IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
[ Upstream commit a7df4870d7 ]
When we tell kernel to dump filters from root (ffff:ffff),
those filters on ingress (ffff:0000) are matched, but their
true parents must be dumped as they are. However, kernel
dumps just whatever we tell it, that is either ffff:ffff
or ffff:0000:
$ nl-cls-list --dev=dummy0 --parent=root
cls basic dev dummy0 id none parent root prio 49152 protocol ip match-all
cls basic dev dummy0 id :1 parent root prio 49152 protocol ip match-all
$ nl-cls-list --dev=dummy0 --parent=ffff:
cls basic dev dummy0 id none parent ffff: prio 49152 protocol ip match-all
cls basic dev dummy0 id :1 parent ffff: prio 49152 protocol ip match-all
This is confusing and misleading, more importantly this is
a regression since 4.15, so the old behavior must be restored.
And, when tc filters are installed on a tc class, the parent
should be the classid, rather than the qdisc handle. Commit
edf6711c98 ("net: sched: remove classid and q fields from tcf_proto")
removed the classid we save for filters, we can just restore
this classid in tcf_block.
Steps to reproduce this:
ip li set dev dummy0 up
tc qd add dev dummy0 ingress
tc filter add dev dummy0 parent ffff: protocol arp basic action pass
tc filter show dev dummy0 root
Before this patch:
filter protocol arp pref 49152 basic
filter protocol arp pref 49152 basic handle 0x1
action order 1: gact action pass
random type none pass val 0
index 1 ref 1 bind 1
After this patch:
filter parent ffff: protocol arp pref 49152 basic
filter parent ffff: protocol arp pref 49152 basic handle 0x1
action order 1: gact action pass
random type none pass val 0
index 1 ref 1 bind 1
Fixes: a10fa20101 ("net: sched: propagate q and parent from caller down to tcf_fill_node")
Fixes: edf6711c98 ("net: sched: remove classid and q fields from tcf_proto")
Cc: Jamal Hadi Salim <jhs@mojatatu.com>
Cc: Jiri Pirko <jiri@resnulli.us>
Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com>
Acked-by: Jamal Hadi Salim <jhs@mojatatu.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit df4953e4e9 ]
syzbot managed to set up sfq so that q->scaled_quantum was zero,
triggering an infinite loop in sfq_dequeue()
More generally, we must only accept quantum between 1 and 2^18 - 7,
meaning scaled_quantum must be in [1, 0x7FFF] range.
Otherwise, we also could have a loop in sfq_dequeue()
if scaled_quantum happens to be 0x8000, since slot->allot
could indefinitely switch between 0 and 0x8000.
Fixes: eeaeb068f1 ("sch_sfq: allow big packets and be fair")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot+0251e883fe39e7a0cb0a@syzkaller.appspotmail.com
Cc: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 14695212d4 ]
My intent was to not let users set a zero drop_batch_size,
it seems I once again messed with min()/max().
Fixes: 9d18562a22 ("fq_codel: add batch ability to fq_codel_drop()")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 304e024216 ]
Although we intentionally use an ordered workqueue for all tc
filter works, the ordering is not guaranteed by RCU work,
given that tcf_queue_work() is esstenially a call_rcu().
This problem is demostrated by Thomas:
CPU 0:
tcf_queue_work()
tcf_queue_work(&r->rwork, tcindex_destroy_rexts_work);
-> Migration to CPU 1
CPU 1:
tcf_queue_work(&p->rwork, tcindex_destroy_work);
so the 2nd work could be queued before the 1st one, which leads
to a free-after-free.
Enforcing this order in RCU work is hard as it requires to change
RCU code too. Fortunately we can workaround this problem in tcindex
filter by taking a temporary refcnt, we only refcnt it right before
we begin to destroy it. This simplifies the code a lot as a full
refcnt requires much more changes in tcindex_set_parms().
Reported-by: syzbot+46f513c3033d592409d2@syzkaller.appspotmail.com
Fixes: 3d210534cc ("net_sched: fix a race condition in tcindex_destroy()")
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Jamal Hadi Salim <jhs@mojatatu.com>
Cc: Jiri Pirko <jiri@resnulli.us>
Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2c64605b59 upstream.
net/netfilter/nft_fwd_netdev.c: In function ‘nft_fwd_netdev_eval’:
net/netfilter/nft_fwd_netdev.c:32:10: error: ‘struct sk_buff’ has no member named ‘tc_redirected’
pkt->skb->tc_redirected = 1;
^~
net/netfilter/nft_fwd_netdev.c:33:10: error: ‘struct sk_buff’ has no member named ‘tc_from_ingress’
pkt->skb->tc_from_ingress = 1;
^~
To avoid a direct dependency with tc actions from netfilter, wrap the
redirect bits around CONFIG_NET_REDIRECT and move helpers to
include/linux/skbuff.h. Turn on this toggle from the ifb driver, the
only existing client of these bits in the tree.
This patch adds skb_set_redirected() that sets on the redirected bit
on the skbuff, it specifies if the packet was redirect from ingress
and resets the timestamp (timestamp reset was originally missing in the
netfilter bugfix).
Fixes: bcfabee1af ("netfilter: nft_fwd_netdev: allow to redirect to ifb via ingress")
Reported-by: noreply@ellerman.id.au
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit b1be2e8cd2 ]
syzbot reported a use-after-free in tcindex_dump(). This is due to
the lack of RTNL in the deferred rcu work. We queue this work with
RTNL in tcindex_change(), later, tcindex_dump() is called:
fh = tp->ops->get(tp, t->tcm_handle);
...
err = tp->ops->change(..., &fh, ...);
tfilter_notify(..., fh, ...);
but there is nothing to serialize the pending
tcindex_partial_destroy_work() with tcindex_dump().
Fix this by simply holding RTNL in tcindex_partial_destroy_work(),
so that it won't be called until RTNL is released after
tc_new_tfilter() is completed.
Reported-and-tested-by: syzbot+653090db2562495901dc@syzkaller.appspotmail.com
Fixes: 3d210534cc ("net_sched: fix a race condition in tcindex_destroy()")
Cc: Jamal Hadi Salim <jhs@mojatatu.com>
Cc: Jiri Pirko <jiri@resnulli.us>
Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit dd2af10402 ]
Currently, on replace, the previous action instance params
is swapped with a newly allocated params. The old params is
only freed (via kfree_rcu), without releasing the allocated
ct zone template related to it.
Call tcf_ct_params_free (via call_rcu) for the old params,
so it will release it.
Fixes: b57dc7c13e ("net/sched: Introduce action ct")
Signed-off-by: Paul Blakey <paulb@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 961d0e5b32 ]
Currently the software CBS does not consider the packet sending time
when depleting the credits. It caused the throughput to be
Idleslope[kbps] * (Port transmit rate[kbps] / |Sendslope[kbps]|) where
Idleslope * (Port transmit rate / (Idleslope + |Sendslope|)) = Idleslope
is expected. In order to fix the issue above, this patch takes the time
when the packet sending completes into account by moving the anchor time
variable "last" ahead to the send completion time upon transmission and
adding wait when the next dequeue request comes before the send
completion time of the previous packet.
changelog:
V2->V3:
- remove unnecessary whitespace cleanup
- add the checks if port_rate is 0 before division
V1->V2:
- combine variable "send_completed" into "last"
- add the comment for estimate of the packet sending
Fixes: 585d763af0 ("net/sched: Introduce Credit Based Shaper (CBS) qdisc")
Signed-off-by: Zh-yuan Ye <ye.zh-yuan@socionext.com>
Reviewed-by: Vinicius Costa Gomes <vinicius.gomes@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 7e6dc03eeb ]
Add missing attribute validation for TCA_FQ_ORPHAN_MASK
to the netlink policy.
Fixes: 06eb395fa9 ("pkt_sched: fq: better control of DDOS traffic")
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit b09fe70ef5 ]
There was a bug that was causing packets to be sent to the driver
without first calling dequeue() on the "child" qdisc. And the KASAN
report below shows that sending a packet without calling dequeue()
leads to bad results.
The problem is that when checking the last qdisc "child" we do not set
the returned skb to NULL, which can cause it to be sent to the driver,
and so after the skb is sent, it may be freed, and in some situations a
reference to it may still be in the child qdisc, because it was never
dequeued.
The crash log looks like this:
[ 19.937538] ==================================================================
[ 19.938300] BUG: KASAN: use-after-free in taprio_dequeue_soft+0x620/0x780
[ 19.938968] Read of size 4 at addr ffff8881128628cc by task swapper/1/0
[ 19.939612]
[ 19.939772] CPU: 1 PID: 0 Comm: swapper/1 Not tainted 5.6.0-rc3+ #97
[ 19.940397] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qe4
[ 19.941523] Call Trace:
[ 19.941774] <IRQ>
[ 19.941985] dump_stack+0x97/0xe0
[ 19.942323] print_address_description.constprop.0+0x3b/0x60
[ 19.942884] ? taprio_dequeue_soft+0x620/0x780
[ 19.943325] ? taprio_dequeue_soft+0x620/0x780
[ 19.943767] __kasan_report.cold+0x1a/0x32
[ 19.944173] ? taprio_dequeue_soft+0x620/0x780
[ 19.944612] kasan_report+0xe/0x20
[ 19.944954] taprio_dequeue_soft+0x620/0x780
[ 19.945380] __qdisc_run+0x164/0x18d0
[ 19.945749] net_tx_action+0x2c4/0x730
[ 19.946124] __do_softirq+0x268/0x7bc
[ 19.946491] irq_exit+0x17d/0x1b0
[ 19.946824] smp_apic_timer_interrupt+0xeb/0x380
[ 19.947280] apic_timer_interrupt+0xf/0x20
[ 19.947687] </IRQ>
[ 19.947912] RIP: 0010:default_idle+0x2d/0x2d0
[ 19.948345] Code: 00 00 41 56 41 55 65 44 8b 2d 3f 8d 7c 7c 41 54 55 53 0f 1f 44 00 00 e8 b1 b2 c5 fd e9 07 00 3
[ 19.950166] RSP: 0018:ffff88811a3efda0 EFLAGS: 00000282 ORIG_RAX: ffffffffffffff13
[ 19.950909] RAX: 0000000080000000 RBX: ffff88811a3a9600 RCX: ffffffff8385327e
[ 19.951608] RDX: 1ffff110234752c0 RSI: 0000000000000000 RDI: ffffffff8385262f
[ 19.952309] RBP: ffffed10234752c0 R08: 0000000000000001 R09: ffffed10234752c1
[ 19.953009] R10: ffffed10234752c0 R11: ffff88811a3a9607 R12: 0000000000000001
[ 19.953709] R13: 0000000000000001 R14: 0000000000000000 R15: 0000000000000000
[ 19.954408] ? default_idle_call+0x2e/0x70
[ 19.954816] ? default_idle+0x1f/0x2d0
[ 19.955192] default_idle_call+0x5e/0x70
[ 19.955584] do_idle+0x3d4/0x500
[ 19.955909] ? arch_cpu_idle_exit+0x40/0x40
[ 19.956325] ? _raw_spin_unlock_irqrestore+0x23/0x30
[ 19.956829] ? trace_hardirqs_on+0x30/0x160
[ 19.957242] cpu_startup_entry+0x19/0x20
[ 19.957633] start_secondary+0x2a6/0x380
[ 19.958026] ? set_cpu_sibling_map+0x18b0/0x18b0
[ 19.958486] secondary_startup_64+0xa4/0xb0
[ 19.958921]
[ 19.959078] Allocated by task 33:
[ 19.959412] save_stack+0x1b/0x80
[ 19.959747] __kasan_kmalloc.constprop.0+0xc2/0xd0
[ 19.960222] kmem_cache_alloc+0xe4/0x230
[ 19.960617] __alloc_skb+0x91/0x510
[ 19.960967] ndisc_alloc_skb+0x133/0x330
[ 19.961358] ndisc_send_ns+0x134/0x810
[ 19.961735] addrconf_dad_work+0xad5/0xf80
[ 19.962144] process_one_work+0x78e/0x13a0
[ 19.962551] worker_thread+0x8f/0xfa0
[ 19.962919] kthread+0x2ba/0x3b0
[ 19.963242] ret_from_fork+0x3a/0x50
[ 19.963596]
[ 19.963753] Freed by task 33:
[ 19.964055] save_stack+0x1b/0x80
[ 19.964386] __kasan_slab_free+0x12f/0x180
[ 19.964830] kmem_cache_free+0x80/0x290
[ 19.965231] ip6_mc_input+0x38a/0x4d0
[ 19.965617] ipv6_rcv+0x1a4/0x1d0
[ 19.965948] __netif_receive_skb_one_core+0xf2/0x180
[ 19.966437] netif_receive_skb+0x8c/0x3c0
[ 19.966846] br_handle_frame_finish+0x779/0x1310
[ 19.967302] br_handle_frame+0x42a/0x830
[ 19.967694] __netif_receive_skb_core+0xf0e/0x2a90
[ 19.968167] __netif_receive_skb_one_core+0x96/0x180
[ 19.968658] process_backlog+0x198/0x650
[ 19.969047] net_rx_action+0x2fa/0xaa0
[ 19.969420] __do_softirq+0x268/0x7bc
[ 19.969785]
[ 19.969940] The buggy address belongs to the object at ffff888112862840
[ 19.969940] which belongs to the cache skbuff_head_cache of size 224
[ 19.971202] The buggy address is located 140 bytes inside of
[ 19.971202] 224-byte region [ffff888112862840, ffff888112862920)
[ 19.972344] The buggy address belongs to the page:
[ 19.972820] page:ffffea00044a1800 refcount:1 mapcount:0 mapping:ffff88811a2bd1c0 index:0xffff8881128625c0 compo0
[ 19.973930] flags: 0x8000000000010200(slab|head)
[ 19.974388] raw: 8000000000010200 ffff88811a2ed650 ffff88811a2ed650 ffff88811a2bd1c0
[ 19.975151] raw: ffff8881128625c0 0000000000190013 00000001ffffffff 0000000000000000
[ 19.975915] page dumped because: kasan: bad access detected
[ 19.976461] page_owner tracks the page as allocated
[ 19.976946] page last allocated via order 2, migratetype Unmovable, gfp_mask 0xd20c0(__GFP_IO|__GFP_FS|__GFP_NO)
[ 19.978332] prep_new_page+0x24b/0x330
[ 19.978707] get_page_from_freelist+0x2057/0x2c90
[ 19.979170] __alloc_pages_nodemask+0x218/0x590
[ 19.979619] new_slab+0x9d/0x300
[ 19.979948] ___slab_alloc.constprop.0+0x2f9/0x6f0
[ 19.980421] __slab_alloc.constprop.0+0x30/0x60
[ 19.980870] kmem_cache_alloc+0x201/0x230
[ 19.981269] __alloc_skb+0x91/0x510
[ 19.981620] alloc_skb_with_frags+0x78/0x4a0
[ 19.982043] sock_alloc_send_pskb+0x5eb/0x750
[ 19.982476] unix_stream_sendmsg+0x399/0x7f0
[ 19.982904] sock_sendmsg+0xe2/0x110
[ 19.983262] ____sys_sendmsg+0x4de/0x6d0
[ 19.983660] ___sys_sendmsg+0xe4/0x160
[ 19.984032] __sys_sendmsg+0xab/0x130
[ 19.984396] do_syscall_64+0xe7/0xae0
[ 19.984761] page last free stack trace:
[ 19.985142] __free_pages_ok+0x432/0xbc0
[ 19.985533] qlist_free_all+0x56/0xc0
[ 19.985907] quarantine_reduce+0x149/0x170
[ 19.986315] __kasan_kmalloc.constprop.0+0x9e/0xd0
[ 19.986791] kmem_cache_alloc+0xe4/0x230
[ 19.987182] prepare_creds+0x24/0x440
[ 19.987548] do_faccessat+0x80/0x590
[ 19.987906] do_syscall_64+0xe7/0xae0
[ 19.988276] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[ 19.988775]
[ 19.988930] Memory state around the buggy address:
[ 19.989402] ffff888112862780: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[ 19.990111] ffff888112862800: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb
[ 19.990822] >ffff888112862880: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
[ 19.991529] ^
[ 19.992081] ffff888112862900: fb fb fb fb fc fc fc fc fc fc fc fc fc fc fc fc
[ 19.992796] ffff888112862980: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
Fixes: 5a781ccbd1 ("tc: Add support for configuring the taprio scheduler")
Reported-by: Michael Schmidt <michael.schmidt@eti.uni-siegen.de>
Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com>
Acked-by: Andre Guedes <andre.guedes@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 8a9093c798 ]
tc flower rules that are based on src or dst port blocking are sometimes
ineffective due to uninitialized stack data. __skb_flow_dissect() extracts
ports from the skb for tc flower to match against. However, the port
dissection is not done when when the FLOW_DIS_IS_FRAGMENT bit is set in
key_control->flags. All callers of __skb_flow_dissect(), zero-out the
key_control field except for fl_classify() as used by the flower
classifier. Thus, the FLOW_DIS_IS_FRAGMENT may be set on entry to
__skb_flow_dissect(), since key_control is allocated on the stack
and may not be initialized.
Since key_basic and key_control are present for all flow keys, let's
make sure they are initialized.
Fixes: 62230715fd ("flow_dissector: do not dissect l4 ports for fragments")
Co-developed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Cong Wang <xiyou.wangcong@gmail.com>
Signed-off-by: Jason Baron <jbaron@akamai.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit e2debf0852 ]
unlike other classifiers that can be offloaded (i.e. users can set flags
like 'skip_hw' and 'skip_sw'), 'cls_flower' doesn't validate the size of
netlink attribute 'TCA_FLOWER_FLAGS' provided by user: add a proper entry
to fl_policy.
Fixes: 5b33f48842 ("net/flower: Introduce hardware offload support")
Signed-off-by: Davide Caratti <dcaratti@redhat.com>
Acked-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 1afa3cc90f ]
unlike other classifiers that can be offloaded (i.e. users can set flags
like 'skip_hw' and 'skip_sw'), 'cls_matchall' doesn't validate the size
of netlink attribute 'TCA_MATCHALL_FLAGS' provided by user: add a proper
entry to mall_policy.
Fixes: b87f7936a9 ("net/sched: Add match-all classifier hw offloading.")
Signed-off-by: Davide Caratti <dcaratti@redhat.com>
Acked-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit bfabd41da3 ]
When using taprio offloading together with ETF offloading, configured
like this, for example:
$ tc qdisc replace dev $IFACE parent root handle 100 taprio \
num_tc 4 \
map 2 2 1 0 3 2 2 2 2 2 2 2 2 2 2 2 \
queues 1@0 1@1 1@2 1@3 \
base-time $BASE_TIME \
sched-entry S 01 1000000 \
sched-entry S 0e 1000000 \
flags 0x2
$ tc qdisc replace dev $IFACE parent 100:1 etf \
offload delta 300000 clockid CLOCK_TAI
During enqueue, it works out that the verification added for the
"txtime" assisted mode is run when using taprio + ETF offloading, the
only thing missing is initializing the 'next_txtime' of all the cycle
entries. (if we don't set 'next_txtime' all packets from SO_TXTIME
sockets are dropped)
Fixes: 4cfd5779bd ("taprio: Add support for txtime-assist mode")
Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 7c16680a08 ]
When destroying the current taprio instance, which can happen when the
creation of one fails, we should reset the traffic class configuration
back to the default state.
netdev_reset_tc() is a better way because in addition to setting the
number of traffic classes to zero, it also resets the priority to
traffic classes mapping to the default value.
Fixes: 5a781ccbd1 ("tc: Add support for configuring the taprio scheduler")
Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 5652e63df3 ]
If the driver implementing taprio offloading depends on the value of
the network device number of traffic classes (dev->num_tc) for
whatever reason, it was going to receive the value zero. The value was
only set after the offloading function is called.
So, moving setting the number of traffic classes to before the
offloading function is called fixes this issue. This is safe because
this only happens when taprio is instantiated (we don't allow this
configuration to be changed without first removing taprio).
Fixes: 9c66d15646 ("taprio: Add support for hardware offloading")
Reported-by: Po Liu <po.liu@nxp.com>
Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com>
Acked-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 52b5ae501c ]
Jakub noticed there is a potential resource leak in
tcindex_set_parms(): when tcindex_filter_result_init() fails
and it jumps to 'errout1' which doesn't release the memory
and resources allocated by tcindex_alloc_perfect_hash().
We should just jump to 'errout_alloc' which calls
tcindex_free_perfect_hash().
Fixes: b9a24bb76b ("net_sched: properly handle failure case of tcf_exts_init()")
Reported-by: Jakub Kicinski <kuba@kernel.org>
Cc: Jamal Hadi Salim <jhs@mojatatu.com>
Cc: Jiri Pirko <jiri@resnulli.us>
Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 760d228e32 ]
In a complex TC class hierarchy like this:
tc qdisc add dev eth0 root handle 1:0 cbq bandwidth 100Mbit \
avpkt 1000 cell 8
tc class add dev eth0 parent 1:0 classid 1:1 cbq bandwidth 100Mbit \
rate 6Mbit weight 0.6Mbit prio 8 allot 1514 cell 8 maxburst 20 \
avpkt 1000 bounded
tc filter add dev eth0 parent 1:0 protocol ip prio 1 u32 match ip \
sport 80 0xffff flowid 1:3
tc filter add dev eth0 parent 1:0 protocol ip prio 1 u32 match ip \
sport 25 0xffff flowid 1:4
tc class add dev eth0 parent 1:1 classid 1:3 cbq bandwidth 100Mbit \
rate 5Mbit weight 0.5Mbit prio 5 allot 1514 cell 8 maxburst 20 \
avpkt 1000
tc class add dev eth0 parent 1:1 classid 1:4 cbq bandwidth 100Mbit \
rate 3Mbit weight 0.3Mbit prio 5 allot 1514 cell 8 maxburst 20 \
avpkt 1000
where filters are installed on qdisc 1:0, so we can't merely
search from class 1:1 when creating class 1:3 and class 1:4. We have
to walk through all the child classes of the direct parent qdisc.
Otherwise we would miss filters those need reverse binding.
Fixes: 07d79fc7d9 ("net_sched: add reverse binding for tc class")
Cc: Jamal Hadi Salim <jhs@mojatatu.com>
Cc: Jiri Pirko <jiri@resnulli.us>
Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 2e24cd7555 ]
The current implementations of ops->bind_class() are merely
searching for classid and updating class in the struct tcf_result,
without invoking either of cl_ops->bind_tcf() or
cl_ops->unbind_tcf(). This breaks the design of them as qdisc's
like cbq use them to count filters too. This is why syzbot triggered
the warning in cbq_destroy_class().
In order to fix this, we have to call cl_ops->bind_tcf() and
cl_ops->unbind_tcf() like the filter binding path. This patch does
so by refactoring out two helper functions __tcf_bind_filter()
and __tcf_unbind_filter(), which are lockless and accept a Qdisc
pointer, then teaching each implementation to call them correctly.
Note, we merely pass the Qdisc pointer as an opaque pointer to
each filter, they only need to pass it down to the helper
functions without understanding it at all.
Fixes: 07d79fc7d9 ("net_sched: add reverse binding for tc class")
Reported-and-tested-by: syzbot+0a0596220218fcb603a8@syzkaller.appspotmail.com
Reported-and-tested-by: syzbot+63bdb6006961d8c917c6@syzkaller.appspotmail.com
Cc: Jamal Hadi Salim <jhs@mojatatu.com>
Cc: Jiri Pirko <jiri@resnulli.us>
Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 240ce7f642 ]
When a child Qdisc is removed from one of the PRIO Qdisc's bands, it is
replaced unconditionally by a NOOP qdisc. As a result, any traffic hitting
that band gets dropped. That is incorrect--no Qdisc was explicitly added
when PRIO was created, and after removal, none should have to be added
either.
Fix PRIO by first attempting to create a default Qdisc and only falling
back to noop when that fails. This pattern of attempting to create an
invisible FIFO, using NOOP only as a fallback, is also seen in other
Qdiscs.
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Petr Machata <petrm@mellanox.com>
Acked-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit d9e15a2733 ]
As diagnosed by Florian :
If TCA_FQ_QUANTUM is set to 0x80000000, fq_deueue()
can loop forever in :
if (f->credit <= 0) {
f->credit += q->quantum;
goto begin;
}
... because f->credit is either 0 or -2147483648.
Let's limit TCA_FQ_QUANTUM to no more than 1 << 20 :
This max value should limit risks of breaking user setups
while fixing this bug.
Fixes: afe4fd0624 ("pkt_sched: fq: Fair Queue packet scheduler")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Diagnosed-by: Florian Westphal <fw@strlen.de>
Reported-by: syzbot+dc9071cc5a85950bdfce@syzkaller.appspotmail.com
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit bb3d0b8bf5 ]
If fq_classify() recycles a struct fq_flow because
a socket structure has been reallocated, we do not
set sk->sk_pacing_status immediately, but later if the
flow becomes detached.
This means that any flow requiring pacing (BBR, or SO_MAX_PACING_RATE)
might fallback to TCP internal pacing, which requires a per-socket
high resolution timer, and therefore more cpu cycles.
Fixes: 218af599fa ("tcp: internal implementation for pacing")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Soheil Hassas Yeganeh <soheil@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit a5b72a083d ]
Revert "net/sched: cls_u32: fix refcount leak in the error path of
u32_change()", and fix the u32 refcount leak in a more generic way that
preserves the semantic of rule dumping.
On tc filters that don't support lockless insertion/removal, there is no
need to guard against concurrent insertion when a removal is in progress.
Therefore, for most of them we can avoid a full walk() when deleting, and
just decrease the refcount, like it was done on older Linux kernels.
This fixes situations where walk() was wrongly detecting a non-empty
filter, like it happened with cls_u32 in the error path of change(), thus
leading to failures in the following tdc selftests:
6aa7: (filter, u32) Add/Replace u32 with source match and invalid indev
6658: (filter, u32) Add/Replace u32 with custom hash table and invalid handle
74c2: (filter, u32) Add/Replace u32 filter with invalid hash table id
On cls_flower, and on (future) lockless filters, this check is necessary:
move all the check_empty() logic in a callback so that each filter
can have its own implementation. For cls_flower, it's sufficient to check
if no IDRs have been allocated.
This reverts commit 275c44aa19.
Changes since v1:
- document the need for delete_empty() when TCF_PROTO_OPS_DOIT_UNLOCKED
is used, thanks to Vlad Buslov
- implement delete_empty() without doing fl_walk(), thanks to Vlad Buslov
- squash revert and new fix in a single patch, to be nice with bisect
tests that run tdc on u32 filter, thanks to Dave Miller
Fixes: 275c44aa19 ("net/sched: cls_u32: fix refcount leak in the error path of u32_change()")
Fixes: 6676d5e416 ("net: sched: set dedicated tcf_walker flag when tp is empty")
Suggested-by: Jamal Hadi Salim <jhs@mojatatu.com>
Suggested-by: Vlad Buslov <vladbu@mellanox.com>
Signed-off-by: Davide Caratti <dcaratti@redhat.com>
Reviewed-by: Vlad Buslov <vladbu@mellanox.com>
Tested-by: Jamal Hadi Salim <jhs@mojatatu.com>
Acked-by: Jamal Hadi Salim <jhs@mojatatu.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 70cf3dc731 ]
There's no skb_pull performed when a mirred action is set at egress of a
mac device, with a target device/action that expects skb->data to point
at the network header.
As a result, either the target device is errornously given an skb with
data pointing to the mac (egress case), or the net stack receives the
skb with data pointing to the mac (ingress case).
E.g:
# tc qdisc add dev eth9 root handle 1: prio
# tc filter add dev eth9 parent 1: prio 9 protocol ip handle 9 basic \
action mirred egress redirect dev tun0
(tun0 is a tun device. result: tun0 errornously gets the eth header
instead of the iph)
Revise the push/pull logic of tcf_mirred_act() to not rely on the
skb_at_tc_ingress() vs tcf_mirred_act_wants_ingress() comparison, as it
does not cover all "pull" cases.
Instead, calculate whether the required action on the target device
requires the data to point at the network header, and compare this to
whether skb->data points to network header - and make the push/pull
adjustments as necessary.
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Shmulik Ladkani <sladkani@proofpoint.com>
Tested-by: Jamal Hadi Salim <jhs@mojatatu.com>
Acked-by: Jamal Hadi Salim <jhs@mojatatu.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 95219afbb9 ]
The act_ct TC module shares a common conntrack and NAT infrastructure
exposed via netfilter. It's possible that a packet needs both SNAT and
DNAT manipulation, due to e.g. tuple collision. Netfilter can support
this because it runs through the NAT table twice - once on ingress and
again after egress. The act_ct action doesn't have such capability.
Like netfilter hook infrastructure, we should run through NAT twice to
keep the symmetry.
Fixes: b57dc7c13e ("net/sched: Introduce action ct")
Signed-off-by: Aaron Conole <aconole@redhat.com>
Acked-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit d04ac224b1 ]
The skb_mpls_push was not updating ethertype of an ethernet packet if
the packet was originally received from a non ARPHRD_ETHER device.
In the below OVS data path flow, since the device corresponding to
port 7 is an l3 device (ARPHRD_NONE) the skb_mpls_push function does
not update the ethertype of the packet even though the previous
push_eth action had added an ethernet header to the packet.
recirc_id(0),in_port(7),eth_type(0x0800),ipv4(tos=0/0xfc,ttl=64,frag=no),
actions:push_eth(src=00:00:00:00:00:00,dst=00:00:00:00:00:00),
push_mpls(label=13,tc=0,ttl=64,bos=1,eth_type=0x8847),4
Fixes: 8822e270d6 ("net: core: move push MPLS functionality from OvS to core helper")
Signed-off-by: Martin Varghese <martin.varghese@nokia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 040b5cfbce ]
The skb_mpls_pop was not updating ethertype of an ethernet packet if the
packet was originally received from a non ARPHRD_ETHER device.
In the below OVS data path flow, since the device corresponding to port 7
is an l3 device (ARPHRD_NONE) the skb_mpls_pop function does not update
the ethertype of the packet even though the previous push_eth action had
added an ethernet header to the packet.
recirc_id(0),in_port(7),eth_type(0x8847),
mpls(label=12/0xfffff,tc=0/0,ttl=0/0x0,bos=1/1),
actions:push_eth(src=00:00:00:00:00:00,dst=00:00:00:00:00:00),
pop_mpls(eth_type=0x800),4
Fixes: ed246cee09 ("net: core: move pop MPLS functionality from OvS to core helper")
Signed-off-by: Martin Varghese <martin.varghese@nokia.com>
Acked-by: Pravin B Shelar <pshelar@ovn.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 8ffb055bea ]
The recent commit 5c72299fba ("net: sched: cls_flower: Classify
packets using port ranges") had added filtering based on port ranges
to tc flower. However the commit missed necessary changes in hw-offload
code, so the feature gave rise to generating incorrect offloaded flow
keys in NIC.
One more detailed example is below:
$ tc qdisc add dev eth0 ingress
$ tc filter add dev eth0 ingress protocol ip flower ip_proto tcp \
dst_port 100-200 action drop
With the setup above, an exact match filter with dst_port == 0 will be
installed in NIC by hw-offload. IOW, the NIC will have a rule which is
equivalent to the following one.
$ tc qdisc add dev eth0 ingress
$ tc filter add dev eth0 ingress protocol ip flower ip_proto tcp \
dst_port 0 action drop
The behavior was caused by the flow dissector which extracts packet
data into the flow key in the tc flower. More specifically, regardless
of exact match or specified port ranges, fl_init_dissector() set the
FLOW_DISSECTOR_KEY_PORTS flag in struct flow_dissector to extract port
numbers from skb in skb_flow_dissect() called by fl_classify(). Note
that device drivers received the same struct flow_dissector object as
used in skb_flow_dissect(). Thus, offloaded drivers could not identify
which of these is used because the FLOW_DISSECTOR_KEY_PORTS flag was
set to struct flow_dissector in either case.
This patch adds the new FLOW_DISSECTOR_KEY_PORTS_RANGE flag and the new
tp_range field in struct fl_flow_key to recognize which filters are applied
to offloaded drivers. At this point, when filters based on port ranges
passed to drivers, drivers return the EOPNOTSUPP error because they do
not support the feature (the newly created FLOW_DISSECTOR_KEY_PORTS_RANGE
flag).
Fixes: 5c72299fba ("net: sched: cls_flower: Classify packets using port ranges")
Signed-off-by: Yoshiki Komachi <komachi.yoshiki@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 25a443f74b ]
When a device is bound to a clsact qdisc, bind events are triggered to
registered drivers for both ingress and egress. However, if a driver
registers to such a device using the indirect block routines then it is
assumed that it is only interested in ingress offload and so only replays
ingress bind/unbind messages.
The NFP driver supports the offload of some egress filters when
registering to a block with qdisc of type clsact. However, on unregister,
if the block is still active, it will not receive an unbind egress
notification which can prevent proper cleanup of other registered
callbacks.
Modify the indirect block callback command in TC to send messages of
ingress and/or egress bind depending on the qdisc in use. NFP currently
supports egress offload for TC flower offload so the changes are only
added to TC.
Fixes: 4d12ba4278 ("nfp: flower: allow offloading of matches on 'internal' ports")
Signed-off-by: John Hurley <john.hurley@netronome.com>
Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit dbad340889 ]
With indirect blocks, a driver can register for callbacks from a device
that is does not 'own', for example, a tunnel device. When registering to
or unregistering from a new device, a callback is triggered to generate
a bind/unbind event. This, in turn, allows the driver to receive any
existing rules or to properly clean up installed rules.
When first added, it was assumed that all indirect block registrations
would be for ingress offloads. However, the NFP driver can, in some
instances, support clsact qdisc binds for egress offload.
Change the name of the indirect block callback command in flow_offload to
remove the 'ingress' identifier from it. While this does not change
functionality, a follow up patch will implement a more more generic
callback than just those currently just supporting ingress offload.
Fixes: 4d12ba4278 ("nfp: flower: allow offloading of matches on 'internal' ports")
Signed-off-by: John Hurley <john.hurley@netronome.com>
Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>