It would have a
safeguard role to exhuast reserved pages before converging to OOM.

Link: http://lkml.kernel.org/r/1476259429-18279-5-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sangseok Lee <sangseok.lee@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:07 -08:00
Minchan Kim
04c8716f7b mm: try to exhaust highatomic reserve before the OOM
I got OOM report from production team with v4.4 kernel.  It had enough
free memory but failed to allocate GFP_KERNEL order-0 page and finally
encountered OOM kill.  It occured during QA process which launches
several apps, switching and so on.  It happned rarely.  IOW, In normal
situation, it was not a problem but if we are unluck so that several
apps uses peak memory at the same time, it can happen.  If we manage to
pass the phase, the system can go working well.

I could reproduce it with my test(memory spike easily.  Look at below.

The reason is free pages(19M) of DMA32 zone are reserved for
HIGHORDERATOMIC and doesn't unreserved before the OOM.

  balloon invoked oom-killer: gfp_mask=0x24280ca(GFP_HIGHUSER_MOVABLE|__GFP_ZERO), order=0, oom_score_adj=0
  balloon cpuset=/ mems_allowed=0
  CPU: 1 PID: 8473 Comm: balloon Tainted: G        W  OE   4.8.0-rc7-00219-g3f74c9559583-dirty #3161
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
  Call Trace:
    dump_stack+0x63/0x90
    dump_header+0x5c/0x1ce
    oom_kill_process+0x22e/0x400
    out_of_memory+0x1ac/0x210
    __alloc_pages_nodemask+0x101e/0x1040
    handle_mm_fault+0xa0a/0xbf0
    __do_page_fault+0x1dd/0x4d0
    trace_do_page_fault+0x43/0x130
    do_async_page_fault+0x1a/0xa0
    async_page_fault+0x28/0x30
  Mem-Info:
  active_anon:383949 inactive_anon:106724 isolated_anon:0
   active_file:15 inactive_file:44 isolated_file:0
   unevictable:0 dirty:0 writeback:24 unstable:0
   slab_reclaimable:2483 slab_unreclaimable:3326
   mapped:0 shmem:0 pagetables:1906 bounce:0
   free:6898 free_pcp:291 free_cma:0
  Node 0 active_anon:1535796kB inactive_anon:426896kB active_file:60kB inactive_file:176kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:0kB dirty:0kB writeback:96kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:1418 all_unreclaimable? no
  DMA free:8188kB min:44kB low:56kB high:68kB active_anon:7648kB inactive_anon:0kB active_file:0kB inactive_file:4kB unevictable:0kB writepending:0kB present:15992kB managed:15908kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:20kB kernel_stack:0kB pagetables:0kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
  lowmem_reserve[]: 0 1952 1952 1952
  DMA32 free:19404kB min:5628kB low:7624kB high:9620kB active_anon:1528148kB inactive_anon:426896kB active_file:60kB inactive_file:420kB unevictable:0kB writepending:96kB present:2080640kB managed:2030092kB mlocked:0kB slab_reclaimable:9932kB slab_unreclaimable:13284kB kernel_stack:2496kB pagetables:7624kB bounce:0kB free_pcp:900kB local_pcp:112kB free_cma:0kB
  lowmem_reserve[]: 0 0 0 0
  DMA: 0*4kB 0*8kB 0*16kB 0*32kB 0*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 2*4096kB (H) = 8192kB
  DMA32: 7*4kB (H) 8*8kB (H) 30*16kB (H) 31*32kB (H) 14*64kB (H) 9*128kB (H) 2*256kB (H) 2*512kB (H) 4*1024kB (H) 5*2048kB (H) 0*4096kB = 19484kB
  51131 total pagecache pages
  50795 pages in swap cache
  Swap cache stats: add 3532405601, delete 3532354806, find 124289150/1822712228
  Free swap  = 8kB
  Total swap = 255996kB
  524158 pages RAM
  0 pages HighMem/MovableOnly
  12658 pages reserved
  0 pages cma reserved
  0 pages hwpoisoned

Another example exceeded the limit by the race is

  in:imklog: page allocation failure: order:0, mode:0x2280020(GFP_ATOMIC|__GFP_NOTRACK)
  CPU: 0 PID: 476 Comm: in:imklog Tainted: G            E   4.8.0-rc7-00217-g266ef83c51e5-dirty #3135
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
  Call Trace:
    dump_stack+0x63/0x90
    warn_alloc_failed+0xdb/0x130
    __alloc_pages_nodemask+0x4d6/0xdb0
    new_slab+0x339/0x490
    ___slab_alloc.constprop.74+0x367/0x480
    __slab_alloc.constprop.73+0x20/0x40
    __kmalloc+0x1a4/0x1e0
    alloc_indirect.isra.14+0x1d/0x50
    virtqueue_add_sgs+0x1c4/0x470
    __virtblk_add_req+0xae/0x1f0
    virtio_queue_rq+0x12d/0x290
    __blk_mq_run_hw_queue+0x239/0x370
    blk_mq_run_hw_queue+0x8f/0xb0
    blk_mq_insert_requests+0x18c/0x1a0
    blk_mq_flush_plug_list+0x125/0x140
    blk_flush_plug_list+0xc7/0x220
    blk_finish_plug+0x2c/0x40
    __do_page_cache_readahead+0x196/0x230
    filemap_fault+0x448/0x4f0
    ext4_filemap_fault+0x36/0x50
    __do_fault+0x75/0x140
    handle_mm_fault+0x84d/0xbe0
    __do_page_fault+0x1dd/0x4d0
    trace_do_page_fault+0x43/0x130
    do_async_page_fault+0x1a/0xa0
    async_page_fault+0x28/0x30
  Mem-Info:
  active_anon:363826 inactive_anon:121283 isolated_anon:32
   active_file:65 inactive_file:152 isolated_file:0
   unevictable:0 dirty:0 writeback:46 unstable:0
   slab_reclaimable:2778 slab_unreclaimable:3070
   mapped:112 shmem:0 pagetables:1822 bounce:0
   free:9469 free_pcp:231 free_cma:0
  Node 0 active_anon:1455304kB inactive_anon:485132kB active_file:260kB inactive_file:608kB unevictable:0kB isolated(anon):128kB isolated(file):0kB mapped:448kB dirty:0kB writeback:184kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:13641 all_unreclaimable? no
  DMA free:7748kB min:44kB low:56kB high:68kB active_anon:7944kB inactive_anon:104kB active_file:0kB inactive_file:0kB unevictable:0kB writepending:0kB present:15992kB managed:15908kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:108kB kernel_stack:0kB pagetables:4kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
  lowmem_reserve[]: 0 1952 1952 1952
  DMA32 free:30128kB min:5628kB low:7624kB high:9620kB active_anon:1447360kB inactive_anon:485028kB active_file:260kB inactive_file:608kB unevictable:0kB writepending:184kB present:2080640kB managed:2030132kB mlocked:0kB slab_reclaimable:11112kB slab_unreclaimable:12172kB kernel_stack:2400kB pagetables:7284kB bounce:0kB free_pcp:924kB local_pcp:72kB free_cma:0kB
  lowmem_reserve[]: 0 0 0 0
  DMA: 7*4kB (UE) 3*8kB (UH) 1*16kB (M) 0*32kB 2*64kB (U) 1*128kB (M) 1*256kB (U) 0*512kB 1*1024kB (U) 1*2048kB (U) 1*4096kB (H) = 7748kB
  DMA32: 10*4kB (H) 3*8kB (H) 47*16kB (H) 38*32kB (H) 5*64kB (H) 1*128kB (H) 2*256kB (H) 3*512kB (H) 3*1024kB (H) 3*2048kB (H) 4*4096kB (H) = 30128kB
  2775 total pagecache pages
  2536 pages in swap cache
  Swap cache stats: add 206786828, delete 206784292, find 7323106/106686077
  Free swap  = 108744kB
  Total swap = 255996kB
  524158 pages RAM
  0 pages HighMem/MovableOnly
  12648 pages reserved
  0 pages cma reserved
  0 pages hwpoisoned

It's weird to show that zone has enough free memory above min watermark
but OOMed with 4K GFP_KERNEL allocation due to reserved highatomic
pages.  As last resort, try to unreserve highatomic pages again and if
it has moved pages to non-highatmoc free list, retry reclaim once more.

Link: http://lkml.kernel.org/r/1476259429-18279-4-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sangseok Lee <sangseok.lee@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:07 -08:00
Minchan Kim
4855e4a7f2 mm: prevent double decrease of nr_reserved_highatomic
There is race between page freeing and unreserved highatomic.

 CPU 0				    CPU 1

    free_hot_cold_page
      mt = get_pfnblock_migratetype
      set_pcppage_migratetype(page, mt)
    				    unreserve_highatomic_pageblock
    				    spin_lock_irqsave(&zone->lock)
    				    move_freepages_block
    				    set_pageblock_migratetype(page)
    				    spin_unlock_irqrestore(&zone->lock)
      free_pcppages_bulk
        __free_one_page(mt) <- mt is stale

By above race, a page on CPU 0 could go non-highorderatomic free list
since the pageblock's type is changed.  By that, unreserve logic of
highorderatomic can decrease reserved count on a same pageblock severak
times and then it will make mismatch between nr_reserved_highatomic and
the number of reserved pageblock.

So, this patch verifies whether the pageblock is highatomic or not and
decrease the count only if the pageblock is highatomic.

Link: http://lkml.kernel.org/r/1476259429-18279-3-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sangseok Lee <sangseok.lee@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:07 -08:00
Minchan Kim
88ed365ea2 mm: don't steal highatomic pageblock
Patch series "use up highorder free pages before OOM", v3.

I got OOM report from production team with v4.4 kernel.  It had enough
free memory but failed to allocate GFP_KERNEL order-0 page and finally
encountered OOM kill.  It occured during QA process which launches
several apps, switching and so on.  It happned rarely.  IOW, In normal
situation, it was not a problem but if we are unluck so that several
apps uses peak memory at the same time, it can happen.  If we manage to
pass the phase, the system can go working well.

I could reproduce it with my test(memory spike easily.  Look at below.

The reason is free pages(19M) of DMA32 zone are reserved for
HIGHORDERATOMIC and doesn't unreserved before the OOM.

  balloon invoked oom-killer: gfp_mask=0x24280ca(GFP_HIGHUSER_MOVABLE|__GFP_ZERO), order=0, oom_score_adj=0
  balloon cpuset=/ mems_allowed=0
  CPU: 1 PID: 8473 Comm: balloon Tainted: G        W  OE   4.8.0-rc7-00219-g3f74c9559583-dirty #3161
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
  Call Trace:
    dump_stack+0x63/0x90
    dump_header+0x5c/0x1ce
    oom_kill_process+0x22e/0x400
    out_of_memory+0x1ac/0x210
    __alloc_pages_nodemask+0x101e/0x1040
    handle_mm_fault+0xa0a/0xbf0
    __do_page_fault+0x1dd/0x4d0
    trace_do_page_fault+0x43/0x130
    do_async_page_fault+0x1a/0xa0
    async_page_fault+0x28/0x30
  Mem-Info:
  active_anon:383949 inactive_anon:106724 isolated_anon:0
   active_file:15 inactive_file:44 isolated_file:0
   unevictable:0 dirty:0 writeback:24 unstable:0
   slab_reclaimable:2483 slab_unreclaimable:3326
   mapped:0 shmem:0 pagetables:1906 bounce:0
   free:6898 free_pcp:291 free_cma:0
  Node 0 active_anon:1535796kB inactive_anon:426896kB active_file:60kB inactive_file:176kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:0kB dirty:0kB writeback:96kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:1418 all_unreclaimable? no
  DMA free:8188kB min:44kB low:56kB high:68kB active_anon:7648kB inactive_anon:0kB active_file:0kB inactive_file:4kB unevictable:0kB writepending:0kB present:15992kB managed:15908kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:20kB kernel_stack:0kB pagetables:0kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
  lowmem_reserve[]: 0 1952 1952 1952
  DMA32 free:19404kB min:5628kB low:7624kB high:9620kB active_anon:1528148kB inactive_anon:426896kB active_file:60kB inactive_file:420kB unevictable:0kB writepending:96kB present:2080640kB managed:2030092kB mlocked:0kB slab_reclaimable:9932kB slab_unreclaimable:13284kB kernel_stack:2496kB pagetables:7624kB bounce:0kB free_pcp:900kB local_pcp:112kB free_cma:0kB
  lowmem_reserve[]: 0 0 0 0
  DMA: 0*4kB 0*8kB 0*16kB 0*32kB 0*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 2*4096kB (H) = 8192kB
  DMA32: 7*4kB (H) 8*8kB (H) 30*16kB (H) 31*32kB (H) 14*64kB (H) 9*128kB (H) 2*256kB (H) 2*512kB (H) 4*1024kB (H) 5*2048kB (H) 0*4096kB = 19484kB
  51131 total pagecache pages
  50795 pages in swap cache
  Swap cache stats: add 3532405601, delete 3532354806, find 124289150/1822712228
  Free swap  = 8kB
  Total swap = 255996kB
  524158 pages RAM
  0 pages HighMem/MovableOnly
  12658 pages reserved
  0 pages cma reserved
  0 pages hwpoisoned

Another example exceeded the limit by the race is

  in:imklog: page allocation failure: order:0, mode:0x2280020(GFP_ATOMIC|__GFP_NOTRACK)
  CPU: 0 PID: 476 Comm: in:imklog Tainted: G            E   4.8.0-rc7-00217-g266ef83c51e5-dirty #3135
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
  Call Trace:
    dump_stack+0x63/0x90
    warn_alloc_failed+0xdb/0x130
    __alloc_pages_nodemask+0x4d6/0xdb0
    new_slab+0x339/0x490
    ___slab_alloc.constprop.74+0x367/0x480
    __slab_alloc.constprop.73+0x20/0x40
    __kmalloc+0x1a4/0x1e0
    alloc_indirect.isra.14+0x1d/0x50
    virtqueue_add_sgs+0x1c4/0x470
    __virtblk_add_req+0xae/0x1f0
    virtio_queue_rq+0x12d/0x290
    __blk_mq_run_hw_queue+0x239/0x370
    blk_mq_run_hw_queue+0x8f/0xb0
    blk_mq_insert_requests+0x18c/0x1a0
    blk_mq_flush_plug_list+0x125/0x140
    blk_flush_plug_list+0xc7/0x220
    blk_finish_plug+0x2c/0x40
    __do_page_cache_readahead+0x196/0x230
    filemap_fault+0x448/0x4f0
    ext4_filemap_fault+0x36/0x50
    __do_fault+0x75/0x140
    handle_mm_fault+0x84d/0xbe0
    __do_page_fault+0x1dd/0x4d0
    trace_do_page_fault+0x43/0x130
    do_async_page_fault+0x1a/0xa0
    async_page_fault+0x28/0x30
  Mem-Info:
  active_anon:363826 inactive_anon:121283 isolated_anon:32
   active_file:65 inactive_file:152 isolated_file:0
   unevictable:0 dirty:0 writeback:46 unstable:0
   slab_reclaimable:2778 slab_unreclaimable:3070
   mapped:112 shmem:0 pagetables:1822 bounce:0
   free:9469 free_pcp:231 free_cma:0
  Node 0 active_anon:1455304kB inactive_anon:485132kB active_file:260kB inactive_file:608kB unevictable:0kB isolated(anon):128kB isolated(file):0kB mapped:448kB dirty:0kB writeback:184kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:13641 all_unreclaimable? no
  DMA free:7748kB min:44kB low:56kB high:68kB active_anon:7944kB inactive_anon:104kB active_file:0kB inactive_file:0kB unevictable:0kB writepending:0kB present:15992kB managed:15908kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:108kB kernel_stack:0kB pagetables:4kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
  lowmem_reserve[]: 0 1952 1952 1952
  DMA32 free:30128kB min:5628kB low:7624kB high:9620kB active_anon:1447360kB inactive_anon:485028kB active_file:260kB inactive_file:608kB unevictable:0kB writepending:184kB present:2080640kB managed:2030132kB mlocked:0kB slab_reclaimable:11112kB slab_unreclaimable:12172kB kernel_stack:2400kB pagetables:7284kB bounce:0kB free_pcp:924kB local_pcp:72kB free_cma:0kB
  lowmem_reserve[]: 0 0 0 0
  DMA: 7*4kB (UE) 3*8kB (UH) 1*16kB (M) 0*32kB 2*64kB (U) 1*128kB (M) 1*256kB (U) 0*512kB 1*1024kB (U) 1*2048kB (U) 1*4096kB (H) = 7748kB
  DMA32: 10*4kB (H) 3*8kB (H) 47*16kB (H) 38*32kB (H) 5*64kB (H) 1*128kB (H) 2*256kB (H) 3*512kB (H) 3*1024kB (H) 3*2048kB (H) 4*4096kB (H) = 30128kB
  2775 total pagecache pages
  2536 pages in swap cache
  Swap cache stats: add 206786828, delete 206784292, find 7323106/106686077
  Free swap  = 108744kB
  Total swap = 255996kB
  524158 pages RAM
  0 pages HighMem/MovableOnly
  12648 pages reserved
  0 pages cma reserved
  0 pages hwpoisoned

During the investigation, I found some problems with highatomic so this
patch aims to solve the problems and the final goal is to unreserve
every highatomic free pages before the OOM kill.

This patch (of 4):

In page freeing path, migratetype is racy so that a highorderatomic page
could free into non-highorderatomic free list.  If that page is
allocated, VM can change the pageblock from higorderatomic to something.
In that case, highatomic pageblock accounting is broken so it doesn't
work(e.g., VM cannot reserve highorderatomic pageblocks any more
although it doesn't reach 1% limit).

So, this patch prohibits the changing from highatomic to other type.
It's no problem because MIGRATE_HIGHATOMIC is not listed in fallback
array so stealing will only happen due to unexpected races which is
really rare.  Also, such prohibiting keeps highatomic pageblock more
longer so it would be better for highorderatomic page allocation.

Link: http://lkml.kernel.org/r/1476259429-18279-2-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sangseok Lee <sangseok.lee@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:07 -08:00