IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
In an overcommitted guest where some vCPUs have to be halted to make
forward progress in other areas, it is highly likely that a vCPU later
in the spinlock queue will be spinning while the ones earlier in the
queue would have been halted. The spinning in the later vCPUs is then
just a waste of precious CPU cycles because they are not going to
get the lock soon as the earlier ones have to be woken up and take
their turn to get the lock.
This patch implements an adaptive spinning mechanism where the vCPU
will call pv_wait() if the previous vCPU is not running.
Linux kernel builds were run in KVM guest on an 8-socket, 4
cores/socket Westmere-EX system and a 4-socket, 8 cores/socket
Haswell-EX system. Both systems are configured to have 32 physical
CPUs. The kernel build times before and after the patch were:
Westmere Haswell
Patch 32 vCPUs 48 vCPUs 32 vCPUs 48 vCPUs
----- -------- -------- -------- --------
Before patch 3m02.3s 5m00.2s 1m43.7s 3m03.5s
After patch 3m03.0s 4m37.5s 1m43.0s 2m47.2s
For 32 vCPUs, this patch doesn't cause any noticeable change in
performance. For 48 vCPUs (over-committed), there is about 8%
performance improvement.
Signed-off-by: Waiman Long <Waiman.Long@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Douglas Hatch <doug.hatch@hpe.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447114167-47185-8-git-send-email-Waiman.Long@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch allows one attempt for the lock waiter to steal the lock
when entering the PV slowpath. To prevent lock starvation, the pending
bit will be set by the queue head vCPU when it is in the active lock
spinning loop to disable any lock stealing attempt. This helps to
reduce the performance penalty caused by lock waiter preemption while
not having much of the downsides of a real unfair lock.
The pv_wait_head() function was renamed as pv_wait_head_or_lock()
as it was modified to acquire the lock before returning. This is
necessary because of possible lock stealing attempts from other tasks.
Linux kernel builds were run in KVM guest on an 8-socket, 4
cores/socket Westmere-EX system and a 4-socket, 8 cores/socket
Haswell-EX system. Both systems are configured to have 32 physical
CPUs. The kernel build times before and after the patch were:
Westmere Haswell
Patch 32 vCPUs 48 vCPUs 32 vCPUs 48 vCPUs
----- -------- -------- -------- --------
Before patch 3m15.6s 10m56.1s 1m44.1s 5m29.1s
After patch 3m02.3s 5m00.2s 1m43.7s 3m03.5s
For the overcommited case (48 vCPUs), this patch is able to reduce
kernel build time by more than 54% for Westmere and 44% for Haswell.
Signed-off-by: Waiman Long <Waiman.Long@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Douglas Hatch <doug.hatch@hpe.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447190336-53317-1-git-send-email-Waiman.Long@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch enables the accumulation of kicking and waiting related
PV qspinlock statistics when the new QUEUED_LOCK_STAT configuration
option is selected. It also enables the collection of data which
enable us to calculate the kicking and wakeup latencies which have
a heavy dependency on the CPUs being used.
The statistical counters are per-cpu variables to minimize the
performance overhead in their updates. These counters are exported
via the debugfs filesystem under the qlockstat directory. When the
corresponding debugfs files are read, summation and computing of the
required data are then performed.
The measured latencies for different CPUs are:
CPU Wakeup Kicking
--- ------ -------
Haswell-EX 63.6us 7.4us
Westmere-EX 67.6us 9.3us
The measured latencies varied a bit from run-to-run. The wakeup
latency is much higher than the kicking latency.
A sample of statistical counters after system bootup (with vCPU
overcommit) was:
pv_hash_hops=1.00
pv_kick_unlock=1148
pv_kick_wake=1146
pv_latency_kick=11040
pv_latency_wake=194840
pv_spurious_wakeup=7
pv_wait_again=4
pv_wait_head=23
pv_wait_node=1129
Signed-off-by: Waiman Long <Waiman.Long@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Douglas Hatch <doug.hatch@hpe.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447114167-47185-6-git-send-email-Waiman.Long@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, the update_tg_load_avg() function attempts to update the
tg's load_avg value whenever the load changes even for root_task_group
where the load_avg value will never be used. This patch will disable
the load_avg update when the given task group is the root_task_group.
Running a Java benchmark with noautogroup and a 4.3 kernel on a
16-socket IvyBridge-EX system, the amount of CPU time (as reported by
perf) consumed by task_tick_fair() which includes update_tg_load_avg()
decreased from 0.71% to 0.22%, a more than 3X reduction. The Max-jOPs
results also increased slightly from 983015 to 986449.
Signed-off-by: Waiman Long <Waiman.Long@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Cc: Douglas Hatch <doug.hatch@hpe.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yuyang Du <yuyang.du@intel.com>
Link: http://lkml.kernel.org/r/1449081710-20185-4-git-send-email-Waiman.Long@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If a system with large number of sockets was driven to full
utilization, it was found that the clock tick handling occupied a
rather significant proportion of CPU time when fair group scheduling
and autogroup were enabled.
Running a java benchmark on a 16-socket IvyBridge-EX system, the perf
profile looked like:
10.52% 0.00% java [kernel.vmlinux] [k] smp_apic_timer_interrupt
9.66% 0.05% java [kernel.vmlinux] [k] hrtimer_interrupt
8.65% 0.03% java [kernel.vmlinux] [k] tick_sched_timer
8.56% 0.00% java [kernel.vmlinux] [k] update_process_times
8.07% 0.03% java [kernel.vmlinux] [k] scheduler_tick
6.91% 1.78% java [kernel.vmlinux] [k] task_tick_fair
5.24% 5.04% java [kernel.vmlinux] [k] update_cfs_shares
In particular, the high CPU time consumed by update_cfs_shares()
was mostly due to contention on the cacheline that contained the
task_group's load_avg statistical counter. This cacheline may also
contains variables like shares, cfs_rq & se which are accessed rather
frequently during clock tick processing.
This patch moves the load_avg variable into another cacheline
separated from the other frequently accessed variables. It also
creates a cacheline aligned kmemcache for task_group to make sure
that all the allocated task_group's are cacheline aligned.
By doing so, the perf profile became:
9.44% 0.00% java [kernel.vmlinux] [k] smp_apic_timer_interrupt
8.74% 0.01% java [kernel.vmlinux] [k] hrtimer_interrupt
7.83% 0.03% java [kernel.vmlinux] [k] tick_sched_timer
7.74% 0.00% java [kernel.vmlinux] [k] update_process_times
7.27% 0.03% java [kernel.vmlinux] [k] scheduler_tick
5.94% 1.74% java [kernel.vmlinux] [k] task_tick_fair
4.15% 3.92% java [kernel.vmlinux] [k] update_cfs_shares
The %cpu time is still pretty high, but it is better than before. The
benchmark results before and after the patch was as follows:
Before patch - Max-jOPs: 907533 Critical-jOps: 134877
After patch - Max-jOPs: 916011 Critical-jOps: 142366
Signed-off-by: Waiman Long <Waiman.Long@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Douglas Hatch <doug.hatch@hpe.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yuyang Du <yuyang.du@intel.com>
Link: http://lkml.kernel.org/r/1449081710-20185-3-git-send-email-Waiman.Long@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Part of the responsibility of the update_sg_lb_stats() function is to
update the idle_cpus statistical counter in struct sg_lb_stats. This
check is done by calling idle_cpu(). The idle_cpu() function, in
turn, checks a number of fields within the run queue structure such
as rq->curr and rq->nr_running.
With the current layout of the run queue structure, rq->curr and
rq->nr_running are in separate cachelines. The rq->curr variable is
checked first followed by nr_running. As nr_running is also accessed
by update_sg_lb_stats() earlier, it makes no sense to load another
cacheline when nr_running is not 0 as idle_cpu() will always return
false in this case.
This patch eliminates this redundant cacheline load by checking the
cached nr_running before calling idle_cpu().
Signed-off-by: Waiman Long <Waiman.Long@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Douglas Hatch <doug.hatch@hpe.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1448478580-26467-2-git-send-email-Waiman.Long@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When building a kernel with a gcc 6 snapshot the compiler complains
about unused const static variables for prio_to_weight and prio_to_mult
for multiple scheduler files (all but core.c and autogroup.c)
The way the array is currently declared it will be duplicated in
every scheduler file that includes sched.h, which seems rather wasteful.
Move the array out of line into core.c. I also added a sched_ prefix
to avoid any potential name space collisions.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1448859583-3252-1-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The cputime can only be updated by the current task itself, even in
vtime case. So we can safely use seqcount instead of seqlock as there
is no writer concurrency involved.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447948054-28668-8-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Readers need to know if vtime runs at all on some CPU somewhere, this
is a fast-path check to determine if we need to check further the need
to add up any tickless cputime delta.
This fast path check uses context tracking state because vtime is tied
to context tracking as of now. This check appears to be confusing though
so lets use a vtime function that deals with context tracking details
in vtime implementation instead.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447948054-28668-7-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
vtime_accounting_enabled() checks if vtime is running on the current CPU
and is as such a misnomer. Lets rename it to a function that reflect its
locality. We are going to need the current name for a function that tells
if vtime runs at all on some CPU.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447948054-28668-6-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When a task runs on a housekeeper (a CPU running with the periodic tick
with neighbours running tickless), it doesn't account cputime using vtime
but relies on the tick. Such a task has its vtime_snap_whence value set
to VTIME_INACTIVE.
Readers won't handle that correctly though. As long as vtime is running
on some CPU, readers incorretly assume that vtime runs on all CPUs and
always compute the tickless cputime delta, which is only junk on
housekeepers.
So lets fix this with checking that the target runs on a vtime CPU through
the appropriate state check before computing the tickless delta.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447948054-28668-5-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
VTIME_SLEEPING state happens either when:
1) The task is sleeping and no tickless delta is to be added on the task
cputime stats.
2) The CPU isn't running vtime at all, so the same properties of 1) applies.
Lets rename the vtime symbol to reflect both states.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447948054-28668-4-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is an extra cost in task_cputime() and task_cputime_scaled() when
nohz_full is not activated. When vtime accounting is not enabled, we
don't need to get deltas of utime and stime under vtime seqlock.
This patch removes that cost with adding a shortcut route if vtime
accounting is not enabled.
Use context_tracking_is_enabled() to check if vtime is accounting on
some cpu, in which case only we need to check the tickless cputime delta.
Signed-off-by: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447948054-28668-3-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The current code accounts for the time a task was absent from the fair
class (per ATTACH_AGE_LOAD). However it does not work correctly when a
task got migrated or moved to another cgroup while outside of the fair
class.
This patch tries to address that by aging on migration. We locklessly
read the 'last_update_time' stamp from both the old and new cfs_rq,
ages the load upto the old time, and sets it to the new time.
These timestamps should in general not be more than 1 tick apart from
one another, so there is a definite bound on things.
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
[ Changelog, a few edits and !SMP build fix ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1445616981-29904-2-git-send-email-byungchul.park@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
These are some notes on the scheduler locking and how it provides
program order guarantees on SMP systems.
( This commit is in the locking tree, because the new documentation
refers to a newly introduced locking primitive. )
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Introduce smp_cond_acquire() which combines a control dependency and a
read barrier to form acquire semantics.
This primitive has two benefits:
- it documents control dependencies,
- its typically cheaper than using smp_load_acquire() in a loop.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
So we want to change a locking API, but the scheduler uses it, and a conflict
is generated by a recent scheduler fix.
Pick up the pending scheduler fixes to make life easier.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Oleg noticed that its possible to falsely observe p->on_cpu == 0 such
that we'll prematurely continue with the wakeup and effectively run p on
two CPUs at the same time.
Even though the overlap is very limited; the task is in the middle of
being scheduled out; it could still result in corruption of the
scheduler data structures.
CPU0 CPU1
set_current_state(...)
<preempt_schedule>
context_switch(X, Y)
prepare_lock_switch(Y)
Y->on_cpu = 1;
finish_lock_switch(X)
store_release(X->on_cpu, 0);
try_to_wake_up(X)
LOCK(p->pi_lock);
t = X->on_cpu; // 0
context_switch(Y, X)
prepare_lock_switch(X)
X->on_cpu = 1;
finish_lock_switch(Y)
store_release(Y->on_cpu, 0);
</preempt_schedule>
schedule();
deactivate_task(X);
X->on_rq = 0;
if (X->on_rq) // false
if (t) while (X->on_cpu)
cpu_relax();
context_switch(X, ..)
finish_lock_switch(X)
store_release(X->on_cpu, 0);
Avoid the load of X->on_cpu being hoisted over the X->on_rq load.
Reported-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Explain how the control dependency and smp_rmb() end up providing
ACQUIRE semantics and pair with smp_store_release() in
finish_lock_switch().
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
/proc/stats shows invalid gtime when the thread is running in guest.
When vtime accounting is not enabled, we cannot get a valid delta.
The delta is calculated with now - tsk->vtime_snap, but tsk->vtime_snap
is only updated when vtime accounting is runtime enabled.
This patch makes task_gtime() just return gtime without computing the
buggy non-existing tickless delta when vtime accounting is not enabled.
Use context_tracking_is_enabled() to check if vtime is accounting on
some cpu, in which case only we need to check the tickless delta. This
way we fix the gtime value regression on machines not running nohz full.
The kernel config contains CONFIG_VIRT_CPU_ACCOUNTING_GEN=y and
CONFIG_NO_HZ_FULL_ALL=n and boot without nohz_full.
I ran and stop a busy loop in VM and see the gtime in host.
Dump the 43rd field which shows the gtime in every second:
# while :; do awk '{print $3" "$43}' /proc/3955/task/4014/stat; sleep 1; done
S 4348
R 7064566
R 7064766
R 7064967
R 7065168
S 4759
S 4759
During running busy loop, it returns large value.
After applying this patch, we can see right gtime.
# while :; do awk '{print $3" "$43}' /proc/10913/task/10956/stat; sleep 1; done
S 5338
R 5365
R 5465
R 5566
R 5666
S 5726
S 5726
Signed-off-by: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447948054-28668-2-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
root_domain::rto_mask allocated through alloc_cpumask_var()
contains garbage data, this may cause problems. For instance,
When doing pull_rt_task(), it may do useless iterations if
rto_mask retains some extra garbage bits. Worse still, this
violates the isolated domain rule for clustered scheduling
using cpuset, because the tasks(with all the cpus allowed)
belongs to one root domain can be pulled away into another
root domain.
The patch cleans the garbage by using zalloc_cpumask_var()
instead of alloc_cpumask_var() for root_domain::rto_mask
allocation, thereby addressing the issues.
Do the same thing for root_domain's other cpumask memembers:
dlo_mask, span, and online.
Signed-off-by: Xunlei Pang <xlpang@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1449057179-29321-1-git-send-email-xlpang@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Because wakeups can (fundamentally) be late, a task might not be in
the expected state. Therefore testing against a task's state is racy,
and can yield false positives.
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: oleg@redhat.com
Fixes: 9067ac85d533 ("wake_up_process() should be never used to wakeup a TASK_STOPPED/TRACED task")
Link: http://lkml.kernel.org/r/1448933660-23082-1-git-send-email-sasha.levin@oracle.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Vladimir reported getting RCU stall warnings and bisected it back to
commit:
743162013d40 ("sched: Remove proliferation of wait_on_bit() action functions")
That commit inadvertently reversed the calls to schedule() and signal_pending(),
thereby not handling the case where the signal receives while we sleep.
Reported-by: Vladimir Murzin <vladimir.murzin@arm.com>
Tested-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: mark.rutland@arm.com
Cc: neilb@suse.de
Cc: oleg@redhat.com
Fixes: 743162013d40 ("sched: Remove proliferation of wait_on_bit() action functions")
Fixes: cbbce8220949 ("SCHED: add some "wait..on_bit...timeout()" interfaces.")
Link: http://lkml.kernel.org/r/20151201130404.GL3816@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Before the system go to suspend (S3), if user create a timer
with clockid CLOCK_REALTIME_ALARM/CLOCK_BOOTTIME_ALARM and set a
"large" timeout value to this timer. The function
alarmtimer_suspend will be called to setup a timeout value to
RTC timer to avoid the system sleep over time. However, if the
system wakeup early than RTC timeout, the RTC timer will not be
cleared. And this will cause the hpet_rtc_interrupt come
unexpectedly until the RTC timeout. To fix this problem, just
adding alarmtimer_resume to cancel the RTC timer.
This was noticed because the HPET RTC emulation fires an
interrupt every 16ms(=1/2^DEFAULT_RTC_SHIFT) up to the point
where the alarm time is reached.
This program always hits this situation
(https://lkml.org/lkml/2015/11/8/326), if system wake up earlier
than alarm time.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Signed-off-by: Zhuo-hao Lee <zhuo-hao.lee@intel.com>
[jstultz: Tweak commit subject & formatting slightly]
Signed-off-by: John Stultz <john.stultz@linaro.org>
Conflicts:
drivers/net/ethernet/renesas/ravb_main.c
kernel/bpf/syscall.c
net/ipv4/ipmr.c
All three conflicts were cases of overlapping changes.
Signed-off-by: David S. Miller <davem@davemloft.net>
Pull networking fixes from David Miller:
"A lot of Thanksgiving turkey leftovers accumulated, here goes:
1) Fix bluetooth l2cap_chan object leak, from Johan Hedberg.
2) IDs for some new iwlwifi chips, from Oren Givon.
3) Fix rtlwifi lockups on boot, from Larry Finger.
4) Fix memory leak in fm10k, from Stephen Hemminger.
5) We have a route leak in the ipv6 tunnel infrastructure, fix from
Paolo Abeni.
6) Fix buffer pointer handling in arm64 bpf JIT,f rom Zi Shen Lim.
7) Wrong lockdep annotations in tcp md5 support, fix from Eric
Dumazet.
8) Work around some middle boxes which prevent proper handling of TCP
Fast Open, from Yuchung Cheng.
9) TCP repair can do huge kmalloc() requests, build paged SKBs
instead. From Eric Dumazet.
10) Fix msg_controllen overflow in scm_detach_fds, from Daniel
Borkmann.
11) Fix device leaks on ipmr table destruction in ipv4 and ipv6, from
Nikolay Aleksandrov.
12) Fix use after free in epoll with AF_UNIX sockets, from Rainer
Weikusat.
13) Fix double free in VRF code, from Nikolay Aleksandrov.
14) Fix skb leaks on socket receive queue in tipc, from Ying Xue.
15) Fix ifup/ifdown crach in xgene driver, from Iyappan Subramanian.
16) Fix clearing of persistent array maps in bpf, from Daniel
Borkmann.
17) In TCP, for the cross-SYN case, we don't initialize tp->copied_seq
early enough. From Eric Dumazet.
18) Fix out of bounds accesses in bpf array implementation when
updating elements, from Daniel Borkmann.
19) Fill gaps in RCU protection of np->opt in ipv6 stack, from Eric
Dumazet.
20) When dumping proxy neigh entries, we have to accomodate NULL
device pointers properly, from Konstantin Khlebnikov.
21) SCTP doesn't release all ipv6 socket resources properly, fix from
Eric Dumazet.
22) Prevent underflows of sch->q.qlen for multiqueue packet
schedulers, also from Eric Dumazet.
23) Fix MAC and unicast list handling in bnxt_en driver, from Jeffrey
Huang and Michael Chan.
24) Don't actively scan radar channels, from Antonio Quartulli"
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net: (110 commits)
net: phy: reset only targeted phy
bnxt_en: Setup uc_list mac filters after resetting the chip.
bnxt_en: enforce proper storing of MAC address
bnxt_en: Fixed incorrect implementation of ndo_set_mac_address
net: lpc_eth: remove irq > NR_IRQS check from probe()
net_sched: fix qdisc_tree_decrease_qlen() races
openvswitch: fix hangup on vxlan/gre/geneve device deletion
ipv4: igmp: Allow removing groups from a removed interface
ipv6: sctp: implement sctp_v6_destroy_sock()
arm64: bpf: add 'store immediate' instruction
ipv6: kill sk_dst_lock
ipv6: sctp: add rcu protection around np->opt
net/neighbour: fix crash at dumping device-agnostic proxy entries
sctp: use GFP_USER for user-controlled kmalloc
sctp: convert sack_needed and sack_generation to bits
ipv6: add complete rcu protection around np->opt
bpf: fix allocation warnings in bpf maps and integer overflow
mvebu: dts: enable IP checksum with jumbo frames for Armada 38x on Port0
net: mvneta: enable setting custom TX IP checksum limit
net: mvneta: fix error path for building skb
...
events on pids. It filters all events where only tasks with their pid in that
file exists. It also handles the sched_switch and sched_wakeup trace events
where the current task does not have its pid in the file, but the task
either being switched to or awaken does.
Unfortunately, I forgot about sched_wakeup_new and sched_waking. Both of
these tracepoints use the same class as the sched_wakeup tracepoint, and
they too should be included in what gets filtered by the set_event_pid file.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJWX7XpAAoJEKKk/i67LK/8G6gH/0W9QxCt/iS+J+x3gAPPs+/9
jtwZgAOWjq+118ZpWORtgRcoH2r/sJUNwlXqhMojAHsPlwZsr6TXkWJkgyNdZZ7B
QdUtZrr+egGYvd7TE0ONi/XrLTe9VLtBQsh5pN7l9fF9TjxYUmu5V9LplH9z0RxW
Hw8EzqGzG2iZnXYCnErtu5jRLmr18f2u9aUptPAc4bYPLVUUw9M9MqRV/ZwQxsaX
1mfIoR5SVC5IWW/R07qjULlbFpvNXkVJ56HwXMVBN44mYz3eUGYBKzjyAJ0Ugymf
CNDPzh4HgVFsEqDedr0D8T5WZNJSUErdbHVSWze+CCUNfYikvU7gNmxNJ89Q3P4=
=LsnU
-----END PGP SIGNATURE-----
Merge tag 'trace-v4.4-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing fix from Steven Rostedt:
"During the merge window I added a new file that is used to filter
trace events on pids. It filters all events where only tasks with
their pid in that file exists. It also handles the sched_switch and
sched_wakeup trace events where the current task does not have its pid
in the file, but the task either being switched to or awaken does.
Unfortunately, I forgot about sched_wakeup_new and sched_waking. Both
of these tracepoints use the same class as the sched_wakeup
tracepoint, and they too should be included in what gets filtered by
the set_event_pid file"
* tag 'trace-v4.4-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
tracing: Add sched_wakeup_new and sched_waking tracepoints for pid filter
The following directory structure will allow for cases when the same
function name exists in a single object.
/sys/kernel/livepatch/<patch>/<object>/<function,sympos>
The sympos number corresponds to the nth occurrence of the symbol name in
kallsyms for the patched object.
An example of patching multiple symbols can be found here:
https://github.com/dynup/kpatch/issues/493
Signed-off-by: Chris J Arges <chris.j.arges@canonical.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
In cases of duplicate symbols, sympos will be used to disambiguate instead
of val. By default sympos will be 0, and patching will only succeed if
the symbol is unique. Specifying a positive value will ensure that
occurrence of the symbol in kallsyms for the patched object will be used
for patching if it is valid. For external relocations sympos is not
supported.
Remove klp_verify_callback, klp_verify_args and klp_verify_vmlinux_symbol
as they are no longer used.
From the klp_reloc structure remove val, as it can be refactored as a
local variable in klp_write_object_relocations.
Signed-off-by: Chris J Arges <chris.j.arges@canonical.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Currently, patching objects with duplicate symbol names fail because the
creation of the sysfs function directory collides with the previous
attempt. Appending old_addr to the function name is problematic as it
reveals the address of the function being patch to a normal user. Using
the symbol's occurrence in kallsyms to postfix the function name in the
sysfs directory solves the issue of having consistent unique names and
ensuring that the address is not exposed to a normal user.
In addition, using the symbol position as the user's method to disambiguate
symbols instead of addr allows for disambiguating symbols in modules as
well for both function addresses and for relocs. This also simplifies much
of the code. Special handling for kASLR is no longer needed and can be
removed. The klp_find_verify_func_addr function can be replaced by
klp_find_object_symbol, and klp_verify_vmlinux_symbol and its callback can
be removed completely.
In cases of duplicate symbols, old_sympos will be used to disambiguate
instead of old_addr. By default old_sympos will be 0, and patching will
only succeed if the symbol is unique. Specifying a positive value will
ensure that occurrence of the symbol in kallsyms for the patched object
will be used for patching if it is valid.
In addition, make old_addr an internal structure field not to be specified
by the user. Finally, remove klp_find_verify_func_addr as it can be
replaced by klp_find_object_symbol directly.
Support for symbol position disambiguation for relocations is added in the
next patch in this series.
Signed-off-by: Chris J Arges <chris.j.arges@canonical.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Now that nobody use the "priv" arg passed to can_fork/cancel_fork/fork we can
kill CGROUP_CANFORK_COUNT/SUBSYS_TAG/etc and cgrp_ss_priv[] in copy_process().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Because accounting resources for the root cgroup sometimes incurs
measureable overhead for workloads which don't care about cgroup and
often ends up calculating a number which is available elsewhere in a
slightly different form, cgroup is not in the business of providing
system-wide statistics. The pids controller which was introduced
recently was exposing "pids.current" at the root. This patch disable
accounting for root cgroup and removes the file from the root
directory.
While this is a userland visible behavior change, pids has been
available only in one version and was badly broken there, so I don't
think this will be noticeable. If it turns out to be a problem, we
can reinstate it for v1 hierarchies.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Aleksa Sarai <cyphar@cyphar.com>
Consider the following v2 hierarchy.
P0 (+memory) --- P1 (-memory) --- A
\- B
P0 has memory enabled in its subtree_control while P1 doesn't. If
both A and B contain processes, they would belong to the memory css of
P1. Now if memory is enabled on P1's subtree_control, memory csses
should be created on both A and B and A's processes should be moved to
the former and B's processes the latter. IOW, enabling controllers
can cause atomic migrations into different csses.
The core cgroup migration logic has been updated accordingly but the
controller migration methods haven't and still assume that all tasks
migrate to a single target css; furthermore, the methods were fed the
css in which subtree_control was updated which is the parent of the
target csses. pids controller depends on the migration methods to
move charges and this made the controller attribute charges to the
wrong csses often triggering the following warning by driving a
counter negative.
WARNING: CPU: 1 PID: 1 at kernel/cgroup_pids.c:97 pids_cancel.constprop.6+0x31/0x40()
Modules linked in:
CPU: 1 PID: 1 Comm: systemd Not tainted 4.4.0-rc1+ #29
...
ffffffff81f65382 ffff88007c043b90 ffffffff81551ffc 0000000000000000
ffff88007c043bc8 ffffffff810de202 ffff88007a752000 ffff88007a29ab00
ffff88007c043c80 ffff88007a1d8400 0000000000000001 ffff88007c043bd8
Call Trace:
[<ffffffff81551ffc>] dump_stack+0x4e/0x82
[<ffffffff810de202>] warn_slowpath_common+0x82/0xc0
[<ffffffff810de2fa>] warn_slowpath_null+0x1a/0x20
[<ffffffff8118e031>] pids_cancel.constprop.6+0x31/0x40
[<ffffffff8118e0fd>] pids_can_attach+0x6d/0xf0
[<ffffffff81188a4c>] cgroup_taskset_migrate+0x6c/0x330
[<ffffffff81188e05>] cgroup_migrate+0xf5/0x190
[<ffffffff81189016>] cgroup_attach_task+0x176/0x200
[<ffffffff8118949d>] __cgroup_procs_write+0x2ad/0x460
[<ffffffff81189684>] cgroup_procs_write+0x14/0x20
[<ffffffff811854e5>] cgroup_file_write+0x35/0x1c0
[<ffffffff812e26f1>] kernfs_fop_write+0x141/0x190
[<ffffffff81265f88>] __vfs_write+0x28/0xe0
[<ffffffff812666fc>] vfs_write+0xac/0x1a0
[<ffffffff81267019>] SyS_write+0x49/0xb0
[<ffffffff81bcef32>] entry_SYSCALL_64_fastpath+0x12/0x76
This patch fixes the bug by removing @css parameter from the three
migration methods, ->can_attach, ->cancel_attach() and ->attach() and
updating cgroup_taskset iteration helpers also return the destination
css in addition to the task being migrated. All controllers are
updated accordingly.
* Controllers which don't care whether there are one or multiple
target csses can be converted trivially. cpu, io, freezer, perf,
netclassid and netprio fall in this category.
* cpuset's current implementation assumes that there's single source
and destination and thus doesn't support v2 hierarchy already. The
only change made by this patchset is how that single destination css
is obtained.
* memory migration path already doesn't do anything on v2. How the
single destination css is obtained is updated and the prep stage of
mem_cgroup_can_attach() is reordered to accomodate the change.
* pids is the only controller which was affected by this bug. It now
correctly handles multi-destination migrations and no longer causes
counter underflow from incorrect accounting.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-and-tested-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Cc: Aleksa Sarai <cyphar@cyphar.com>
If one or more tasks get moved into a frozen css, the frozen state is
cleared up from the destination css so that it can be reasserted once
the migrated tasks are frozen. freezer_attach() implements this in
two separate steps - clearing CGROUP_FROZEN on the target css while
processing each task and propagating the clearing upwards after the
task loop is done if necessary.
This patch merges the two steps. Propagation now takes place inside
the task loop. This simplifies the code and prepares it for the fix
of multi-destination migration.
Signed-off-by: Tejun Heo <tj@kernel.org>
For large map->value_size the user space can trigger memory allocation warnings like:
WARNING: CPU: 2 PID: 11122 at mm/page_alloc.c:2989
__alloc_pages_nodemask+0x695/0x14e0()
Call Trace:
[< inline >] __dump_stack lib/dump_stack.c:15
[<ffffffff82743b56>] dump_stack+0x68/0x92 lib/dump_stack.c:50
[<ffffffff81244ec9>] warn_slowpath_common+0xd9/0x140 kernel/panic.c:460
[<ffffffff812450f9>] warn_slowpath_null+0x29/0x30 kernel/panic.c:493
[< inline >] __alloc_pages_slowpath mm/page_alloc.c:2989
[<ffffffff81554e95>] __alloc_pages_nodemask+0x695/0x14e0 mm/page_alloc.c:3235
[<ffffffff816188fe>] alloc_pages_current+0xee/0x340 mm/mempolicy.c:2055
[< inline >] alloc_pages include/linux/gfp.h:451
[<ffffffff81550706>] alloc_kmem_pages+0x16/0xf0 mm/page_alloc.c:3414
[<ffffffff815a1c89>] kmalloc_order+0x19/0x60 mm/slab_common.c:1007
[<ffffffff815a1cef>] kmalloc_order_trace+0x1f/0xa0 mm/slab_common.c:1018
[< inline >] kmalloc_large include/linux/slab.h:390
[<ffffffff81627784>] __kmalloc+0x234/0x250 mm/slub.c:3525
[< inline >] kmalloc include/linux/slab.h:463
[< inline >] map_update_elem kernel/bpf/syscall.c:288
[< inline >] SYSC_bpf kernel/bpf/syscall.c:744
To avoid never succeeding kmalloc with order >= MAX_ORDER check that
elem->value_size and computed elem_size are within limits for both hash and
array type maps.
Also add __GFP_NOWARN to kmalloc(value_size | elem_size) to avoid OOM warnings.
Note kmalloc(key_size) is highly unlikely to trigger OOM, since key_size <= 512,
so keep those kmalloc-s as-is.
Large value_size can cause integer overflows in elem_size and map.pages
formulas, so check for that as well.
Fixes: aaac3ba95e4c ("bpf: charge user for creation of BPF maps and programs")
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
During own review but also reported by Dmitry's syzkaller [1] it has been
noticed that we trigger a heap out-of-bounds access on eBPF array maps
when updating elements. This happens with each map whose map->value_size
(specified during map creation time) is not multiple of 8 bytes.
In array_map_alloc(), elem_size is round_up(attr->value_size, 8) and
used to align array map slots for faster access. However, in function
array_map_update_elem(), we update the element as ...
memcpy(array->value + array->elem_size * index, value, array->elem_size);
... where we access 'value' out-of-bounds, since it was allocated from
map_update_elem() from syscall side as kmalloc(map->value_size, GFP_USER)
and later on copied through copy_from_user(value, uvalue, map->value_size).
Thus, up to 7 bytes, we can access out-of-bounds.
Same could happen from within an eBPF program, where in worst case we
access beyond an eBPF program's designated stack.
Since 1be7f75d1668 ("bpf: enable non-root eBPF programs") didn't hit an
official release yet, it only affects priviledged users.
In case of array_map_lookup_elem(), the verifier prevents eBPF programs
from accessing beyond map->value_size through check_map_access(). Also
from syscall side map_lookup_elem() only copies map->value_size back to
user, so nothing could leak.
[1] http://github.com/google/syzkaller
Fixes: 28fbcfa08d8e ("bpf: add array type of eBPF maps")
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
The set_event_pid filter relies on attaching to the sched_switch and
sched_wakeup tracepoints to see if it should filter the tracing on schedule
tracepoints. By adding the callbacks to sched_wakeup, pids in the
set_event_pid file will trace the wakeups of those tasks with those pids.
But sched_wakeup_new and sched_waking were missed. These two should also be
traced. Luckily, these tracepoints share the same class as sched_wakeup
which means they can use the same pre and post callbacks as sched_wakeup
does.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Add a copy_file_range() system call for offloading copies between
regular files.
This gives an interface to underlying layers of the storage stack which
can copy without reading and writing all the data. There are a few
candidates that should support copy offloading in the nearer term:
- btrfs shares extent references with its clone ioctl
- NFS has patches to add a COPY command which copies on the server
- SCSI has a family of XCOPY commands which copy in the device
This system call avoids the complexity of also accelerating the creation
of the destination file by operating on an existing destination file
descriptor, not a path.
Currently the high level vfs entry point limits copy offloading to files
on the same mount and super (and not in the same file). This can be
relaxed if we get implementations which can copy between file systems
safely.
Signed-off-by: Zach Brown <zab@redhat.com>
[Anna Schumaker: Change -EINVAL to -EBADF during file verification,
Change flags parameter from int to unsigned int,
Add function to include/linux/syscalls.h,
Check copy len after file open mode,
Don't forbid ranges inside the same file,
Use rw_verify_area() to veriy ranges,
Use file_out rather than file_in,
Add COPY_FR_REFLINK flag]
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The first is something that's been there since its creation. If a reader
reads a page out of the ring buffer before there's any events on it, it
can get an out of date timestamp for that event. It may be off by a few
microseconds, more if the first event gets discarded. The fix was to
only update the reader time stamp when it actually sees an event on
the page, instead of just reading the timestamp from the page even if
it has no events on it. That timestamp is still volatile until an event
is present.
The second bug is more recent. Instead of passing around parameters
a descriptor was made and the parameters are passed via a single
descriptor. This simplified the code a bit. But there was one place that
expected the parameter to be passed by value not reference (which a
descriptor now does). And it added to the length of the event, which
may be ignored later, but the length should not have been increased.
The only real problem with this bug is that it may allocate more than
was needed for the event.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJWVdKDAAoJEKKk/i67LK/8dYwH/15HYLvVMbljmXyatXOp+zO9
VTJAfXuLowMNLWMEg57NjDkcmqKodQfVWEY1gW8dgY3VnUa6KbbWgcX++3ncnXtH
RwRQ8YhgTCpz9rFmIKesSBuLpu0uE1naqGn9QSF0AaU48ljykDStXBJJs7QGBCB8
ZDFru17sFT5/BpeE/zcTrDKmUH79YSWbmnQvcp4UxdP3Eq7THvd41bOEoUrvm/zU
pA2I/+Yz8wUJMA9I4UHEkltoMSV46/QldXbSh+zzWoTdZp92ZAiyuNNO/EtamGa+
QVS6cU3b9N9C6EGom21PaSheNUpZDrZf5Tj0S0wrg2f/+lWublplRJNzwhSu85E=
=K6x5
-----END PGP SIGNATURE-----
Merge tag 'trace-v4.4-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing fixes from Steven Rostedt:
"I found two minor bugs while doing development on the ring buffer
code.
The first is something that's been there since its creation. If a
reader reads a page out of the ring buffer before there's any events
on it, it can get an out of date timestamp for that event. It may be
off by a few microseconds, more if the first event gets discarded.
The fix was to only update the reader time stamp when it actually sees
an event on the page, instead of just reading the timestamp from the
page even if it has no events on it. That timestamp is still volatile
until an event is present.
The second bug is more recent. Instead of passing around parameters a
descriptor was made and the parameters are passed via a single
descriptor. This simplified the code a bit. But there was one place
that expected the parameter to be passed by value not reference (which
a descriptor now does). And it added to the length of the event,
which may be ignored later, but the length should not have been
increased. The only real problem with this bug is that it may
allocate more than was needed for the event"
* tag 'trace-v4.4-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
ring-buffer: Put back the length if crossed page with add_timestamp
ring-buffer: Update read stamp with first real commit on page
drm-intel-next-2015-11-20-rebased:
4 weeks because of my vacation, so a bit more:
- final bits of the typesafe register mmio functions (Ville)
- power domain fix for hdmi detection (Imre)
- tons of fixes and improvements to the psr code (Rodrigo)
- refactoring of the dp detection code (Ander)
- complete rework of the dmc loader and dc5/dc6 handling (Imre, Patrik and
others)
- dp compliance improvements from Shubhangi Shrivastava
- stop_machine hack from Chris to fix corruptions when updating GTT ptes on bsw
- lots of fifo underrun fixes from Ville
- big pile of fbc fixes and improvements from Paulo
- fix fbdev failures paths (Tvrtko and Lukas Wunner)
- dp link training refactoring (Ander)
- interruptible prepare_plane for atomic (Maarten)
- basic kabylake support (Deepak&Rodrigo)
- don't leak ringspace on resets (Chris)
drm-intel-next-2015-10-23:
- 2nd attempt at atomic watermarks from Matt, but just prep for now
- fixes all over
* tag 'drm-intel-next-2015-11-20-merged' of git://anongit.freedesktop.org/drm-intel: (209 commits)
drm/i915: Update DRIVER_DATE to 20151120
drm/i915: take a power domain reference while checking the HDMI live status
drm/i915: take a power domain ref only when needed during HDMI detect
drm/i915: Tear down fbdev if initialization fails
async: export current_is_async()
Revert "drm/i915: Initialize HWS page address after GPU reset"
drm/i915: Fix oops caused by fbdev initialization failure
drm/i915: Fix i915_ggtt_view_equal to handle rotation correctly
drm/i915: Stuff rotation params into view union
drm/i915: Drop return value from intel_fill_fb_ggtt_view
drm/i915 : Fix to remove unnecsessary checks in postclose function.
drm/i915: add MISSING_CASE to a few port/aux power domain helpers
drm/i915/ddi: fix intel_display_port_aux_power_domain() after HDMI detect
drm/i915: Remove platform specific *_dp_detect() functions
drm/i915: Don't do edp panel detection in g4x_dp_detect()
drm/i915: Send TP1 TP2/3 even when panel claims no NO_TRAIN_ON_EXIT.
drm/i915: PSR: Don't Skip aux handshake on DP_PSR_NO_TRAIN_ON_EXIT.
drm/i915: Reduce PSR re-activation time for VLV/CHV.
drm/i915: Delay first PSR activation.
drm/i915: Type safe register read/write
...
Now that we know that the forking task can't migrate amd the child is always
moved to the same cgroup by cgroup_post_fork()->css_set_move_task() we can
change pids_can_fork() and pids_cancel_fork() to just use task_css(current).
And since we no longer need to pin this css, we can remove pid_fork().
Note: the patch uses task_css_check(true), perhaps it makes sense to add a
helper or change task_css_set_check() to take cgroup_threadgroup_rwsem into
account.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Zefan Li <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
If the new child migrates to another cgroup before cgroup_post_fork() calls
subsys->fork(), then both pids_can_attach() and pids_fork() will do the same
pids_uncharge(old_pids) + pids_charge(pids) sequence twice.
Change copy_process() to call threadgroup_change_begin/threadgroup_change_end
unconditionally. percpu_down_read() is cheap and this allows other cleanups,
see the next changes.
Also, this way we can unify cgroup_threadgroup_rwsem and dup_mmap_sem.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Zefan Li <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
A css_set represents the relationship between a set of tasks and
css's. css_set never pinned the associated css's. This was okay
because tasks used to always disassociate immediately (in RCU sense) -
either a task is moved to a different css_set or exits and never
accesses css_set again.
Unfortunately, afcf6c8b7544 ("cgroup: add cgroup_subsys->free() method
and use it to fix pids controller") and patches leading up to it made
a zombie hold onto its css_set and deref the associated css's on its
release. Nothing pins the css's after exit and it might have already
been freed leading to use-after-free.
general protection fault: 0000 [#1] PREEMPT SMP
task: ffffffff81bf2500 ti: ffffffff81be4000 task.ti: ffffffff81be4000
RIP: 0010:[<ffffffff810fa205>] [<ffffffff810fa205>] pids_cancel.constprop.4+0x5/0x40
...
Call Trace:
<IRQ>
[<ffffffff810fb02d>] ? pids_free+0x3d/0xa0
[<ffffffff810f8893>] cgroup_free+0x53/0xe0
[<ffffffff8104ed62>] __put_task_struct+0x42/0x130
[<ffffffff81053557>] delayed_put_task_struct+0x77/0x130
[<ffffffff810c6b34>] rcu_process_callbacks+0x2f4/0x820
[<ffffffff810c6af3>] ? rcu_process_callbacks+0x2b3/0x820
[<ffffffff81056e54>] __do_softirq+0xd4/0x460
[<ffffffff81057369>] irq_exit+0x89/0xa0
[<ffffffff81876212>] smp_apic_timer_interrupt+0x42/0x50
[<ffffffff818747f4>] apic_timer_interrupt+0x84/0x90
<EOI>
...
Code: 5b 5d c3 48 89 df 48 c7 c2 c9 f9 ae 81 48 c7 c6 91 2c ae 81 e8 1d 94 0e 00 31 c0 5b 5d c3 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 <f0> 48 83 87 e0 00 00 00 ff 78 01 c3 80 3d 08 7a c1 00 00 74 02
RIP [<ffffffff810fa205>] pids_cancel.constprop.4+0x5/0x40
RSP <ffff88001fc03e20>
---[ end trace 89a4a4b916b90c49 ]---
Kernel panic - not syncing: Fatal exception in interrupt
Kernel Offset: disabled
---[ end Kernel panic - not syncing: Fatal exception in interrupt
Fix it by making css_set pin the associate css's until its release.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Dave Jones <davej@codemonkey.org.uk>
Reported-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Link: http://lkml.kernel.org/g/20151120041836.GA18390@codemonkey.org.uk
Link: http://lkml.kernel.org/g/5652D448.3080002@bmw-carit.de
Fixes: afcf6c8b7544 ("cgroup: add cgroup_subsys->free() method and use it to fix pids controller")
While going through the nohz code I got stumped by some of it.
This patch adds a few comments clarifying the code; based on discussion
with Thomas.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20151119162106.GO3816@twins.programming.kicks-ass.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
When an anomaly is detected in the function call modification code,
ftrace_bug() is called to disable function tracing as well as give any
information that may help debug the problem. Currently, only the first found
trampoline that is attached to the failed record is reported. Instead, show
all trampolines that are hooked to it.
Also, not only show the ops pointer but also report the function it calls.
While at it, add this info to the enabled_functions debug file too.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
When an anomaly is found while modifying function code, ftrace_bug() is
called which disables the function tracing infrastructure and reports
information about what failed. If the code that is to be replaced does not
match what is expected, then actual code is shown. Currently there is no
arch generic way to show what was expected.
Add a new variable pointer calld ftrace_expected that the arch code can set
to point to what it expected so that ftrace_bug() can report the actual text
as well as the text that was expected to be there.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The ftrace function hook utility has several internal checks to make sure
that whatever it modifies is exactly what it expects to be modifying. This
is essential as modifying running code can be extremely dangerous to the
system.
When an anomaly is detected, ftrace_bug() is called which sends a splat to
the console and disables function tracing. There's some extra information
that is printed to help diagnose the issue.
One thing that is missing though is output of what ftrace was doing at the
time of the crash. Was it updating a call site or perhaps converting a call
site to a nop? A new global enum variable is created to state what ftrace
was doing at the time of the anomaly, and this is reported in ftrace_bug().
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>