7614 Commits

Author SHA1 Message Date
Linus Torvalds
192ad3c27a ARM:
- Page ownership tracking between host EL1 and EL2
 
 - Rely on userspace page tables to create large stage-2 mappings
 
 - Fix incompatibility between pKVM and kmemleak
 
 - Fix the PMU reset state, and improve the performance of the virtual PMU
 
 - Move over to the generic KVM entry code
 
 - Address PSCI reset issues w.r.t. save/restore
 
 - Preliminary rework for the upcoming pKVM fixed feature
 
 - A bunch of MM cleanups
 
 - a vGIC fix for timer spurious interrupts
 
 - Various cleanups
 
 s390:
 
 - enable interpretation of specification exceptions
 
 - fix a vcpu_idx vs vcpu_id mixup
 
 x86:
 
 - fast (lockless) page fault support for the new MMU
 
 - new MMU now the default
 
 - increased maximum allowed VCPU count
 
 - allow inhibit IRQs on KVM_RUN while debugging guests
 
 - let Hyper-V-enabled guests run with virtualized LAPIC as long as they
   do not enable the Hyper-V "AutoEOI" feature
 
 - fixes and optimizations for the toggling of AMD AVIC (virtualized LAPIC)
 
 - tuning for the case when two-dimensional paging (EPT/NPT) is disabled
 
 - bugfixes and cleanups, especially with respect to 1) vCPU reset and
   2) choosing a paging mode based on CR0/CR4/EFER
 
 - support for 5-level page table on AMD processors
 
 Generic:
 
 - MMU notifier invalidation callbacks do not take mmu_lock unless necessary
 
 - improved caching of LRU kvm_memory_slot
 
 - support for histogram statistics
 
 - add statistics for halt polling and remote TLB flush requests
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmE2CIAUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroMyqwf+Ky2WoThuQ9Ra0r/m8pUTAx5+gsAf
 MmG24rNLE+26X0xuBT9Q5+etYYRLrRTWJvo5cgHooz7muAYW6scR+ho5xzvLTAxi
 DAuoijkXsSdGoFCp0OMUHiwG3cgY5N7feTEwLPAb2i6xr/l6SZyCP4zcwiiQbJ2s
 UUD0i3rEoNQ02/hOEveud/ENxzUli9cmmgHKXR3kNgsJClSf1fcuLnhg+7EGMhK9
 +c2V+hde5y0gmEairQWm22MLMRolNZ5NL4kjykiNh2M5q9YvbHe5+f/JmENlNZMT
 bsUQT6Ry1ukuJ0V59rZvUw71KknPFzZ3d6HgW4pwytMq6EJKiISHzRbVnQ==
 =FCAB
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "ARM:
   - Page ownership tracking between host EL1 and EL2
   - Rely on userspace page tables to create large stage-2 mappings
   - Fix incompatibility between pKVM and kmemleak
   - Fix the PMU reset state, and improve the performance of the virtual
     PMU
   - Move over to the generic KVM entry code
   - Address PSCI reset issues w.r.t. save/restore
   - Preliminary rework for the upcoming pKVM fixed feature
   - A bunch of MM cleanups
   - a vGIC fix for timer spurious interrupts
   - Various cleanups

  s390:
   - enable interpretation of specification exceptions
   - fix a vcpu_idx vs vcpu_id mixup

  x86:
   - fast (lockless) page fault support for the new MMU
   - new MMU now the default
   - increased maximum allowed VCPU count
   - allow inhibit IRQs on KVM_RUN while debugging guests
   - let Hyper-V-enabled guests run with virtualized LAPIC as long as
     they do not enable the Hyper-V "AutoEOI" feature
   - fixes and optimizations for the toggling of AMD AVIC (virtualized
     LAPIC)
   - tuning for the case when two-dimensional paging (EPT/NPT) is
     disabled
   - bugfixes and cleanups, especially with respect to vCPU reset and
     choosing a paging mode based on CR0/CR4/EFER
   - support for 5-level page table on AMD processors

  Generic:
   - MMU notifier invalidation callbacks do not take mmu_lock unless
     necessary
   - improved caching of LRU kvm_memory_slot
   - support for histogram statistics
   - add statistics for halt polling and remote TLB flush requests"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (210 commits)
  KVM: Drop unused kvm_dirty_gfn_invalid()
  KVM: x86: Update vCPU's hv_clock before back to guest when tsc_offset is adjusted
  KVM: MMU: mark role_regs and role accessors as maybe unused
  KVM: MIPS: Remove a "set but not used" variable
  x86/kvm: Don't enable IRQ when IRQ enabled in kvm_wait
  KVM: stats: Add VM stat for remote tlb flush requests
  KVM: Remove unnecessary export of kvm_{inc,dec}_notifier_count()
  KVM: x86/mmu: Move lpage_disallowed_link further "down" in kvm_mmu_page
  KVM: x86/mmu: Relocate kvm_mmu_page.tdp_mmu_page for better cache locality
  Revert "KVM: x86: mmu: Add guest physical address check in translate_gpa()"
  KVM: x86/mmu: Remove unused field mmio_cached in struct kvm_mmu_page
  kvm: x86: Increase KVM_SOFT_MAX_VCPUS to 710
  kvm: x86: Increase MAX_VCPUS to 1024
  kvm: x86: Set KVM_MAX_VCPU_ID to 4*KVM_MAX_VCPUS
  KVM: VMX: avoid running vmx_handle_exit_irqoff in case of emulation
  KVM: x86/mmu: Don't freak out if pml5_root is NULL on 4-level host
  KVM: s390: index kvm->arch.idle_mask by vcpu_idx
  KVM: s390: Enable specification exception interpretation
  KVM: arm64: Trim guest debug exception handling
  KVM: SVM: Add 5-level page table support for SVM
  ...
2021-09-07 13:40:51 -07:00
Zelin Deng
d9130a2dfd KVM: x86: Update vCPU's hv_clock before back to guest when tsc_offset is adjusted
When MSR_IA32_TSC_ADJUST is written by guest due to TSC ADJUST feature
especially there's a big tsc warp (like a new vCPU is hot-added into VM
which has been up for a long time), tsc_offset is added by a large value
then go back to guest. This causes system time jump as tsc_timestamp is
not adjusted in the meantime and pvclock monotonic character.
To fix this, just notify kvm to update vCPU's guest time before back to
guest.

Cc: stable@vger.kernel.org
Signed-off-by: Zelin Deng <zelin.deng@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <1619576521-81399-2-git-send-email-zelin.deng@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-06 07:07:03 -04:00
Paolo Bonzini
4ac214574d KVM: MMU: mark role_regs and role accessors as maybe unused
It is reasonable for these functions to be used only in some configurations,
for example only if the host is 64-bits (and therefore supports 64-bit
guests).  It is also reasonable to keep the role_regs and role accessors
in sync even though some of the accessors may be used only for one of the
two sets (as is the case currently for CR4.LA57)..

Because clang reports warnings for unused inlines declared in a .c file,
mark both sets of accessors as __maybe_unused.

Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-06 06:56:38 -04:00
Sean Christopherson
1148bfc47b KVM: x86/mmu: Move lpage_disallowed_link further "down" in kvm_mmu_page
Move "lpage_disallowed_link" out of the first 64 bytes, i.e. out of the
first cache line, of kvm_mmu_page so that "spt" and to a lesser extent
"gfns" land in the first cache line.  "lpage_disallowed_link" is accessed
relatively infrequently compared to "spt", which is accessed any time KVM
is walking and/or manipulating the shadow page tables.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210901221023.1303578-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-06 06:20:05 -04:00
Sean Christopherson
ca41c34cab KVM: x86/mmu: Relocate kvm_mmu_page.tdp_mmu_page for better cache locality
Move "tdp_mmu_page" into the 1-byte void left by the recently removed
"mmio_cached" so that it resides in the first 64 bytes of kvm_mmu_page,
i.e. in the same cache line as the most commonly accessed fields.

Don't bother wrapping tdp_mmu_page in CONFIG_X86_64, including the field in
32-bit builds doesn't affect the size of kvm_mmu_page, and a future patch
can always wrap the field in the unlikely event KVM gains a 1-byte flag
that is 32-bit specific.

Note, the size of kvm_mmu_page is also unchanged on CONFIG_X86_64=y due
to it previously sharing an 8-byte chunk with write_flooding_count.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210901221023.1303578-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-06 06:19:07 -04:00
Sean Christopherson
e7177339d7 Revert "KVM: x86: mmu: Add guest physical address check in translate_gpa()"
Revert a misguided illegal GPA check when "translating" a non-nested GPA.
The check is woefully incomplete as it does not fill in @exception as
expected by all callers, which leads to KVM attempting to inject a bogus
exception, potentially exposing kernel stack information in the process.

 WARNING: CPU: 0 PID: 8469 at arch/x86/kvm/x86.c:525 exception_type+0x98/0xb0 arch/x86/kvm/x86.c:525
 CPU: 1 PID: 8469 Comm: syz-executor531 Not tainted 5.14.0-rc7-syzkaller #0
 RIP: 0010:exception_type+0x98/0xb0 arch/x86/kvm/x86.c:525
 Call Trace:
  x86_emulate_instruction+0xef6/0x1460 arch/x86/kvm/x86.c:7853
  kvm_mmu_page_fault+0x2f0/0x1810 arch/x86/kvm/mmu/mmu.c:5199
  handle_ept_misconfig+0xdf/0x3e0 arch/x86/kvm/vmx/vmx.c:5336
  __vmx_handle_exit arch/x86/kvm/vmx/vmx.c:6021 [inline]
  vmx_handle_exit+0x336/0x1800 arch/x86/kvm/vmx/vmx.c:6038
  vcpu_enter_guest+0x2a1c/0x4430 arch/x86/kvm/x86.c:9712
  vcpu_run arch/x86/kvm/x86.c:9779 [inline]
  kvm_arch_vcpu_ioctl_run+0x47d/0x1b20 arch/x86/kvm/x86.c:10010
  kvm_vcpu_ioctl+0x49e/0xe50 arch/x86/kvm/../../../virt/kvm/kvm_main.c:3652

The bug has escaped notice because practically speaking the GPA check is
useless.  The GPA check in question only comes into play when KVM is
walking guest page tables (or "translating" CR3), and KVM already handles
illegal GPA checks by setting reserved bits in rsvd_bits_mask for each
PxE, or in the case of CR3 for loading PTDPTRs, manually checks for an
illegal CR3.  This particular failure doesn't hit the existing reserved
bits checks because syzbot sets guest.MAXPHYADDR=1, and IA32 architecture
simply doesn't allow for such an absurd MAXPHYADDR, e.g. 32-bit paging
doesn't define any reserved PA bits checks, which KVM emulates by only
incorporating the reserved PA bits into the "high" bits, i.e. bits 63:32.

Simply remove the bogus check.  There is zero meaningful value and no
architectural justification for supporting guest.MAXPHYADDR < 32, and
properly filling the exception would introduce non-trivial complexity.

This reverts commit ec7771ab471ba6a945350353617e2e3385d0e013.

Fixes: ec7771ab471b ("KVM: x86: mmu: Add guest physical address check in translate_gpa()")
Cc: stable@vger.kernel.org
Reported-by: syzbot+200c08e88ae818f849ce@syzkaller.appspotmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210831164224.1119728-2-seanjc@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-06 06:18:02 -04:00
Jia He
678a305b85 KVM: x86/mmu: Remove unused field mmio_cached in struct kvm_mmu_page
After reverting and restoring the fast tlb invalidation patch series,
the mmio_cached is not removed. Hence a unused field is left in
kvm_mmu_page.

Cc: Sean Christopherson <seanjc@google.com>
Signed-off-by: Jia He <justin.he@arm.com>
Message-Id: <20210830145336.27183-1-justin.he@arm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-06 06:13:09 -04:00
Maxim Levitsky
81b4b56d4f KVM: VMX: avoid running vmx_handle_exit_irqoff in case of emulation
If we are emulating an invalid guest state, we don't have a correct
exit reason, and thus we shouldn't do anything in this function.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210826095750.1650467-2-mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Fixes: 95b5a48c4f2b ("KVM: VMX: Handle NMIs, #MCs and async #PFs in common irqs-disabled fn", 2019-06-18)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-06 06:00:27 -04:00
Sean Christopherson
a717a780fc KVM: x86/mmu: Don't freak out if pml5_root is NULL on 4-level host
Include pml5_root in the set of special roots if and only if the host,
and thus NPT, is using 5-level paging.  mmu_alloc_special_roots() expects
special roots to be allocated as a bundle, i.e. they're either all valid
or all NULL.  But for pml5_root, that expectation only holds true if the
host uses 5-level paging, which causes KVM to WARN about pml5_root being
NULL when the other special roots are valid.

The silver lining of 4-level vs. 5-level NPT being tied to the host
kernel's paging level is that KVM's shadow root level is constant; unlike
VMX's EPT, KVM can't choose 4-level NPT based on guest.MAXPHYADDR.  That
means KVM can still expect pml5_root to be bundled with the other special
roots, it just needs to be conditioned on the shadow root level.

Fixes: cb0f722aff6e ("KVM: x86/mmu: Support shadowing NPT when 5-level paging is enabled in host")
Reported-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210824005824.205536-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-06 05:56:38 -04:00
Linus Torvalds
ccd8ec4a3f A set of updates to support port 0x22/0x23 based PCI configuration space
which can be found on various ALi chipsets and is also available on older
 Intel systems which expose a PIRQ router. While the Intel support is more
 or less nostalgia, the ALi chips are still in use on popular embedded
 boards used for routers.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmEsn2QTHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoQT1EACIvzRbycwclASIV6rBK5FMcVa2VuXR
 GVqrfERPCUHQxnLshUJxnLk0NvZcQrLHjYl/QMCHBFOeEh3XrzU7JkKDW0Q8Dnov
 QGFRtandKDwY4TwnCPKVdz/HeWMxNRT7OF4d08Q3iKCN5l39RLxraMixSrFL8soO
 wgGcRTjbTa6HaMlqacFN7DwwiHxbIGJNepi0yqLZBV2dQOnZPd+ujV1FRSNXkv9p
 vFPfuazk/psiSXy3x/+YVPUw+6h8DRDkflc9+wvSR+1cVl8eyrjkLgLH43ihddEN
 Dl1SG5vKyCOtvQm+TEYdB5qjb/Zd4BjlbvKPJ+94OTtsjIIwxzInizkeTXiLHXnl
 SDHX9Sc8L4sYP5+tAew1WMj8K2/p6FzdHm+sBJHd2JFSsMpeErI7p0y0Nz58E7pG
 0cRqeWlq7rbGFPq544A8cgx/LjPkZT4LgutGpJ6f3NTZeLfj09xbFRqxNOHqAx+h
 fp+36RNb1/j70Yz+4r7lLeDOVswbK+YxPIZGdnNfINTHeGllthDI5vaUL0L2jZnI
 CnnKjss2a1WkDC8gczr/3QYcQRKrKDHL0hn0nUh+9laAaTSwNv3oRrkUWvMqwaT8
 qSMMm5Eb84B4fZLyvPIcAwyC++JU/cVCgWEP37EzhYcvp6tq8GmR1cdi1lo2/K4O
 qhg1d7loNh0eCg==
 =R+c1
 -----END PGP SIGNATURE-----

Merge tag 'x86-irq-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 PIRQ updates from Thomas Gleixner:
 "A set of updates to support port 0x22/0x23 based PCI configuration
  space which can be found on various ALi chipsets and is also available
  on older Intel systems which expose a PIRQ router.

  While the Intel support is more or less nostalgia, the ALi chips are
  still in use on popular embedded boards used for routers"

* tag 'x86-irq-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86: Fix typo s/ECLR/ELCR/ for the PIC register
  x86: Avoid magic number with ELCR register accesses
  x86/PCI: Add support for the Intel 82426EX PIRQ router
  x86/PCI: Add support for the Intel 82374EB/82374SB (ESC) PIRQ router
  x86/PCI: Add support for the ALi M1487 (IBC) PIRQ router
  x86: Add support for 0x22/0x23 port I/O configuration space
2021-08-30 15:20:05 -07:00
Wei Huang
43e540cc9f KVM: SVM: Add 5-level page table support for SVM
When the 5-level page table is enabled on host OS, the nested page table
for guest VMs must use 5-level as well. Update get_npt_level() function
to reflect this requirement. In the meanwhile, remove the code that
prevents kvm-amd driver from being loaded when 5-level page table is
detected.

Signed-off-by: Wei Huang <wei.huang2@amd.com>
Message-Id: <20210818165549.3771014-4-wei.huang2@amd.com>
[Tweak condition as suggested by Sean. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:07:56 -04:00
Wei Huang
cb0f722aff KVM: x86/mmu: Support shadowing NPT when 5-level paging is enabled in host
When the 5-level page table CPU flag is set in the host, but the guest
has CR4.LA57=0 (including the case of a 32-bit guest), the top level of
the shadow NPT page tables will be fixed, consisting of one pointer to
a lower-level table and 511 non-present entries.  Extend the existing
code that creates the fixed PML4 or PDP table, to provide a fixed PML5
table if needed.

This is not needed on EPT because the number of layers in the tables
is specified in the EPTP instead of depending on the host CR4.

Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Wei Huang <wei.huang2@amd.com>
Message-Id: <20210818165549.3771014-3-wei.huang2@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:07:48 -04:00
Wei Huang
746700d21f KVM: x86: Allow CPU to force vendor-specific TDP level
AMD future CPUs will require a 5-level NPT if host CR4.LA57 is set.
To prevent kvm_mmu_get_tdp_level() from incorrectly changing NPT level
on behalf of CPUs, add a new parameter in kvm_configure_mmu() to force
a fixed TDP level.

Signed-off-by: Wei Huang <wei.huang2@amd.com>
Message-Id: <20210818165549.3771014-2-wei.huang2@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:44 -04:00
Paolo Bonzini
ec607a564f KVM: x86: clamp host mapping level to max_level in kvm_mmu_max_mapping_level
This change started as a way to make kvm_mmu_hugepage_adjust a bit simpler,
but it does fix two bugs as well.

One bug is in zapping collapsible PTEs.  If a large page size is
disallowed but not all of them, kvm_mmu_max_mapping_level will return the
host mapping level and the small PTEs will be zapped up to that level.
However, if e.g. 1GB are prohibited, we can still zap 4KB mapping and
preserve the 2MB ones. This can happen for example when NX huge pages
are in use.

The second would happen when userspace backs guest memory
with a 1gb hugepage but only assign a subset of the page to
the guest.  1gb pages would be disallowed by the memslot, but
not 2mb.  kvm_mmu_max_mapping_level() would fall through to the
host_pfn_mapping_level() logic, see the 1gb hugepage, and map the whole
thing into the guest.

Fixes: 2f57b7051fe8 ("KVM: x86/mmu: Persist gfn_lpage_is_disallowed() to max_level")
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:41 -04:00
Maxim Levitsky
61e5f69ef0 KVM: x86: implement KVM_GUESTDBG_BLOCKIRQ
KVM_GUESTDBG_BLOCKIRQ will allow KVM to block all interrupts
while running.

This change is mostly intended for more robust single stepping
of the guest and it has the following benefits when enabled:

* Resuming from a breakpoint is much more reliable.
  When resuming execution from a breakpoint, with interrupts enabled,
  more often than not, KVM would inject an interrupt and make the CPU
  jump immediately to the interrupt handler and eventually return to
  the breakpoint, to trigger it again.

  From the user point of view it looks like the CPU never executed a
  single instruction and in some cases that can even prevent forward
  progress, for example, when the breakpoint is placed by an automated
  script (e.g lx-symbols), which does something in response to the
  breakpoint and then continues the guest automatically.
  If the script execution takes enough time for another interrupt to
  arrive, the guest will be stuck on the same breakpoint RIP forever.

* Normal single stepping is much more predictable, since it won't
  land the debugger into an interrupt handler.

* RFLAGS.TF has less chance to be leaked to the guest:

  We set that flag behind the guest's back to do single stepping
  but if single step lands us into an interrupt/exception handler
  it will be leaked to the guest in the form of being pushed
  to the stack.
  This doesn't completely eliminate this problem as exceptions
  can still happen, but at least this reduces the chances
  of this happening.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210811122927.900604-6-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:37 -04:00
Maxim Levitsky
7a4bca85b2 KVM: SVM: split svm_handle_invalid_exit
Split the check for having a vmexit handler to svm_check_exit_valid,
and make svm_handle_invalid_exit only handle a vmexit that is
already not valid.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210811122927.900604-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:37 -04:00
Sean Christopherson
9653f2da75 KVM: x86/mmu: Drop 'shared' param from tdp_mmu_link_page()
Drop @shared from tdp_mmu_link_page() and hardcode it to work for
mmu_lock being held for read.  The helper has exactly one caller and
in all likelihood will only ever have exactly one caller.  Even if KVM
adds a path to install translations without an initiating page fault,
odds are very, very good that the path will just be a wrapper to the
"page fault" handler (both SNP and TDX RFCs propose patches to do
exactly that).

No functional change intended.

Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210810224554.2978735-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:35 -04:00
Mingwei Zhang
71f51d2c32 KVM: x86/mmu: Add detailed page size stats
Existing KVM code tracks the number of large pages regardless of their
sizes. Therefore, when large page of 1GB (or larger) is adopted, the
information becomes less useful because lpages counts a mix of 1G and 2M
pages.

So remove the lpages since it is easy for user space to aggregate the info.
Instead, provide a comprehensive page stats of all sizes from 4K to 512G.

Suggested-by: Ben Gardon <bgardon@google.com>

Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Cc: Jing Zhang <jingzhangos@google.com>
Cc: David Matlack <dmatlack@google.com>
Cc: Sean Christopherson <seanjc@google.com>
Message-Id: <20210803044607.599629-4-mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:34 -04:00
Sean Christopherson
088acd2352 KVM: x86/mmu: Avoid collision with !PRESENT SPTEs in TDP MMU lpage stats
Factor in whether or not the old/new SPTEs are shadow-present when
adjusting the large page stats in the TDP MMU.  A modified MMIO SPTE can
toggle the page size bit, as bit 7 is used to store the MMIO generation,
i.e. is_large_pte() can get a false positive when called on a MMIO SPTE.
Ditto for nuking SPTEs with REMOVED_SPTE, which sets bit 7 in its magic
value.

Opportunistically move the logic below the check to verify at least one
of the old/new SPTEs is shadow present.

Use is/was_leaf even though is/was_present would suffice.  The code
generation is roughly equivalent since all flags need to be computed
prior to the code in question, and using the *_leaf flags will minimize
the diff in a future enhancement to account all pages, i.e. will change
the check to "is_leaf != was_leaf".

Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>

Fixes: 1699f65c8b65 ("kvm/x86: Fix 'lpages' kvm stat for TDM MMU")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Message-Id: <20210803044607.599629-3-mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:34 -04:00
Mingwei Zhang
4293ddb788 KVM: x86/mmu: Remove redundant spte present check in mmu_set_spte
Drop an unnecessary is_shadow_present_pte() check when updating the rmaps
after installing a non-MMIO SPTE.  set_spte() is used only to create
shadow-present SPTEs, e.g. MMIO SPTEs are handled early on, mmu_set_spte()
runs with mmu_lock held for write, i.e. the SPTE can't be zapped between
writing the SPTE and updating the rmaps.

Opportunistically combine the "new SPTE" logic for large pages and rmaps.

No functional change intended.

Suggested-by: Ben Gardon <bgardon@google.com>

Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Message-Id: <20210803044607.599629-2-mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:34 -04:00
Jing Zhang
f95937ccf5 KVM: stats: Support linear and logarithmic histogram statistics
Add new types of KVM stats, linear and logarithmic histogram.
Histogram are very useful for observing the value distribution
of time or size related stats.

Signed-off-by: Jing Zhang <jingzhangos@google.com>
Message-Id: <20210802165633.1866976-2-jingzhangos@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:32 -04:00
Maxim Levitsky
73143035c2 KVM: SVM: AVIC: drop unsupported AVIC base relocation code
APIC base relocation is not supported anyway and won't work
correctly so just drop the code that handles it and keep AVIC
MMIO bar at the default APIC base.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-17-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:31 -04:00
Maxim Levitsky
df7e4827c5 KVM: SVM: call avic_vcpu_load/avic_vcpu_put when enabling/disabling AVIC
Currently it is possible to have the following scenario:

1. AVIC is disabled by svm_refresh_apicv_exec_ctrl
2. svm_vcpu_blocking calls avic_vcpu_put which does nothing
3. svm_vcpu_unblocking enables the AVIC (due to KVM_REQ_APICV_UPDATE)
   and then calls avic_vcpu_load
4. warning is triggered in avic_vcpu_load since
   AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK was never cleared

While it is possible to just remove the warning, it seems to be more robust
to fully disable/enable AVIC in svm_refresh_apicv_exec_ctrl by calling the
avic_vcpu_load/avic_vcpu_put

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-16-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:30 -04:00
Maxim Levitsky
bf5f6b9d7a KVM: SVM: move check for kvm_vcpu_apicv_active outside of avic_vcpu_{put|load}
No functional change intended.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-15-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:29 -04:00
Maxim Levitsky
06ef813466 KVM: SVM: avoid refreshing avic if its state didn't change
Since AVIC can be inhibited and uninhibited rapidly it is possible that
we have nothing to do by the time the svm_refresh_apicv_exec_ctrl
is called.

Detect and avoid this, which will be useful when we will start calling
avic_vcpu_load/avic_vcpu_put when the avic inhibition state changes.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-14-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:27 -04:00
Maxim Levitsky
30eed56a7e KVM: SVM: remove svm_toggle_avic_for_irq_window
Now that kvm_request_apicv_update doesn't need to drop the kvm->srcu lock,
we can call kvm_request_apicv_update directly.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210810205251.424103-13-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:26 -04:00
Vitaly Kuznetsov
0f250a6463 KVM: x86: hyper-v: Deactivate APICv only when AutoEOI feature is in use
APICV_INHIBIT_REASON_HYPERV is currently unconditionally forced upon
SynIC activation as SynIC's AutoEOI is incompatible with APICv/AVIC. It is,
however, possible to track whether the feature was actually used by the
guest and only inhibit APICv/AVIC when needed.

TLFS suggests a dedicated 'HV_DEPRECATING_AEOI_RECOMMENDED' flag to let
Windows know that AutoEOI feature should be avoided. While it's up to
KVM userspace to set the flag, KVM can help a bit by exposing global
APICv/AVIC enablement.

Maxim:
   - always set HV_DEPRECATING_AEOI_RECOMMENDED in kvm_get_hv_cpuid,
     since this feature can be used regardless of AVIC

Paolo:
   - use arch.apicv_update_lock to protect the hv->synic_auto_eoi_used
     instead of atomic ops

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-12-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:25 -04:00
Maxim Levitsky
4628efcd4e KVM: SVM: add warning for mistmatch between AVIC vcpu state and AVIC inhibition
It is never a good idea to enter a guest on a vCPU when the
AVIC inhibition state doesn't match the enablement of
the AVIC on the vCPU.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-11-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:24 -04:00
Maxim Levitsky
b0a1637f64 KVM: x86: APICv: fix race in kvm_request_apicv_update on SVM
Currently on SVM, the kvm_request_apicv_update toggles the APICv
memslot without doing any synchronization.

If there is a mismatch between that memslot state and the AVIC state,
on one of the vCPUs, an APIC mmio access can be lost:

For example:

VCPU0: enable the APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
VCPU1: access an APIC mmio register.

Since AVIC is still disabled on VCPU1, the access will not be intercepted
by it, and neither will it cause MMIO fault, but rather it will just be
read/written from/to the dummy page mapped into the
APIC_ACCESS_PAGE_PRIVATE_MEMSLOT.

Fix that by adding a lock guarding the AVIC state changes, and carefully
order the operations of kvm_request_apicv_update to avoid this race:

1. Take the lock
2. Send KVM_REQ_APICV_UPDATE
3. Update the apic inhibit reason
4. Release the lock

This ensures that at (2) all vCPUs are kicked out of the guest mode,
but don't yet see the new avic state.
Then only after (4) all other vCPUs can update their AVIC state and resume.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-10-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:23 -04:00
Maxim Levitsky
36222b117e KVM: x86: don't disable APICv memslot when inhibited
Thanks to the former patches, it is now possible to keep the APICv
memslot always enabled, and it will be invisible to the guest
when it is inhibited

This code is based on a suggestion from Sean Christopherson:
https://lkml.org/lkml/2021/7/19/2970

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-9-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:22 -04:00
Maxim Levitsky
9cc13d60ba KVM: x86/mmu: allow APICv memslot to be enabled but invisible
on AMD, APIC virtualization needs to dynamicaly inhibit the AVIC in a
response to some events, and this is problematic and not efficient to do by
enabling/disabling the memslot that covers APIC's mmio range.

Plus due to SRCU locking, it makes it more complex to
request AVIC inhibition.

Instead, the APIC memslot will be always enabled, but be invisible
to the guest, such as the MMU code will not install a SPTE for it,
when it is inhibited and instead jump straight to emulating the access.

When inhibiting the AVIC, this SPTE will be zapped.

This code is based on a suggestion from Sean Christopherson:
https://lkml.org/lkml/2021/7/19/2970

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-8-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:22 -04:00
Maxim Levitsky
8f32d5e563 KVM: x86/mmu: allow kvm_faultin_pfn to return page fault handling code
This will allow it to return RET_PF_EMULATE for APIC mmio
emulation.

This code is based on a patch from Sean Christopherson:
https://lkml.org/lkml/2021/7/19/2970

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210810205251.424103-7-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:20 -04:00
Maxim Levitsky
33a5c0009d KVM: x86/mmu: rename try_async_pf to kvm_faultin_pfn
try_async_pf is a wrong name for this function, since this code
is used when asynchronous page fault is not enabled as well.

This code is based on a patch from Sean Christopherson:
https://lkml.org/lkml/2021/7/19/2970

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210810205251.424103-6-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:20 -04:00
Maxim Levitsky
edb298c663 KVM: x86/mmu: bump mmu notifier count in kvm_zap_gfn_range
This together with previous patch, ensures that
kvm_zap_gfn_range doesn't race with page fault
running on another vcpu, and will make this page fault code
retry instead.

This is based on a patch suggested by Sean Christopherson:
https://lkml.org/lkml/2021/7/22/1025

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-5-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:19 -04:00
Maxim Levitsky
88f585358b KVM: x86/mmu: add comment explaining arguments to kvm_zap_gfn_range
This comment makes it clear that the range of gfns that this
function receives is non inclusive.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-4-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:18 -04:00
Maxim Levitsky
2822da4466 KVM: x86/mmu: fix parameters to kvm_flush_remote_tlbs_with_address
kvm_flush_remote_tlbs_with_address expects (start gfn, number of pages),
and not (start gfn, end gfn)

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-3-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:16 -04:00
Sean Christopherson
5a324c24b6 Revert "KVM: x86/mmu: Allow zap gfn range to operate under the mmu read lock"
This together with the next patch will fix a future race between
kvm_zap_gfn_range and the page fault handler, which will happen
when AVIC memslot is going to be only partially disabled.

The performance impact is minimal since kvm_zap_gfn_range is only
called by users, update_mtrr() and kvm_post_set_cr0().

Both only use it if the guest has non-coherent DMA, in order to
honor the guest's UC memtype.

MTRR and CD setup only happens at boot, and generally in an area
where the page tables should be small (for CD) or should not
include the affected GFNs at all (for MTRRs).

This is based on a patch suggested by Sean Christopherson:
https://lkml.org/lkml/2021/7/22/1025

Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:15 -04:00
Peter Xu
3bcd0662d6 KVM: X86: Introduce mmu_rmaps_stat per-vm debugfs file
Use this file to dump rmap statistic information.  The statistic is done by
calculating the rmap count and the result is log-2-based.

An example output of this looks like (idle 6GB guest, right after boot linux):

Rmap_Count:     0       1       2-3     4-7     8-15    16-31   32-63   64-127  128-255 256-511 512-1023
Level=4K:       3086676 53045   12330   1272    502     121     76      2       0       0       0
Level=2M:       5947    231     0       0       0       0       0       0       0       0       0
Level=1G:       32      0       0       0       0       0       0       0       0       0       0

Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20210730220455.26054-5-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:11 -04:00
Peter Xu
4139b1972a KVM: X86: Introduce kvm_mmu_slot_lpages() helpers
Introduce kvm_mmu_slot_lpages() to calculcate lpage_info and rmap array size.
The other __kvm_mmu_slot_lpages() can take an extra parameter of npages rather
than fetching from the memslot pointer.  Start to use the latter one in
kvm_alloc_memslot_metadata().

Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20210730220455.26054-4-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:04:51 -04:00
Maxim Levitsky
c7dfa40099 KVM: nSVM: always intercept VMLOAD/VMSAVE when nested (CVE-2021-3656)
If L1 disables VMLOAD/VMSAVE intercepts, and doesn't enable
Virtual VMLOAD/VMSAVE (currently not supported for the nested hypervisor),
then VMLOAD/VMSAVE must operate on the L1 physical memory, which is only
possible by making L0 intercept these instructions.

Failure to do so allowed the nested guest to run VMLOAD/VMSAVE unintercepted,
and thus read/write portions of the host physical memory.

Fixes: 89c8a4984fc9 ("KVM: SVM: Enable Virtual VMLOAD VMSAVE feature")

Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-16 09:48:37 -04:00
Maxim Levitsky
0f923e0712 KVM: nSVM: avoid picking up unsupported bits from L2 in int_ctl (CVE-2021-3653)
* Invert the mask of bits that we pick from L2 in
  nested_vmcb02_prepare_control

* Invert and explicitly use VIRQ related bits bitmask in svm_clear_vintr

This fixes a security issue that allowed a malicious L1 to run L2 with
AVIC enabled, which allowed the L2 to exploit the uninitialized and enabled
AVIC to read/write the host physical memory at some offsets.

Fixes: 3d6368ef580a ("KVM: SVM: Add VMRUN handler")
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-16 09:48:27 -04:00
Sean Christopherson
f7782bb8d8 KVM: nVMX: Unconditionally clear nested.pi_pending on nested VM-Enter
Clear nested.pi_pending on nested VM-Enter even if L2 will run without
posted interrupts enabled.  If nested.pi_pending is left set from a
previous L2, vmx_complete_nested_posted_interrupt() will pick up the
stale flag and exit to userspace with an "internal emulation error" due
the new L2 not having a valid nested.pi_desc.

Arguably, vmx_complete_nested_posted_interrupt() should first check for
posted interrupts being enabled, but it's also completely reasonable that
KVM wouldn't screw up a fundamental flag.  Not to mention that the mere
existence of nested.pi_pending is a long-standing bug as KVM shouldn't
move the posted interrupt out of the IRR until it's actually processed,
e.g. KVM effectively drops an interrupt when it performs a nested VM-Exit
with a "pending" posted interrupt.  Fixing the mess is a future problem.

Prior to vmx_complete_nested_posted_interrupt() interpreting a null PI
descriptor as an error, this was a benign bug as the null PI descriptor
effectively served as a check on PI not being enabled.  Even then, the
new flow did not become problematic until KVM started checking the result
of kvm_check_nested_events().

Fixes: 705699a13994 ("KVM: nVMX: Enable nested posted interrupt processing")
Fixes: 966eefb89657 ("KVM: nVMX: Disable vmcs02 posted interrupts if vmcs12 PID isn't mappable")
Fixes: 47d3530f86c0 ("KVM: x86: Exit to userspace when kvm_check_nested_events fails")
Cc: stable@vger.kernel.org
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210810144526.2662272-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-13 03:35:17 -04:00
Like Xu
c1a527a1de KVM: x86: Clean up redundant ROL16(val, n) macro definition
The ROL16(val, n) macro is repeatedly defined in several vmcs-related
files, and it has never been used outside the KVM context.

Let's move it to vmcs.h without any intended functional changes.

Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20210809093410.59304-4-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-13 03:35:16 -04:00
Uros Bizjak
65297341d8 KVM: x86: Move declaration of kvm_spurious_fault() to x86.h
Move the declaration of kvm_spurious_fault() to KVM's "private" x86.h,
it should never be called by anything other than low level KVM code.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
[sean: rebased to a series without __ex()/__kvm_handle_fault_on_reboot()]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210809173955.1710866-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-13 03:35:16 -04:00
Sean Christopherson
ad0577c375 KVM: x86: Kill off __ex() and __kvm_handle_fault_on_reboot()
Remove the __kvm_handle_fault_on_reboot() and __ex() macros now that all
VMX and SVM instructions use asm goto to handle the fault (or in the
case of VMREAD, completely custom logic).  Drop kvm_spurious_fault()'s
asmlinkage annotation as __kvm_handle_fault_on_reboot() was the only
flow that invoked it from assembly code.

Cc: Uros Bizjak <ubizjak@gmail.com>
Cc: Like Xu <like.xu.linux@gmail.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210809173955.1710866-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-13 03:35:16 -04:00
Sean Christopherson
2fba4fc155 KVM: VMX: Hide VMCS control calculators in vmx.c
Now that nested VMX pulls KVM's desired VMCS controls from vmcs01 instead
of re-calculating on the fly, bury the helpers that do the calcluations
in vmx.c.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210810171952.2758100-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-13 03:35:15 -04:00
Sean Christopherson
b6247686b7 KVM: VMX: Drop caching of KVM's desired sec exec controls for vmcs01
Remove the secondary execution controls cache now that it's effectively
dead code; it is only read immediately after it is written.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210810171952.2758100-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-13 03:35:15 -04:00
Sean Christopherson
389ab25216 KVM: nVMX: Pull KVM L0's desired controls directly from vmcs01
When preparing controls for vmcs02, grab KVM's desired controls from
vmcs01's shadow state instead of recalculating the controls from scratch,
or in the secondary execution controls, instead of using the dedicated
cache.  Calculating secondary exec controls is eye-poppingly expensive
due to the guest CPUID checks, hence the dedicated cache, but the other
calculations aren't exactly free either.

Explicitly clear several bits (x2APIC, DESC exiting, and load EFER on
exit) as appropriate as they may be set in vmcs01, whereas the previous
implementation relied on dynamic bits being cleared in the calculator.

Intentionally propagate VM_{ENTRY,EXIT}_LOAD_IA32_PERF_GLOBAL_CTRL from
vmcs01 to vmcs02.  Whether or not PERF_GLOBAL_CTRL is loaded depends on
whether or not perf itself is active, so unless perf stops between the
exit from L1 and entry to L2, vmcs01 will hold the desired value.  This
is purely an optimization as atomic_switch_perf_msrs() will set/clear
the control as needed at VM-Enter, i.e. it avoids two extra VMWRITEs in
the case where perf is active (versus starting with the bits clear in
vmcs02, which was the previous behavior).

Cc: Zeng Guang <guang.zeng@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210810171952.2758100-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-13 03:35:15 -04:00
Paolo Bonzini
1ccb6f983a KVM: VMX: Reset DR6 only when KVM_DEBUGREG_WONT_EXIT
The commit efdab992813fb ("KVM: x86: fix escape of guest dr6 to the host")
fixed a bug by resetting DR6 unconditionally when the vcpu being scheduled out.

But writing to debug registers is slow, and it can be visible in perf results
sometimes, even if neither the host nor the guest activate breakpoints.

Since KVM_DEBUGREG_WONT_EXIT on Intel processors is the only case
where DR6 gets the guest value, and it never happens at all on SVM,
the register can be cleared in vmx.c right after reading it.

Reported-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-13 03:35:14 -04:00
Paolo Bonzini
375e28ffc0 KVM: X86: Set host DR6 only on VMX and for KVM_DEBUGREG_WONT_EXIT
Commit c77fb5fe6f03 ("KVM: x86: Allow the guest to run with dirty debug
registers") allows the guest accessing to DRs without exiting when
KVM_DEBUGREG_WONT_EXIT and we need to ensure that they are synchronized
on entry to the guest---including DR6 that was not synced before the commit.

But the commit sets the hardware DR6 not only when KVM_DEBUGREG_WONT_EXIT,
but also when KVM_DEBUGREG_BP_ENABLED.  The second case is unnecessary
and just leads to a more case which leaks stale DR6 to the host which has
to be resolved by unconditionally reseting DR6 in kvm_arch_vcpu_put().

Even if KVM_DEBUGREG_WONT_EXIT, however, setting the host DR6 only matters
on VMX because SVM always uses the DR6 value from the VMCB.  So move this
line to vmx.c and make it conditional on KVM_DEBUGREG_WONT_EXIT.

Reported-by: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-13 03:35:14 -04:00