IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The aarch64_insn_gen_branch_imm() function takes an enum as the last
argument rather than a bool. It happens to work because
AARCH64_INSN_BRANCH_LINK matches 'true' but better to use the actual
type.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The kernel wants to enable reporting of asynchronous interrupts (i.e.
System Errors) as early as possible. But if this happens too early then
any pending System Error on initial entry into the kernel may never be
reported where a user can see it. This situation will occur if the kernel
is configured with CONFIG_PANIC_ON_OOPS set and (default or command line)
enabled, in which case the kernel will panic as intended, however the
associated logging messages indicating this failure condition will remain
only in the kernel ring buffer and never be flushed out to the (not yet
configured) console. Therefore, this patch moves the enabling of
asynchronous interrupts during early setup to as early as reasonable,
but after parsing any possible earlycon parameters setting up earlycon.
Signed-off-by: Jon Masters <jcm@redhat.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
* cpuidle:
arm64: add PSCI CPU_SUSPEND based cpu_suspend support
arm64: kernel: introduce cpu_init_idle CPU operation
arm64: kernel: refactor the CPU suspend API for retention states
Documentation: arm: define DT idle states bindings
This patch implements the cpu_suspend cpu operations method through
the PSCI CPU SUSPEND API. The PSCI implementation translates the idle state
index passed by the cpu_suspend core call into a valid PSCI state according to
the PSCI states initialized at boot through the cpu_init_idle() CPU
operations hook.
The PSCI CPU suspend operation hook checks if the PSCI state is a
standby state. If it is, it calls the PSCI suspend implementation
straight away, without saving any context. If the state is a power
down state the kernel calls the __cpu_suspend API (that saves the CPU
context) and passed the PSCI suspend finisher as a parameter so that PSCI
can be called by the __cpu_suspend implementation after saving and flushing
the context as last function before power down.
For power down states, entry point is set to cpu_resume physical address,
that represents the default kernel execution address following a CPU reset.
Reviewed-by: Ashwin Chaugule <ashwin.chaugule@linaro.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The CPUidle subsystem on ARM64 machines requires the idle states
implementation back-end to initialize idle states parameter upon
boot. This patch adds a hook in the CPU operations structure that
should be initialized by the CPU operations back-end in order to
provide a function that initializes cpu idle states.
This patch also adds the infrastructure to arm64 kernel required
to export the CPU operations based initialization interface, so
that drivers (ie CPUidle) can use it when they are initialized
at probe time.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
CPU suspend is the standard kernel interface to be used to enter
low-power states on ARM64 systems. Current cpu_suspend implementation
by default assumes that all low power states are losing the CPU context,
so the CPU registers must be saved and cleaned to DRAM upon state
entry. Furthermore, the current cpu_suspend() implementation assumes
that if the CPU suspend back-end method returns when called, this has
to be considered an error regardless of the return code (which can be
successful) since the CPU was not expected to return from a code path that
is different from cpu_resume code path - eg returning from the reset vector.
All in all this means that the current API does not cope well with low-power
states that preserve the CPU context when entered (ie retention states),
since first of all the context is saved for nothing on state entry for
those states and a successful state entry can return as a normal function
return, which is considered an error by the current CPU suspend
implementation.
This patch refactors the cpu_suspend() API so that it can be split in
two separate functionalities. The arm64 cpu_suspend API just provides
a wrapper around CPU suspend operation hook. A new function is
introduced (for architecture code use only) for states that require
context saving upon entry:
__cpu_suspend(unsigned long arg, int (*fn)(unsigned long))
__cpu_suspend() saves the context on function entry and calls the
so called suspend finisher (ie fn) to complete the suspend operation.
The finisher is not expected to return, unless it fails in which case
the error is propagated back to the __cpu_suspend caller.
The API refactoring results in the following pseudo code call sequence for a
suspending CPU, when triggered from a kernel subsystem:
/*
* int cpu_suspend(unsigned long idx)
* @idx: idle state index
*/
{
-> cpu_suspend(idx)
|---> CPU operations suspend hook called, if present
|--> if (retention_state)
|--> direct suspend back-end call (eg PSCI suspend)
else
|--> __cpu_suspend(idx, &back_end_finisher);
}
By refactoring the cpu_suspend API this way, the CPU operations back-end
has a chance to detect whether idle states require state saving or not
and can call the required suspend operations accordingly either through
simple function call or indirectly through __cpu_suspend() which carries out
state saving and suspend finisher dispatching to complete idle state entry.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Introduce function to generate logical (shifted register)
instructions.
Signed-off-by: Zi Shen Lim <zlim.lnx@gmail.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Introduce function to generate data-processing (3 source) instructions.
Signed-off-by: Zi Shen Lim <zlim.lnx@gmail.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Introduce function to generate data-processing (2 source) instructions.
Signed-off-by: Zi Shen Lim <zlim.lnx@gmail.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Introduce function to generate data-processing (1 source) instructions.
Signed-off-by: Zi Shen Lim <zlim.lnx@gmail.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Introduce function to generate add/subtract (shifted register)
instructions.
Signed-off-by: Zi Shen Lim <zlim.lnx@gmail.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Introduce function to generate move wide (immediate) instructions.
Signed-off-by: Zi Shen Lim <zlim.lnx@gmail.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Introduce function to generate bitfield instructions.
Signed-off-by: Zi Shen Lim <zlim.lnx@gmail.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Introduce function to generate add/subtract (immediate) instructions.
Signed-off-by: Zi Shen Lim <zlim.lnx@gmail.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Introduce function to generate load/store pair instructions.
Signed-off-by: Zi Shen Lim <zlim.lnx@gmail.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Introduce function to generate load/store (register offset)
instructions.
Signed-off-by: Zi Shen Lim <zlim.lnx@gmail.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Introduce function to generate conditional branch (immediate)
instructions.
Signed-off-by: Zi Shen Lim <zlim.lnx@gmail.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Introduce function to generate unconditional branch (register)
instructions.
Signed-off-by: Zi Shen Lim <zlim.lnx@gmail.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Introduce function to generate compare & branch (immediate)
instructions.
Signed-off-by: Zi Shen Lim <zlim.lnx@gmail.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The global register current_stack_pointer holds the current stack pointer.
This change supports being able to compile the kernel with both gcc and clang.
Author: Mark Charlebois <charlebm@gmail.com>
Signed-off-by: Mark Charlebois <charlebm@gmail.com>
Signed-off-by: Behan Webster <behanw@converseincode.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Use the global current_stack_pointer to get the value of the stack pointer.
This change supports being able to compile the kernel with both gcc and clang.
Signed-off-by: Behan Webster <behanw@converseincode.com>
Signed-off-by: Mark Charlebois <charlebm@gmail.com>
Reviewed-by: Olof Johansson <olof@lixom.net>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Use the global current_stack_pointer to get the value of the stack pointer.
This change supports being able to compile the kernel with both gcc and clang.
Signed-off-by: Behan Webster <behanw@converseincode.com>
Signed-off-by: Mark Charlebois <charlebm@gmail.com>
Reviewed-by: Jan-Simon Möller <dl9pf@gmx.de>
Reviewed-by: Olof Johansson <olof@lixom.net>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The current soft_restart() and setup_restart implementations incorrectly
assume that compiler will not spill/fill values to/from stack. However
this assumption seems to be wrong, revealed by the disassembly of the
currently existing code (v3.16) built with Linaro GCC 4.9-2014.05.
ffffffc000085224 <soft_restart>:
ffffffc000085224: a9be7bfd stp x29, x30, [sp,#-32]!
ffffffc000085228: 910003fd mov x29, sp
ffffffc00008522c: f9000fa0 str x0, [x29,#24]
ffffffc000085230: 94003d21 bl ffffffc0000946b4 <setup_mm_for_reboot>
ffffffc000085234: 94003b33 bl ffffffc000093f00 <flush_cache_all>
ffffffc000085238: 94003dfa bl ffffffc000094a20 <cpu_cache_off>
ffffffc00008523c: 94003b31 bl ffffffc000093f00 <flush_cache_all>
ffffffc000085240: b0003321 adrp x1, ffffffc0006ea000 <reset_devices>
ffffffc000085244: f9400fa0 ldr x0, [x29,#24] ----> spilled addr
ffffffc000085248: f942fc22 ldr x2, [x1,#1528] ----> global memstart_addr
ffffffc00008524c: f0000061 adrp x1, ffffffc000094000 <__inval_cache_range+0x40>
ffffffc000085250: 91290021 add x1, x1, #0xa40
ffffffc000085254: 8b010041 add x1, x2, x1
ffffffc000085258: d2c00802 mov x2, #0x4000000000 // #274877906944
ffffffc00008525c: 8b020021 add x1, x1, x2
ffffffc000085260: d63f0020 blr x1
...
Here the compiler generates memory accesses after the cache is disabled,
loading stale values for the spilled value and global variable. As we cannot
control when the compiler will access memory we must rewrite the
functions in assembly to stash values we need in registers prior to
disabling the cache, avoiding the use of memory.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Arun Chandran <achandran@mvista.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
If we cannot relocate the kernel Image to its preferred offset of base of DRAM
plus TEXT_OFFSET, instead relocate it to the lowest available 2 MB boundary plus
TEXT_OFFSET. We may lose a bit of memory at the low end, but we can still
proceed normally otherwise.
Acked-by: Mark Salter <msalter@redhat.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Leif Lindholm <leif.lindholm@linaro.org>
Tested-by: Leif Lindholm <leif.lindholm@linaro.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The static memory footprint of a kernel Image at boot is larger than the
Image file itself. Things like .bss data and initial page tables are allocated
statically but populated dynamically so their content is not contained in the
Image file.
However, if EFI (or GRUB) has loaded the Image at precisely the desired offset
of base of DRAM + TEXT_OFFSET, the Image will be booted in place, and we have
to make sure that the allocation done by the PE/COFF loader is large enough.
Fix this by growing the PE/COFF .text section to cover the entire static
memory footprint. The part of the section that is not covered by the payload
will be zero initialised by the PE/COFF loader.
Acked-by: Mark Salter <msalter@redhat.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Leif Lindholm <leif.lindholm@linaro.org>
Tested-by: Leif Lindholm <leif.lindholm@linaro.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
In certain cases the cpu-release-addr of a CPU may not fall in the
linear mapping (e.g. when the kernel is loaded above this address due to
the presence of other images in memory). This is problematic for the
spin-table code as it assumes that it can trivially convert a
cpu-release-addr to a valid VA in the linear map.
This patch modifies the spin-table code to use a temporary cached
mapping to write to a given cpu-release-addr, enabling us to support
addresses regardless of whether they are covered by the linear mapping.
Acked-by: Leif Lindholm <leif.lindholm@linaro.org>
Tested-by: Leif Lindholm <leif.lindholm@linaro.org>
Tested-by: Mark Salter <msalter@redhat.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
[ardb: added (__force void *) cast]
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
VIPT caches are non-aliasing if the index is derived from address bits that
are always equal between VA and PA. Classifying these as aliasing results in
unnecessary flushing which may hurt performance.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This adds helper functions and #defines to <asm/cachetype.h> to read the
line size and the number of sets from the level 1 instruction cache.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
It turns out that vendors are relying on the format of /proc/cpuinfo,
and we've even spotted out-of-tree hacks attempting to make it look
identical to the format used by arch/arm/. That means we can't afford to
churn this interface in mainline, so revert the recent reformatting of
the file for arm64 pending discussions on the list to find out what
people actually want.
This reverts commit d7a49086f2.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Now arm64 defers reloading FPSIMD state, but this optimization also
introduces the bug after cpu resume back from low power mode.
The reason is after the cpu has been powered off, s/w need set the
cpu's fpsimd_last_state to NULL so that it will force to reload
FPSIMD state for the thread, otherwise there has the chance to meet
the condition for both the task's fpsimd_state.cpu field contains the
id of the current cpu, and the cpu's fpsimd_last_state per-cpu variable
points to the task's fpsimd_state, so finally kernel will skip to reload
the context during it return back to userland.
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Leo Yan <leoy@marvell.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The current perf_regs code relies on sp and pc sitting just off the end
of the pt_regs->regs array. This is ugly and fragile, so this patch
checks for these register explicitly and returns the appropriate field.
Acked-by: Jean Pihet <jean.pihet@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
copy_{to,from}_user return the number of bytes remaining on failure, not
an error code.
This patch returns -EFAULT when the copy operation didn't complete,
rather than expose the number of bytes not copied directly to userspace.
Signed-off-by: Will Deacon <will.deacon@arm.com>
I'm not sure what I was on when I wrote this, but when iterating over
the hardware watchpoint array (hbp_watch_array), our index is off by
ARM_MAX_BRP, so we walk off the end of our thread_struct...
... except, a dodgy condition in the loop means that it never executes
at all (bp cannot be NULL).
This patch fixes the code so that we remove the bp check and use the
correct index for accessing the watchpoint structures.
Cc: <stable@vger.kernel.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Remove an unused local variable from head.S. It seems this was never
used even from the initial commit
9703d9d7f7 (arm64: Kernel booting and
initialisation), and is a left over from a previous implementation
of __calc_phys_offset.
Signed-off-by: Geoff Levand <geoff@infradead.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Pull x86 fixes from Ingo Molnar:
"A couple of EFI fixes, plus misc fixes all around the map"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
efi/arm64: Store Runtime Services revision
firmware: Do not use WARN_ON(!spin_is_locked())
x86_32, entry: Clean up sysenter_badsys declaration
x86/doc: Fix the 'tlb_single_page_flush_ceiling' sysconfig path
x86/mm: Fix sparse 'tlb_single_page_flush_ceiling' warning and make the variable read-mostly
x86/mm: Fix RCU splat from new TLB tracepoints
"efi" global data structure contains "runtime_version" field which must
be assigned in order to use it later in Runtime Services virtual calls
(virt_efi_* functions).
Before this patch "runtime_version" was unassigned (0), so each
Runtime Service virtual call that checks revision would fail.
Signed-off-by: Semen Protsenko <semen.protsenko@linaro.org>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
For some reason, the audit patches didn't make it out of -next this
merge window, so revert our temporary hack and let the audit guys deal
with fixing up -next.
This reverts commit 2a8f45b040.
Signed-off-by: Will Deacon <will.deacon@arm.com>
UEFI provides its own method for marking regions to reserve, via the
memory map which is also used to initialise memblock. So when using the
UEFI memory map, ignore any memreserve entries present in the DT.
Reported-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Leif Lindholm <leif.lindholm@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
When booting via UEFI, the kernel Image is loaded at a 4 kB boundary and
the embedded EFI stub is executed in place. The EFI stub relocates the
Image to reside TEXT_OFFSET bytes above a 2 MB boundary, and jumps into
the kernel proper.
In AArch64, PC relative symbol references are emitted using adrp/add or
adrp/ldr pairs, where the offset into a 4 kB page is resolved using a
separate :lo12: relocation. This implicitly assumes that the code will
always be executed at the same relative offset with respect to a 4 kB
boundary, or the references will point to the wrong address.
This means we should link the kernel at a 4 kB aligned base address in
order to remain compatible with the base address the UEFI loader uses
when doing the initial load of Image. So update the code that generates
TEXT_OFFSET to choose a multiple of 4 kB.
At the same time, update the code so it chooses from the interval [0..2MB)
as the author originally intended.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This removes an unfortunately placed semi-colon resulting in all instruction
caches being classified as AIVIVT.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
arm and arm64 architectures. It required some minor updates to the generic
tracepoint system, so it had to wait for me to implement them.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJT5N6DAAoJEKQekfcNnQGuv60H/2NXDO/kUtvdF0L7ewaGbDaO
sjGOXMHDDgF4fQixPsIYNHdra0iGSPL59NBjIaLsESFsB8SUOVqXSclV0MSiZJQc
1PgTduE19p2kEMsqw6F4l8Ir8hPrUT8V8pQScR9lUkww3ANpyTB6Bbg1rZHcmTYA
yAq20q85rfQrAGwbvvhg40UYF8/su0FMUAbt/a180kVL8yeQI2liAkNOJTMCVq35
PpL7if4dlqAhKMqne71ae080PIPOH34q2lmZX3/SbpRvT2tSkS4dkoSFtCAD4pvx
c2TKNOxEDDWlinN/305PXH2yQ87MTIm44SBaTu/WPllUSQoO//EKI7+13tNS8Qc=
=/VeP
-----END PGP SIGNATURE-----
Merge tag 'trace-ipi-tracepoints' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull IPI tracepoints for ARM from Steven Rostedt:
"Nicolas Pitre added generic tracepoints for tracing IPIs and updated
the arm and arm64 architectures. It required some minor updates to
the generic tracepoint system, so it had to wait for me to implement
them"
* tag 'trace-ipi-tracepoints' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
ARM64: add IPI tracepoints
ARM: add IPI tracepoints
tracepoint: add generic tracepoint definitions for IPI tracing
tracing: Do not do anything special with tracepoint_string when tracing is disabled
Pull arch signal handling cleanup from Richard Weinberger:
"This patch series moves all remaining archs to the get_signal(),
signal_setup_done() and sigsp() functions.
Currently these archs use open coded variants of the said functions.
Further, unused parameters get removed from get_signal_to_deliver(),
tracehook_signal_handler() and signal_delivered().
At the end of the day we save around 500 lines of code."
* 'signal-cleanup' of git://git.kernel.org/pub/scm/linux/kernel/git/rw/misc: (43 commits)
powerpc: Use sigsp()
openrisc: Use sigsp()
mn10300: Use sigsp()
mips: Use sigsp()
microblaze: Use sigsp()
metag: Use sigsp()
m68k: Use sigsp()
m32r: Use sigsp()
hexagon: Use sigsp()
frv: Use sigsp()
cris: Use sigsp()
c6x: Use sigsp()
blackfin: Use sigsp()
avr32: Use sigsp()
arm64: Use sigsp()
arc: Use sigsp()
sas_ss_flags: Remove nested ternary if
Rip out get_signal_to_deliver()
Clean up signal_delivered()
tracehook_signal_handler: Remove sig, info, ka and regs
...
Merge more incoming from Andrew Morton:
"Two new syscalls:
memfd_create in "shm: add memfd_create() syscall"
kexec_file_load in "kexec: implementation of new syscall kexec_file_load"
And:
- Most (all?) of the rest of MM
- Lots of the usual misc bits
- fs/autofs4
- drivers/rtc
- fs/nilfs
- procfs
- fork.c, exec.c
- more in lib/
- rapidio
- Janitorial work in filesystems: fs/ufs, fs/reiserfs, fs/adfs,
fs/cramfs, fs/romfs, fs/qnx6.
- initrd/initramfs work
- "file sealing" and the memfd_create() syscall, in tmpfs
- add pci_zalloc_consistent, use it in lots of places
- MAINTAINERS maintenance
- kexec feature work"
* emailed patches from Andrew Morton <akpm@linux-foundation.org: (193 commits)
MAINTAINERS: update nomadik patterns
MAINTAINERS: update usb/gadget patterns
MAINTAINERS: update DMA BUFFER SHARING patterns
kexec: verify the signature of signed PE bzImage
kexec: support kexec/kdump on EFI systems
kexec: support for kexec on panic using new system call
kexec-bzImage64: support for loading bzImage using 64bit entry
kexec: load and relocate purgatory at kernel load time
purgatory: core purgatory functionality
purgatory/sha256: provide implementation of sha256 in purgaotory context
kexec: implementation of new syscall kexec_file_load
kexec: new syscall kexec_file_load() declaration
kexec: make kexec_segment user buffer pointer a union
resource: provide new functions to walk through resources
kexec: use common function for kimage_normal_alloc() and kimage_crash_alloc()
kexec: move segment verification code in a separate function
kexec: rename unusebale_pages to unusable_pages
kernel: build bin2c based on config option CONFIG_BUILD_BIN2C
bin2c: move bin2c in scripts/basic
shm: wait for pins to be released when sealing
...
The core mm code will provide a default gate area based on
FIXADDR_USER_START and FIXADDR_USER_END if
!defined(__HAVE_ARCH_GATE_AREA) && defined(AT_SYSINFO_EHDR).
This default is only useful for ia64. arm64, ppc, s390, sh, tile, 64-bit
UML, and x86_32 have their own code just to disable it. arm, 32-bit UML,
and x86_64 have gate areas, but they have their own implementations.
This gets rid of the default and moves the code into ia64.
This should save some code on architectures without a gate area: it's now
possible to inline the gate_area functions in the default case.
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Acked-by: Nathan Lynch <nathan_lynch@mentor.com>
Acked-by: H. Peter Anvin <hpa@linux.intel.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> [in principle]
Acked-by: Richard Weinberger <richard@nod.at> [for um]
Acked-by: Will Deacon <will.deacon@arm.com> [for arm64]
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Nathan Lynch <Nathan_Lynch@mentor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The strings used to list IPIs in /proc/interrupts are reused for tracing
purposes.
While at it, the code is slightly cleaned up so the ipi_types array
indices are no longer offset by IPI_RESCHEDULE whose value is 0 anyway.
Link: http://lkml.kernel.org/p/1406318733-26754-5-git-send-email-nicolas.pitre@linaro.org
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
they had small conflicts (respectively within KVM documentation,
and with 3.16-rc changes). Since they were all within the subsystem,
I took care of them.
Stephen Rothwell reported some snags in PPC builds, but they are all
fixed now; the latest linux-next report was clean.
New features for ARM include:
- KVM VGIC v2 emulation on GICv3 hardware
- Big-Endian support for arm/arm64 (guest and host)
- Debug Architecture support for arm64 (arm32 is on Christoffer's todo list)
And for PPC:
- Book3S: Good number of LE host fixes, enable HV on LE
- Book3S HV: Add in-guest debug support
This release drops support for KVM on the PPC440. As a result, the
PPC merge removes more lines than it adds. :)
I also included an x86 change, since Davidlohr tied it to an independent
bug report and the reporter quickly provided a Tested-by; there was no
reason to wait for -rc2.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABAgAGBQJT4iIJAAoJEBvWZb6bTYbyZqoP/3Wxy8NWPFJ8HGt81NHlGnDS
a9UbL7EibcOEG+aaKqmtBglTD5YDiGBDNCxxiSJaDHt+grLN4fsWIliJob1nJFoO
90f89EWN2XjeCrJXA5nUoeg5tpc5OoYKsiP6pTgzIwkP8vvs/H1+zpcTS/UmYsr/
qipVMMsM+zZeHWZcSbqjW88z7YqIn1sr5282wJ85cbyv4KGizb/G4dyPuDqLb6np
hkAD8Ah6VV2suQ2FSy7G2fg20R0vglUi60hkEHLoCBPVqJCl7SmC8MvxNbjBnP8S
J36R0R0u1wHYKzAGooLJGVOZ/o/gSiVqKX+++L2EvJBN+kuA6u/7fxLyBT+LwDAE
IF/Aln5rpg1fe+eywvhz86WljTVEQ8bO1zVsIQUPY+/ZOPedZHMwyvXft8ogbjSp
2m9OJ/3e8Aggh0OeHpCDoeow+QDUXvX0YdCw+2Yh0p+7VMXqkyp0QEiBu38jrusC
rB3VNifJbDSWLKdG9LfCAPHnxZD2XYEwv2WFBo6KQOGMGHfx0GXpCOL/jQihrhA6
HtEG5Bs3lvnHQemdpUZ58xojiABbMaUPdcnPXQQEp23WhZzrfLMLzqVG0VYnhSsC
9pi7MJj8c31rqx5WU2oRM28i/BvNxN0NCtkDpineO5s3f89Ws1xnwxqlm38AKP0J
irJQTYFEqec+GM9JK1rG
=hyQP
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull second round of KVM changes from Paolo Bonzini:
"Here are the PPC and ARM changes for KVM, which I separated because
they had small conflicts (respectively within KVM documentation, and
with 3.16-rc changes). Since they were all within the subsystem, I
took care of them.
Stephen Rothwell reported some snags in PPC builds, but they are all
fixed now; the latest linux-next report was clean.
New features for ARM include:
- KVM VGIC v2 emulation on GICv3 hardware
- Big-Endian support for arm/arm64 (guest and host)
- Debug Architecture support for arm64 (arm32 is on Christoffer's todo list)
And for PPC:
- Book3S: Good number of LE host fixes, enable HV on LE
- Book3S HV: Add in-guest debug support
This release drops support for KVM on the PPC440. As a result, the
PPC merge removes more lines than it adds. :)
I also included an x86 change, since Davidlohr tied it to an
independent bug report and the reporter quickly provided a Tested-by;
there was no reason to wait for -rc2"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (122 commits)
KVM: Move more code under CONFIG_HAVE_KVM_IRQFD
KVM: nVMX: fix "acknowledge interrupt on exit" when APICv is in use
KVM: nVMX: Fix nested vmexit ack intr before load vmcs01
KVM: PPC: Enable IRQFD support for the XICS interrupt controller
KVM: Give IRQFD its own separate enabling Kconfig option
KVM: Move irq notifier implementation into eventfd.c
KVM: Move all accesses to kvm::irq_routing into irqchip.c
KVM: irqchip: Provide and use accessors for irq routing table
KVM: Don't keep reference to irq routing table in irqfd struct
KVM: PPC: drop duplicate tracepoint
arm64: KVM: fix 64bit CP15 VM access for 32bit guests
KVM: arm64: GICv3: mandate page-aligned GICV region
arm64: KVM: GICv3: move system register access to msr_s/mrs_s
KVM: PPC: PR: Handle FSCR feature deselects
KVM: PPC: HV: Remove generic instruction emulation
KVM: PPC: BOOKEHV: rename e500hv_spr to bookehv_spr
KVM: PPC: Remove DCR handling
KVM: PPC: Expose helper functions for data/inst faults
KVM: PPC: Separate loadstore emulation from priv emulation
KVM: PPC: Handle magic page in kvmppc_ld/st
...
Pull timer and time updates from Thomas Gleixner:
"A rather large update of timers, timekeeping & co
- Core timekeeping code is year-2038 safe now for 32bit machines.
Now we just need to fix all in kernel users and the gazillion of
user space interfaces which rely on timespec/timeval :)
- Better cache layout for the timekeeping internal data structures.
- Proper nanosecond based interfaces for in kernel users.
- Tree wide cleanup of code which wants nanoseconds but does hoops
and loops to convert back and forth from timespecs. Some of it
definitely belongs into the ugly code museum.
- Consolidation of the timekeeping interface zoo.
- A fast NMI safe accessor to clock monotonic for tracing. This is a
long standing request to support correlated user/kernel space
traces. With proper NTP frequency correction it's also suitable
for correlation of traces accross separate machines.
- Checkpoint/restart support for timerfd.
- A few NOHZ[_FULL] improvements in the [hr]timer code.
- Code move from kernel to kernel/time of all time* related code.
- New clocksource/event drivers from the ARM universe. I'm really
impressed that despite an architected timer in the newer chips SoC
manufacturers insist on inventing new and differently broken SoC
specific timers.
[ Ed. "Impressed"? I don't think that word means what you think it means ]
- Another round of code move from arch to drivers. Looks like most
of the legacy mess in ARM regarding timers is sorted out except for
a few obnoxious strongholds.
- The usual updates and fixlets all over the place"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (114 commits)
timekeeping: Fixup typo in update_vsyscall_old definition
clocksource: document some basic timekeeping concepts
timekeeping: Use cached ntp_tick_length when accumulating error
timekeeping: Rework frequency adjustments to work better w/ nohz
timekeeping: Minor fixup for timespec64->timespec assignment
ftrace: Provide trace clocks monotonic
timekeeping: Provide fast and NMI safe access to CLOCK_MONOTONIC
seqcount: Add raw_write_seqcount_latch()
seqcount: Provide raw_read_seqcount()
timekeeping: Use tk_read_base as argument for timekeeping_get_ns()
timekeeping: Create struct tk_read_base and use it in struct timekeeper
timekeeping: Restructure the timekeeper some more
clocksource: Get rid of cycle_last
clocksource: Move cycle_last validation to core code
clocksource: Make delta calculation a function
wireless: ath9k: Get rid of timespec conversions
drm: vmwgfx: Use nsec based interfaces
drm: i915: Use nsec based interfaces
timekeeping: Provide ktime_get_raw()
hangcheck-timer: Use ktime_get_ns()
...
- Fixes and code refactoring for stage2 kvm MMU unmap_range
- Support unmapping IPAs on deleting memslots for arm and arm64
- Support MMIO mappings in stage2 faults
- KVM VGIC v2 emulation on GICv3 hardware
- Big-Endian support for arm/arm64 (guest and host)
- Debug Architecture support for arm64 (arm32 is on Christoffer's todo list)
- Detect non page-aligned GICV regions and bail out (plugs guest-can-crash host bug)
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJT3oZTAAoJEEtpOizt6ddyKQIH/1Bj/cZYSkkSf3IJfQhHRbWN
jS37IBsvcHwjHkRJxCNmQuKP/Ho5XEusluPGrVY25PAgBMl+ouPqAuKzUk+GEab6
snjJjDFqw0zs0x0h3tg6UwfZdF+eyyIkmFGn8/IATD5P3PPd8kWBVtYnSnZmYK+R
KJNVcp6RPDrt9kvUDY8Ln9fW99Jl+7CdgQAnc3QkHcXUlanLyrfq+fE1lSzyrbhZ
ETzyMFAX4kCdc8tflgyyBS4A7+RvfQ6ZIQummxoAMFHIoSk90dtK7ovX68rd9U3e
yL+mpe130+dTIFpUMbxCnIdE7C0eud3vcgXC6MuWtFjUrxQoaEgsVE+ffGC5tX0=
=axkp
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-for-3.17' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into kvm
KVM/ARM New features for 3.17 include:
- Fixes and code refactoring for stage2 kvm MMU unmap_range
- Support unmapping IPAs on deleting memslots for arm and arm64
- Support MMIO mappings in stage2 faults
- KVM VGIC v2 emulation on GICv3 hardware
- Big-Endian support for arm/arm64 (guest and host)
- Debug Architecture support for arm64 (arm32 is on Christoffer's todo list)
Conflicts:
virt/kvm/arm/vgic.c [last minute cherry-pick from 3.17 to 3.16]