IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Add definitions for the raid stripe tree. This tree will hold information
about the on-disk layout of the stripes in a RAID set.
Each stripe extent has a 1:1 relationship with an on-disk extent item and
is doing the logical to per-drive physical address translation for the
extent item in question.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The lock_owner is used for a rare corruption case and we haven't seen
any reports in years. Move it to the debugging section of eb. To close
the holes also move log_index so the final layout looks like:
struct extent_buffer {
u64 start; /* 0 8 */
long unsigned int len; /* 8 8 */
long unsigned int bflags; /* 16 8 */
struct btrfs_fs_info * fs_info; /* 24 8 */
spinlock_t refs_lock; /* 32 4 */
atomic_t refs; /* 36 4 */
int read_mirror; /* 40 4 */
s8 log_index; /* 44 1 */
/* XXX 3 bytes hole, try to pack */
struct callback_head callback_head __attribute__((__aligned__(8))); /* 48 16 */
/* --- cacheline 1 boundary (64 bytes) --- */
struct rw_semaphore lock; /* 64 40 */
struct page * pages[16]; /* 104 128 */
/* size: 232, cachelines: 4, members: 11 */
/* sum members: 229, holes: 1, sum holes: 3 */
/* forced alignments: 1, forced holes: 1, sum forced holes: 3 */
/* last cacheline: 40 bytes */
} __attribute__((__aligned__(8)));
This saves 8 bytes in total and still keeps the lock on a separate cacheline.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Function name in the comment does not bring much value to code not
exposed as API and we don't stick to the kdoc format anymore. Update
formatting of parameter descriptions.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we no longer include the tracepoints from ctree.h we fail to compile
because we have the dependency in some of the header files and source
files. Add the include where we have these dependencies to allow us to
remove the include from ctree.h.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The block group tree was not present among the lockdep classes. We could
get potentially lockdep warnings but so far none has been seen, also
because block-group-tree is a relatively new feature.
CC: stable@vger.kernel.org # 6.1+
Signed-off-by: David Sterba <dsterba@suse.com>
The DREW lock uses percpu variable to track lock counters and for that
it needs to allocate the structure. In btrfs_read_tree_root() or
btrfs_init_fs_root() this may add another error case or requires the
NOFS scope protection.
One way is to preallocate the structure as was suggested in
https://lore.kernel.org/linux-btrfs/20221214021125.28289-1-robbieko@synology.com/
We may avoid the allocation altogether if we don't use the percpu
variables but an atomic for the writer counter. This should not make any
difference, the DREW lock is used for truncate and NOCOW writes along
with other IO operations.
The percpu counter for writers has been there since the original commit
8257b2dc3c "Btrfs: introduce btrfs_{start, end}_nocow_write() for
each subvolume". The reason could be to avoid hammering the same
cacheline from all the readers but then the writers do that anyway.
Signed-off-by: David Sterba <dsterba@suse.com>
This is a large patch, but because they're all macros it's impossible to
split up. Simply copy all of the item accessors in ctree.h and paste
them in accessors.h, and then update any files to include the header so
everything compiles.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ reformat comments, style fixups ]
Signed-off-by: David Sterba <dsterba@suse.com>
For NOWAIT IOCBs we'll need a way to tell search to not wait on locks
or anything. Accomplish this by adding a path->nowait flag that will
use trylocks and skip reading of metadata, returning -EAGAIN in either
of these cases. For now we only need this for reads, so only the read
side is handled. Add an ASSERT() to catch anybody trying to use this
for writes so they know they'll have to implement the write side.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Stefan Roesch <shr@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have been hitting the following lockdep splat with btrfs/187 recently
WARNING: possible circular locking dependency detected
5.19.0-rc8+ #775 Not tainted
------------------------------------------------------
btrfs/752500 is trying to acquire lock:
ffff97e1875a97b8 (btrfs-treloc-02#2){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110
but task is already holding lock:
ffff97e1875a9278 (btrfs-tree-01/1){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #2 (btrfs-tree-01/1){+.+.}-{3:3}:
down_write_nested+0x41/0x80
__btrfs_tree_lock+0x24/0x110
btrfs_init_new_buffer+0x7d/0x2c0
btrfs_alloc_tree_block+0x120/0x3b0
__btrfs_cow_block+0x136/0x600
btrfs_cow_block+0x10b/0x230
btrfs_search_slot+0x53b/0xb70
btrfs_lookup_inode+0x2a/0xa0
__btrfs_update_delayed_inode+0x5f/0x280
btrfs_async_run_delayed_root+0x24c/0x290
btrfs_work_helper+0xf2/0x3e0
process_one_work+0x271/0x590
worker_thread+0x52/0x3b0
kthread+0xf0/0x120
ret_from_fork+0x1f/0x30
-> #1 (btrfs-tree-01){++++}-{3:3}:
down_write_nested+0x41/0x80
__btrfs_tree_lock+0x24/0x110
btrfs_search_slot+0x3c3/0xb70
do_relocation+0x10c/0x6b0
relocate_tree_blocks+0x317/0x6d0
relocate_block_group+0x1f1/0x560
btrfs_relocate_block_group+0x23e/0x400
btrfs_relocate_chunk+0x4c/0x140
btrfs_balance+0x755/0xe40
btrfs_ioctl+0x1ea2/0x2c90
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
-> #0 (btrfs-treloc-02#2){+.+.}-{3:3}:
__lock_acquire+0x1122/0x1e10
lock_acquire+0xc2/0x2d0
down_write_nested+0x41/0x80
__btrfs_tree_lock+0x24/0x110
btrfs_lock_root_node+0x31/0x50
btrfs_search_slot+0x1cb/0xb70
replace_path+0x541/0x9f0
merge_reloc_root+0x1d6/0x610
merge_reloc_roots+0xe2/0x260
relocate_block_group+0x2c8/0x560
btrfs_relocate_block_group+0x23e/0x400
btrfs_relocate_chunk+0x4c/0x140
btrfs_balance+0x755/0xe40
btrfs_ioctl+0x1ea2/0x2c90
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
other info that might help us debug this:
Chain exists of:
btrfs-treloc-02#2 --> btrfs-tree-01 --> btrfs-tree-01/1
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(btrfs-tree-01/1);
lock(btrfs-tree-01);
lock(btrfs-tree-01/1);
lock(btrfs-treloc-02#2);
*** DEADLOCK ***
7 locks held by btrfs/752500:
#0: ffff97e292fdf460 (sb_writers#12){.+.+}-{0:0}, at: btrfs_ioctl+0x208/0x2c90
#1: ffff97e284c02050 (&fs_info->reclaim_bgs_lock){+.+.}-{3:3}, at: btrfs_balance+0x55f/0xe40
#2: ffff97e284c00878 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: btrfs_relocate_block_group+0x236/0x400
#3: ffff97e292fdf650 (sb_internal#2){.+.+}-{0:0}, at: merge_reloc_root+0xef/0x610
#4: ffff97e284c02378 (btrfs_trans_num_writers){++++}-{0:0}, at: join_transaction+0x1a8/0x5a0
#5: ffff97e284c023a0 (btrfs_trans_num_extwriters){++++}-{0:0}, at: join_transaction+0x1a8/0x5a0
#6: ffff97e1875a9278 (btrfs-tree-01/1){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110
stack backtrace:
CPU: 1 PID: 752500 Comm: btrfs Not tainted 5.19.0-rc8+ #775
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
Call Trace:
dump_stack_lvl+0x56/0x73
check_noncircular+0xd6/0x100
? lock_is_held_type+0xe2/0x140
__lock_acquire+0x1122/0x1e10
lock_acquire+0xc2/0x2d0
? __btrfs_tree_lock+0x24/0x110
down_write_nested+0x41/0x80
? __btrfs_tree_lock+0x24/0x110
__btrfs_tree_lock+0x24/0x110
btrfs_lock_root_node+0x31/0x50
btrfs_search_slot+0x1cb/0xb70
? lock_release+0x137/0x2d0
? _raw_spin_unlock+0x29/0x50
? release_extent_buffer+0x128/0x180
replace_path+0x541/0x9f0
merge_reloc_root+0x1d6/0x610
merge_reloc_roots+0xe2/0x260
relocate_block_group+0x2c8/0x560
btrfs_relocate_block_group+0x23e/0x400
btrfs_relocate_chunk+0x4c/0x140
btrfs_balance+0x755/0xe40
btrfs_ioctl+0x1ea2/0x2c90
? lock_is_held_type+0xe2/0x140
? lock_is_held_type+0xe2/0x140
? __x64_sys_ioctl+0x88/0xc0
__x64_sys_ioctl+0x88/0xc0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
This isn't necessarily new, it's just tricky to hit in practice. There
are two competing things going on here. With relocation we create a
snapshot of every fs tree with a reloc tree. Any extent buffers that
get initialized here are initialized with the reloc root lockdep key.
However since it is a snapshot, any blocks that are currently in cache
that originally belonged to the fs tree will have the normal tree
lockdep key set. This creates the lock dependency of
reloc tree -> normal tree
for the extent buffer locking during the first phase of the relocation
as we walk down the reloc root to relocate blocks.
However this is problematic because the final phase of the relocation is
merging the reloc root into the original fs root. This involves
searching down to any keys that exist in the original fs root and then
swapping the relocated block and the original fs root block. We have to
search down to the fs root first, and then go search the reloc root for
the block we need to replace. This creates the dependency of
normal tree -> reloc tree
which is why lockdep complains.
Additionally even if we were to fix this particular mismatch with a
different nesting for the merge case, we're still slotting in a block
that has a owner of the reloc root objectid into a normal tree, so that
block will have its lockdep key set to the tree reloc root, and create a
lockdep splat later on when we wander into that block from the fs root.
Unfortunately the only solution here is to make sure we do not set the
lockdep key to the reloc tree lockdep key normally, and then reset any
blocks we wander into from the reloc root when we're doing the merged.
This solves the problem of having mixed tree reloc keys intermixed with
normal tree keys, and then allows us to make sure in the merge case we
maintain the lock order of
normal tree -> reloc tree
We handle this by setting a bit on the reloc root when we do the search
for the block we want to relocate, and any block we search into or COW
at that point gets set to the reloc tree key. This works correctly
because we only ever COW down to the parent node, so we aren't resetting
the key for the block we're linking into the fs root.
With this patch we no longer have the lockdep splat in btrfs/187.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
These definitions exist in disk-io.c, which is not related to the
locking. Move this over to locking.h/c where it makes more sense.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In 196d59ab9c "btrfs: switch extent buffer tree lock to rw_semaphore"
the functions for tree read locking were rewritten, and in the process
the read lock functions started setting eb->lock_owner = current->pid.
Previously lock_owner was only set in tree write lock functions.
Read locks are shared, so they don't have exclusive ownership of the
underlying object, so setting lock_owner to any single value for a
read lock makes no sense. It's mostly harmless because write locks
and read locks are mutually exclusive, and none of the existing code
in btrfs (btrfs_init_new_buffer and print_eb_refs_lock) cares what
nonsense is written in lock_owner when no writer is holding the lock.
KCSAN does care, and will complain about the data race incessantly.
Remove the assignments in the read lock functions because they're
useless noise.
Fixes: 196d59ab9c ("btrfs: switch extent buffer tree lock to rw_semaphore")
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Signed-off-by: David Sterba <dsterba@suse.com>
It is completely unused now, remove it.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We no longer have recursive locking and there's no need for separate
helpers that allowed the transition to rwsem with minimal code changes.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we're no longer using recursion, rip out all of the supporting
code. Follow up patches will clean up the callers of these functions.
The extent_buffer::lock_owner is still retained as it allows safety
checks in btrfs_init_new_buffer for the case that the free space cache
is corrupted and we try to allocate a block that we are currently using
and have locked in the path.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we're using a rw_semaphore we no longer need to indicate if a
lock is blocking or not, nor do we need to flip the entire path from
blocking to spinning. Remove these helpers and all the places they are
called.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Historically we've implemented our own locking because we wanted to be
able to selectively spin or sleep based on what we were doing in the
tree. For instance, if all of our nodes were in cache then there's
rarely a reason to need to sleep waiting for node locks, as they'll
likely become available soon. At the time this code was written the
rw_semaphore didn't do adaptive spinning, and thus was orders of
magnitude slower than our home grown locking.
However now the opposite is the case. There are a few problems with how
we implement blocking locks, namely that we use a normal waitqueue and
simply wake everybody up in reverse sleep order. This leads to some
suboptimal performance behavior, and a lot of context switches in highly
contended cases. The rw_semaphores actually do this properly, and also
have adaptive spinning that works relatively well.
The locking code is also a bit of a bear to understand, and we lose the
benefit of lockdep for the most part because the blocking states of the
lock are simply ad-hoc and not mapped into lockdep.
So rework the locking code to drop all of this custom locking stuff, and
simply use a rw_semaphore for everything. This makes the locking much
simpler for everything, as we can now drop a lot of cruft and blocking
transitions. The performance numbers vary depending on the workload,
because generally speaking there doesn't tend to be a lot of contention
on the btree. However, on my test system which is an 80 core single
socket system with 256GiB of RAM and a 2TiB NVMe drive I get the
following results (with all debug options off):
dbench 200 baseline
Throughput 216.056 MB/sec 200 clients 200 procs max_latency=1471.197 ms
dbench 200 with patch
Throughput 737.188 MB/sec 200 clients 200 procs max_latency=714.346 ms
Previously we also used fs_mark to test this sort of contention, and
those results are far less impressive, mostly because there's not enough
tasks to really stress the locking
fs_mark -d /d[0-15] -S 0 -L 20 -n 100000 -s 0 -t 16
baseline
Average Files/sec: 160166.7
p50 Files/sec: 165832
p90 Files/sec: 123886
p99 Files/sec: 123495
real 3m26.527s
user 2m19.223s
sys 48m21.856s
patched
Average Files/sec: 164135.7
p50 Files/sec: 171095
p90 Files/sec: 122889
p99 Files/sec: 113819
real 3m29.660s
user 2m19.990s
sys 44m12.259s
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We will need these when we switch to an rwsem, so plumb in the
infrastructure here to use later on. I violate the 80 character limit
some here because it'll be cleaned up later.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Our current tree locking stuff allows us to recurse with read locks if
we're already holding the write lock. This is necessary for the space
cache inode, as we could be holding a lock on the root_tree root when we
need to cache a block group, and thus need to be able to read down the
root_tree to read in the inode cache.
We can get away with this in our current locking, but we won't be able
to with a rwsem. Handle this by purposefully annotating the places
where we require recursion, so that in the future we can maybe come up
with a way to avoid the recursion. In the case of the free space inode,
this will be superseded by the free space tree.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Nested locking with lockdep and everything else refers to lock hierarchy
within the same lock map. This is how we indicate the same locks for
different objects are ok to take in a specific order, for our use case
that would be to take the lock on a leaf and then take a lock on an
adjacent leaf.
What ->lock_nested _actually_ refers to is if we happen to already be
holding the write lock on the extent buffer and we're allowing a read
lock to be taken on that extent buffer, which is recursion. Rename this
so we don't get confused when we switch to a rwsem and have to start
using the _nested helpers.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Sparse reports a warning at btrfs_tree_lock()
warning: context imbalance in btrfs_tree_lock() - wrong count at exit
The root cause is the missing annotation at btrfs_tree_lock()
Add the missing __acquires(&eb->lock) annotation
Signed-off-by: Jules Irenge <jbi.octave@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A (D)ouble (R)eader (W)riter (E)xclustion lock is a locking primitive
that allows to have multiple readers or multiple writers but not
multiple readers and writers holding it concurrently.
The code is factored out from the existing open-coded locking scheme
used to exclude pending snapshots from nocow writers and vice-versa.
Current implementation actually favors Readers (that is snapshot
creaters) to writers (nocow writers of the filesystem).
The API provides lock/unlock/trylock for reads and writes.
Formal specification for TLA+ provided by Valentin Schneider is at
https://lore.kernel.org/linux-btrfs/2dcaf81c-f0d3-409e-cb29-733d8b3b4cc9@arm.com/
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The helpers are related to locking so move them there, update comments.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A nice writeup of the LKMM (Linux Kernel Memory Model) rules for access
once policies can be found here
https://lwn.net/Articles/799218/#Access-Marking%20Policies .
The locked and unlocked access to eb::blocking_writers should be
annotated accordingly, following this:
Writes:
- locked write must use ONCE, may use plain read
- unlocked write must use ONCE
Reads:
- unlocked read must use ONCE
- locked read may use plain read iff not mixed with unlocked read
- unlocked read then locked must use ONCE
There's one difference on the assembly level, where
btrfs_tree_read_lock_atomic and btrfs_try_tree_read_lock used the cached
value and did not reevaluate it after taking the lock. This could have
missed some opportunities to take the lock in case blocking writers
changed between the calls, but the window is just a few instructions
long. As this is in try-lock, the callers handle that.
Signed-off-by: David Sterba <dsterba@suse.com>
The increment and decrement was inherited from previous version that
used atomics, switched in commit 06297d8cef ("btrfs: switch
extent_buffer blocking_writers from atomic to int"). The only possible
values are 0 and 1 so we can set them directly.
The generated assembly (gcc 9.x) did the direct value assignment in
btrfs_set_lock_blocking_write (asm diff after change in 06297d8cef):
5d: test %eax,%eax
5f: je 62 <btrfs_set_lock_blocking_write+0x22>
61: retq
- 62: lock incl 0x44(%rdi)
- 66: add $0x50,%rdi
- 6a: jmpq 6f <btrfs_set_lock_blocking_write+0x2f>
+ 62: movl $0x1,0x44(%rdi)
+ 69: add $0x50,%rdi
+ 6d: jmpq 72 <btrfs_set_lock_blocking_write+0x32>
The part in btrfs_tree_unlock did a decrement because
BUG_ON(blockers > 1) is probably not a strong hint for the compiler, but
otherwise the output looks safe:
- lock decl 0x44(%rdi)
+ sub $0x1,%eax
+ mov %eax,0x44(%rdi)
Signed-off-by: David Sterba <dsterba@suse.com>
There are two ifs that use eb::blocking_writers. As this is a variable
modified inside and outside of locks, we could minimize number of
accesses to avoid problems with getting different results at different
times.
The access here is locked so this can only race with btrfs_tree_unlock
that sets blocking_writers to 0 without lock and unsets the lock owner.
The first branch is taken only if the same thread already holds the
lock, the second if checks for blocking writers. Here we'd either unlock
and wait, or proceed. Both are valid states of the locking protocol.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: David Sterba <dsterba@suse.com>
The function belongs to the family of locking functions, so move it
there. The 'noinline' keyword is dropped as it's now an exported
function that does not need it.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function belongs to the family of locking functions, so move it
there. The 'noinline' keyword is dropped as it's now an exported
function that does not need it.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function btrfs_assert_tree_locked is used outside of the locking
code so it is exported, however we can make it static inine as it's
fairly trivial.
This is the only locking assertion used in release builds, inlining
improves the text size by 174 bytes and reduces stack consumption in the
callers.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
I've noticed that none of the btrfs_assert_*lock* debugging helpers is
inlined, despite they're short and mostly a value update. Making them
inline shaves 67 from the text size, reduces stack consumption and
perhaps also slightly improves the performance due to avoiding
unnecessary calls.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The file ctree.h serves as a header for everything and has become quite
bloated. Split some helpers that are generic and create a new file that
should be the catch-all for code that's not btrfs-specific.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Those were split out of btrfs_clear_lock_blocking_rw by
aa12c02778 ("btrfs: split btrfs_clear_lock_blocking_rw to read and write helpers")
however at that time this function was unused due to commit
5239834016 ("Btrfs: kill btrfs_clear_path_blocking"). Put the final
nail in the coffin of those 2 functions.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 06297d8cef ("btrfs: switch extent_buffer blocking_writers from
atomic to int") changed the type of blocking_writers but forgot to
adjust relevant code in btrfs_tree_unlock by converting the
smp_mb__after_atomic to smp_mb. This opened up the possibility of a
deadlock due to re-ordering of setting blocking_writers and
checking/waking up the waiter. This particular lockup is explained in a
comment above waitqueue_active() function.
Fix it by converting the memory barrier to a full smp_mb, accounting
for the fact that blocking_writers is a simple integer.
Fixes: 06297d8cef ("btrfs: switch extent_buffer blocking_writers from atomic to int")
Tested-by: Johannes Thumshirn <jthumshirn@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The write_locks is either 0 or 1 and always updated under the lock,
so we don't need the atomic_t semantics.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The spinning_writers is either 0 or 1 and always updated under the lock,
so we don't need the atomic_t semantics.
Signed-off-by: David Sterba <dsterba@suse.com>
The blocking_writers is either 0 or 1 and always updated under the lock,
so we don't need the atomic_t semantics.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Unlike btrfs_tree_lock() and btrfs_tree_read_lock(), the remaining
functions in locking.c will not sleep, thus doesn't make much sense to
record their execution time.
Those events are introduced mainly for user space tool to audit and
detect lock leakage or dead lock.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are two tree lock events which can sleep:
- btrfs_tree_read_lock()
- btrfs_tree_lock()
Sometimes we may need to look into the concurrency picture of the fs.
For that case, we need the execution time of above two functions and the
owner of @eb.
Here we introduce a trace events for user space tools like bcc, to get
the execution time of above two functions, and get detailed owner info
where eBPF code can't.
All the overhead is hidden behind the trace events, so if events are not
enabled, there is no overhead.
These trace events also output bytenr and generation, allow them to be
pared with unlock events to pin down deadlock.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The member is tracking simple status of the lock, we can use bool for
that and make some room for further space reduction in the structure.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Use the helpers where open coded. On non-debug builds, the warnings will
not trigger and extent_buffer::write_locks become unused and can be
moved to the appropriate section, saving a few bytes.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: David Sterba <dsterba@suse.com>
The write_locks are a simple counter to track locking balance and used
to assert tree locks. Add helpers to make it conditionally work only in
DEBUG builds. Will be used in followup patches.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Use the helpers where open coded. On non-debug builds, the warnings will
not trigger and extent_buffer::read_locks become unused and can be
moved to the appropriate section, saving a few bytes.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: David Sterba <dsterba@suse.com>
The read_locks are a simple counter to track locking balance and used to
assert tree locks. Add helpers to make it conditionally work only in
DEBUG builds. Will be used in followup patches.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Use the helpers where open coded. On non-debug builds, the warnings will
not trigger and extent_buffer::spining_readers become unused and can be
moved to the appropriate section, saving a few bytes.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Add helpers for conditional DEBUG build to assert that the extent buffer
spinning_readers constraints are met. Will be used in followup patches.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Use the helpers where open coded. On non-debug builds, the warnings will
not trigger and extent_buffer::spining_writers become unused and can be
moved to the appropriate section, saving a few bytes.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Add helpers for conditional DEBUG build to assert that the extent buffer
spinning_writers constraints are met. Will be used in followup patches.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently, the number of readers and writers is checked and in case
there are any, wait and redo the locks. There's some duplication
before the branches go back to again label, eg. calling wait_event on
blocking_readers twice.
The sequence is transformed
loop:
* wait for readers
* wait for writers
* write_lock
* check readers, unlock and wait for readers, loop
* check writers, unlock and wait for writers, loop
The new sequence is not exactly the same due to the simplification, for
readers it's slightly faster. For the writers, original code does
* wait for writers
* (loop) wait for readers
* wait for writers -- again
while the new goes directly to the reader check. This should behave the
same on a contended lock with multiple writers and readers, but can
reduce number of times we're waiting on something.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: David Sterba <dsterba@suse.com>
There are many callers that hardcode the desired lock type so we can
avoid the switch and call them directly. Split the current function to
two. There are no remaining users of btrfs_clear_lock_blocking_rw so
it's removed. The call sites will be converted in followup patches.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: David Sterba <dsterba@suse.com>