IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The #VC handler needs special entry code because:
1. It runs on an IST stack
2. It needs to be able to handle nested #VC exceptions
To make this work, the entry code is implemented to pretend it doesn't
use an IST stack. When entered from user-mode or early SYSCALL entry
path it switches to the task stack. If entered from kernel-mode it tries
to switch back to the previous stack in the IRET frame.
The stack found in the IRET frame is validated first, and if it is not
safe to use it for the #VC handler, the code will switch to a
fall-back stack (the #VC2 IST stack). From there, it can cause nested
exceptions again.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-46-joro@8bytes.org
Andy reported that the syscall treacing for 32bit fast syscall fails:
# ./tools/testing/selftests/x86/ptrace_syscall_32
...
[RUN] SYSEMU
[FAIL] Initial args are wrong (nr=224, args=10 11 12 13 14 4289172732)
...
[RUN] SYSCALL
[FAIL] Initial args are wrong (nr=29, args=0 0 0 0 0 4289172732)
The eason is that the conversion to generic entry code moved the retrieval
of the sixth argument (EBP) after the point where the syscall entry work
runs, i.e. ptrace, seccomp, audit...
Unbreak it by providing a split up version of syscall_enter_from_user_mode().
- syscall_enter_from_user_mode_prepare() establishes state and enables
interrupts
- syscall_enter_from_user_mode_work() runs the entry work
Replace the call to syscall_enter_from_user_mode() in the 32bit fast
syscall C-entry with the split functions and stick the EBP retrieval
between them.
Fixes: 27d6b4d14f5c ("x86/entry: Use generic syscall entry function")
Reported-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/87k0xdjbtt.fsf@nanos.tec.linutronix.de
Unused remnants
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Marco Elver <elver@google.com>
Link: https://lkml.kernel.org/r/20200821085348.487040689@infradead.org
KVM has an optmization to avoid expensive MRS read/writes on
VMENTER/EXIT. It caches the MSR values and restores them either when
leaving the run loop, on preemption or when going out to user space.
The affected MSRs are not required for kernel context operations. This
changed with the recently introduced mechanism to handle FSGSBASE in the
paranoid entry code which has to retrieve the kernel GSBASE value by
accessing per CPU memory. The mechanism needs to retrieve the CPU number
and uses either LSL or RDPID if the processor supports it.
Unfortunately RDPID uses MSR_TSC_AUX which is in the list of cached and
lazily restored MSRs, which means between the point where the guest value
is written and the point of restore, MSR_TSC_AUX contains a random number.
If an NMI or any other exception which uses the paranoid entry path happens
in such a context, then RDPID returns the random guest MSR_TSC_AUX value.
As a consequence this reads from the wrong memory location to retrieve the
kernel GSBASE value. Kernel GS is used to for all regular this_cpu_*()
operations. If the GSBASE in the exception handler points to the per CPU
memory of a different CPU then this has the obvious consequences of data
corruption and crashes.
As the paranoid entry path is the only place which accesses MSR_TSX_AUX
(via RDPID) and the fallback via LSL is not significantly slower, remove
the RDPID alternative from the entry path and always use LSL.
The alternative would be to write MSR_TSC_AUX on every VMENTER and VMEXIT
which would be inflicting massive overhead on that code path.
[ tglx: Rewrote changelog ]
Fixes: eaad981291ee3 ("x86/entry/64: Introduce the FIND_PERCPU_BASE macro")
Reported-by: Tom Lendacky <thomas.lendacky@amd.com>
Debugged-by: Tom Lendacky <thomas.lendacky@amd.com>
Suggested-by: Andy Lutomirski <luto@kernel.org>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20200821105229.18938-1-pbonzini@redhat.com
Since commit 61a47c1ad3a4dc ("sysctl: Remove the sysctl system call"),
sys_sysctl is actually unavailable: any input can only return an error.
We have been warning about people using the sysctl system call for years
and believe there are no more users. Even if there are users of this
interface if they have not complained or fixed their code by now they
probably are not going to, so there is no point in warning them any
longer.
So completely remove sys_sysctl on all architectures.
[nixiaoming@huawei.com: s390: fix build error for sys_call_table_emu]
Link: http://lkml.kernel.org/r/20200618141426.16884-1-nixiaoming@huawei.com
Signed-off-by: Xiaoming Ni <nixiaoming@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Will Deacon <will@kernel.org> [arm/arm64]
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Aleksa Sarai <cyphar@cyphar.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bin Meng <bin.meng@windriver.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: chenzefeng <chenzefeng2@huawei.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christian Brauner <christian@brauner.io>
Cc: Chris Zankel <chris@zankel.net>
Cc: David Howells <dhowells@redhat.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Diego Elio Pettenò <flameeyes@flameeyes.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Iurii Zaikin <yzaikin@google.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kars de Jong <jongk@linux-m68k.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Krzysztof Kozlowski <krzk@kernel.org>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Marco Elver <elver@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Martin K. Petersen <martin.petersen@oracle.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Cc: Nick Piggin <npiggin@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Olof Johansson <olof@lixom.net>
Cc: Paul Burton <paulburton@kernel.org>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Ravi Bangoria <ravi.bangoria@linux.ibm.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: Sargun Dhillon <sargun@sargun.me>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Sudeep Holla <sudeep.holla@arm.com>
Cc: Sven Schnelle <svens@stackframe.org>
Cc: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Zhou Yanjie <zhouyanjie@wanyeetech.com>
Link: http://lkml.kernel.org/r/20200616030734.87257-1-nixiaoming@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQRTLbB6QfY48x44uB6AXGG7T9hjvgUCXzaSXAAKCRCAXGG7T9hj
vuSEAP4qOIv7Hr1wMJfTsN7ZoNNr/K6ph8ADcjFm9RGikn8MawD8CU/OfcFKJFwl
UVwM1HPnRG6pvCI9bmHS4WYrIBYBVw0=
=Bi6R
-----END PGP SIGNATURE-----
Merge tag 'for-linus-5.9-rc1b-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull more xen updates from Juergen Gross:
- Remove support for running as 32-bit Xen PV-guest.
32-bit PV guests are rarely used, are lacking security fixes for
Meltdown, and can be easily replaced by PVH mode. Another series for
doing more cleanup will follow soon (removal of 32-bit-only pvops
functionality).
- Fixes and additional features for the Xen display frontend driver.
* tag 'for-linus-5.9-rc1b-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
drm/xen-front: Pass dumb buffer data offset to the backend
xen: Sync up with the canonical protocol definition in Xen
drm/xen-front: Add YUYV to supported formats
drm/xen-front: Fix misused IS_ERR_OR_NULL checks
xen/gntdev: Fix dmabuf import with non-zero sgt offset
x86/xen: drop tests for highmem in pv code
x86/xen: eliminate xen-asm_64.S
x86/xen: remove 32-bit Xen PV guest support
Xen is requiring 64-bit machines today and since Xen 4.14 it can be
built without 32-bit PV guest support. There is no need to carry the
burden of 32-bit PV guest support in the kernel any longer, as new
guests can be either HVM or PVH, or they can use a 64 bit kernel.
Remove the 32-bit Xen PV support from the kernel.
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
- run the checker (e.g. sparse) after the compiler
- remove unneeded cc-option tests for old compiler flags
- fix tar-pkg to install dtbs
- introduce ccflags-remove-y and asflags-remove-y syntax
- allow to trace functions in sub-directories of lib/
- introduce hostprogs-always-y and userprogs-always-y syntax
- various Makefile cleanups
-----BEGIN PGP SIGNATURE-----
iQJJBAABCgAzFiEEbmPs18K1szRHjPqEPYsBB53g2wYFAl8wJXEVHG1hc2FoaXJv
eUBrZXJuZWwub3JnAAoJED2LAQed4NsGMGEP/0jDq/WafbfPN0aU83EqEWLt/sKg
bluzmf/6HGx3XVRnuAzsHNNqysUx77WJiDsU/jbC/zdH8Iox3Sc1diE2sELLNAfY
iJmQ8NBPggyU74aYG3OJdpDjz8T9EX/nVaYrjyFlbuXElM+Qvo8Z4Fz6NpWqKWlA
gU+yGxEPPdX6MLHcSPSIu1hGWx7UT4fgfx3zDFTI2qvbQgQjKtzyTjAH5Cm3o87h
rfomvHSSoAUg+Fh1LediRh1tJlkdVO+w7c+LNwCswmdBtkZuxecj1bQGUTS8GaLl
CCWOKYfWp0KsVf1veXNNNaX/ecbp+Y34WErFq3V9Fdq5RmVlp+FPSGMyjDMRiQ/p
LGvzbJLPpG586MnK8of0dOj6Es6tVPuq6WH2HuvsyTGcZJDpFTTxRcK3HDkE8ig6
ZtuM3owB/Mep8IzwY2yWQiDrc7TX5Fz8S4hzGPU1zG9cfj4VT6TBqHGAy1Eql/0l
txj6vJpnbQSdXiIX8MIU3yH35Y7eW3JYWgspTZH5Woj1S/wAWwuG93Fuuxq6mQIJ
q6LSkMavtOfuCjOA9vJBZewpKXRU6yo0CzWNL/5EZ6z/r/I+DGtfb/qka8oYUDjX
9H0cecL37AQxDHRPTxCZDQF0TpYiFJ6bmnMftK9NKNuIdvsk9DF7UBa3EdUNIj38
yKS3rI7Lw55xWuY3
=bkNQ
-----END PGP SIGNATURE-----
Merge tag 'kbuild-v5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild
Pull Kbuild updates from Masahiro Yamada:
- run the checker (e.g. sparse) after the compiler
- remove unneeded cc-option tests for old compiler flags
- fix tar-pkg to install dtbs
- introduce ccflags-remove-y and asflags-remove-y syntax
- allow to trace functions in sub-directories of lib/
- introduce hostprogs-always-y and userprogs-always-y syntax
- various Makefile cleanups
* tag 'kbuild-v5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild:
kbuild: stop filtering out $(GCC_PLUGINS_CFLAGS) from cc-option base
kbuild: include scripts/Makefile.* only when relevant CONFIG is enabled
kbuild: introduce hostprogs-always-y and userprogs-always-y
kbuild: sort hostprogs before passing it to ifneq
kbuild: move host .so build rules to scripts/gcc-plugins/Makefile
kbuild: Replace HTTP links with HTTPS ones
kbuild: trace functions in subdirectories of lib/
kbuild: introduce ccflags-remove-y and asflags-remove-y
kbuild: do not export LDFLAGS_vmlinux
kbuild: always create directories of targets
powerpc/boot: add DTB to 'targets'
kbuild: buildtar: add dtbs support
kbuild: remove cc-option test of -ffreestanding
kbuild: remove cc-option test of -fno-stack-protector
Revert "kbuild: Create directory for target DTB"
kbuild: run the checker after the compiler
Pull networking updates from David Miller:
1) Support 6Ghz band in ath11k driver, from Rajkumar Manoharan.
2) Support UDP segmentation in code TSO code, from Eric Dumazet.
3) Allow flashing different flash images in cxgb4 driver, from Vishal
Kulkarni.
4) Add drop frames counter and flow status to tc flower offloading,
from Po Liu.
5) Support n-tuple filters in cxgb4, from Vishal Kulkarni.
6) Various new indirect call avoidance, from Eric Dumazet and Brian
Vazquez.
7) Fix BPF verifier failures on 32-bit pointer arithmetic, from
Yonghong Song.
8) Support querying and setting hardware address of a port function via
devlink, use this in mlx5, from Parav Pandit.
9) Support hw ipsec offload on bonding slaves, from Jarod Wilson.
10) Switch qca8k driver over to phylink, from Jonathan McDowell.
11) In bpftool, show list of processes holding BPF FD references to
maps, programs, links, and btf objects. From Andrii Nakryiko.
12) Several conversions over to generic power management, from Vaibhav
Gupta.
13) Add support for SO_KEEPALIVE et al. to bpf_setsockopt(), from Dmitry
Yakunin.
14) Various https url conversions, from Alexander A. Klimov.
15) Timestamping and PHC support for mscc PHY driver, from Antoine
Tenart.
16) Support bpf iterating over tcp and udp sockets, from Yonghong Song.
17) Support 5GBASE-T i40e NICs, from Aleksandr Loktionov.
18) Add kTLS RX HW offload support to mlx5e, from Tariq Toukan.
19) Fix the ->ndo_start_xmit() return type to be netdev_tx_t in several
drivers. From Luc Van Oostenryck.
20) XDP support for xen-netfront, from Denis Kirjanov.
21) Support receive buffer autotuning in MPTCP, from Florian Westphal.
22) Support EF100 chip in sfc driver, from Edward Cree.
23) Add XDP support to mvpp2 driver, from Matteo Croce.
24) Support MPTCP in sock_diag, from Paolo Abeni.
25) Commonize UDP tunnel offloading code by creating udp_tunnel_nic
infrastructure, from Jakub Kicinski.
26) Several pci_ --> dma_ API conversions, from Christophe JAILLET.
27) Add FLOW_ACTION_POLICE support to mlxsw, from Ido Schimmel.
28) Add SK_LOOKUP bpf program type, from Jakub Sitnicki.
29) Refactor a lot of networking socket option handling code in order to
avoid set_fs() calls, from Christoph Hellwig.
30) Add rfc4884 support to icmp code, from Willem de Bruijn.
31) Support TBF offload in dpaa2-eth driver, from Ioana Ciornei.
32) Support XDP_REDIRECT in qede driver, from Alexander Lobakin.
33) Support PCI relaxed ordering in mlx5 driver, from Aya Levin.
34) Support TCP syncookies in MPTCP, from Flowian Westphal.
35) Fix several tricky cases of PMTU handling wrt. briding, from Stefano
Brivio.
* git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (2056 commits)
net: thunderx: initialize VF's mailbox mutex before first usage
usb: hso: remove bogus check for EINPROGRESS
usb: hso: no complaint about kmalloc failure
hso: fix bailout in error case of probe
ip_tunnel_core: Fix build for archs without _HAVE_ARCH_IPV6_CSUM
selftests/net: relax cpu affinity requirement in msg_zerocopy test
mptcp: be careful on subflow creation
selftests: rtnetlink: make kci_test_encap() return sub-test result
selftests: rtnetlink: correct the final return value for the test
net: dsa: sja1105: use detected device id instead of DT one on mismatch
tipc: set ub->ifindex for local ipv6 address
ipv6: add ipv6_dev_find()
net: openvswitch: silence suspicious RCU usage warning
Revert "vxlan: fix tos value before xmit"
ptp: only allow phase values lower than 1 period
farsync: switch from 'pci_' to 'dma_' API
wan: wanxl: switch from 'pci_' to 'dma_' API
hv_netvsc: do not use VF device if link is down
dpaa2-eth: Fix passing zero to 'PTR_ERR' warning
net: macb: Properly handle phylink on at91sam9x
...
this has been brought into a shape which is maintainable and actually
works.
This final version was done by Sasha Levin who took it up after Intel
dropped the ball. Sasha discovered that the SGX (sic!) offerings out there
ship rogue kernel modules enabling FSGSBASE behind the kernels back which
opens an instantanious unpriviledged root hole.
The FSGSBASE instructions provide a considerable speedup of the context
switch path and enable user space to write GSBASE without kernel
interaction. This enablement requires careful handling of the exception
entries which go through the paranoid entry path as they cannot longer rely
on the assumption that user GSBASE is positive (as enforced via prctl() on
non FSGSBASE enabled systemn). All other entries (syscalls, interrupts and
exceptions) can still just utilize SWAPGS unconditionally when the entry
comes from user space. Converting these entries to use FSGSBASE has no
benefit as SWAPGS is only marginally slower than WRGSBASE and locating and
retrieving the kernel GSBASE value is not a free operation either. The real
benefit of RD/WRGSBASE is the avoidance of the MSR reads and writes.
The changes come with appropriate selftests and have held up in field
testing against the (sanitized) Graphene-SGX driver.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl8pGnoTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoTYJD/9873GkwvGcc/Vq/dJH1szGTgFftPyZ
c/Y9gzx7EGBPLo25BS820L+ZlynzXHDxExKfCEaD10TZfe5XIc1vYNR0J74M2NmK
IBgEDstJeW93ai+rHCFRXIevhpzU4GgGYJ1MeeOgbVMN3aGU1g6HfzMvtF0fPn8Y
n6fsLZa43wgnoTdjwjjikpDTrzoZbaL1mbODBzBVPAaTbim7IKKTge6r/iCKrOjz
Uixvm3g9lVzx52zidJ9kWa8esmbOM1j0EPe7/hy3qH9DFo87KxEzjHNH3T6gY5t6
NJhRAIfY+YyTHpPCUCshj6IkRudE6w/qjEAmKP9kWZxoJrvPCTWOhCzelwsFS9b9
gxEYfsnaKhsfNhB6fi0PtWlMzPINmEA7SuPza33u5WtQUK7s1iNlgHfvMbjstbwg
MSETn4SG2/ZyzUrSC06lVwV8kh0RgM3cENc/jpFfIHD0vKGI3qfka/1RY94kcOCG
AeJd0YRSU2RqL7lmxhHyG8tdb8eexns41IzbPCLXX2sF00eKNkVvMRYT2mKfKLFF
q8v1x7yuwmODdXfFR6NdCkGm9IU7wtL6wuQ8Nhu9UraFmcXo6X6FLJC18FqcvSb9
jvcRP4XY/8pNjjf44JB8yWfah0xGQsaMIKQGP4yLv4j6Xk1xAQKH1MqcC7l1D2HN
5Z24GibFqSK/vA==
=QaAN
-----END PGP SIGNATURE-----
Merge tag 'x86-fsgsbase-2020-08-04' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fsgsbase from Thomas Gleixner:
"Support for FSGSBASE. Almost 5 years after the first RFC to support
it, this has been brought into a shape which is maintainable and
actually works.
This final version was done by Sasha Levin who took it up after Intel
dropped the ball. Sasha discovered that the SGX (sic!) offerings out
there ship rogue kernel modules enabling FSGSBASE behind the kernels
back which opens an instantanious unpriviledged root hole.
The FSGSBASE instructions provide a considerable speedup of the
context switch path and enable user space to write GSBASE without
kernel interaction. This enablement requires careful handling of the
exception entries which go through the paranoid entry path as they
can no longer rely on the assumption that user GSBASE is positive (as
enforced via prctl() on non FSGSBASE enabled systemn).
All other entries (syscalls, interrupts and exceptions) can still just
utilize SWAPGS unconditionally when the entry comes from user space.
Converting these entries to use FSGSBASE has no benefit as SWAPGS is
only marginally slower than WRGSBASE and locating and retrieving the
kernel GSBASE value is not a free operation either. The real benefit
of RD/WRGSBASE is the avoidance of the MSR reads and writes.
The changes come with appropriate selftests and have held up in field
testing against the (sanitized) Graphene-SGX driver"
* tag 'x86-fsgsbase-2020-08-04' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (21 commits)
x86/fsgsbase: Fix Xen PV support
x86/ptrace: Fix 32-bit PTRACE_SETREGS vs fsbase and gsbase
selftests/x86/fsgsbase: Add a missing memory constraint
selftests/x86/fsgsbase: Fix a comment in the ptrace_write_gsbase test
selftests/x86: Add a syscall_arg_fault_64 test for negative GSBASE
selftests/x86/fsgsbase: Test ptracer-induced GS base write with FSGSBASE
selftests/x86/fsgsbase: Test GS selector on ptracer-induced GS base write
Documentation/x86/64: Add documentation for GS/FS addressing mode
x86/elf: Enumerate kernel FSGSBASE capability in AT_HWCAP2
x86/cpu: Enable FSGSBASE on 64bit by default and add a chicken bit
x86/entry/64: Handle FSGSBASE enabled paranoid entry/exit
x86/entry/64: Introduce the FIND_PERCPU_BASE macro
x86/entry/64: Switch CR3 before SWAPGS in paranoid entry
x86/speculation/swapgs: Check FSGSBASE in enabling SWAPGS mitigation
x86/process/64: Use FSGSBASE instructions on thread copy and ptrace
x86/process/64: Use FSBSBASE in switch_to() if available
x86/process/64: Make save_fsgs_for_kvm() ready for FSGSBASE
x86/fsgsbase/64: Enable FSGSBASE instructions in helper functions
x86/fsgsbase/64: Add intrinsics for FSGSBASE instructions
x86/cpu: Add 'unsafe_fsgsbase' to enable CR4.FSGSBASE
...
to the generic code. Pretty much a straight forward 1:1 conversion plus the
consolidation of the KVM handling of pending work before entering guest
mode.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl8pEFgTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYocEwD/474Eb7LzZ8yahyUBirWJP3k3qzgs9j
dZUxqB6LNuDOstEyTGLPdx1dmQP2vHbFfjoM7YBOH37EGcHsqjGliLvn2Y05ZD7O
6kYwjz6qVnJcm3IMtfSUn/8LkfO5pGUdKd3U5ngDmPLpkeaQ4nPKqiO0uIb0wzwa
cO7l10tG4YjMCWQxPNIaOh8kncLieQBediJPFjkQjV+Fh33kSU3LWTl3fccz6b5+
mgSUFL0qjQpp+Nl7lCaDQQiAop9GTUETfDtximRydZauiM2NpCfz+QBmQzq50Xv1
G3DWZoBIZBjmWJUgfSmS/s4GOYkBTBnT/fUcZmIDcgdRwvtEvRzIhcP87/wn7P3N
UKpLdHqmvA0BFDXZbNZgS362++29pj5Lnb+u3QbWSKQ9UqHN0NUlSY4wzfTLXsGp
Mzpp4TW0u/8kyOlo7wK3lVDgNJaPG31aiNVuDPgLe4cEluO5cq7/7g2GcFBqF1Ly
SqNGD1IccteNQTNvDopczPy7qUl5Lal+Ia06szNSPR48gLrvhSWdyYr2i1sD7vx4
hAhR0Hsi9dacGv46TrRw1OdDzq9bOW68G8GIgLJgDXaayPXLnx6TQEUjzQtIkE/i
ydTPUarp5QOFByt+RBjI90ZcW4RuLgMTOEVONPXtSn8IoCP2Kdg9u3gD9AmUW3Q2
JFkKMiSiJPGxlw==
=84y7
-----END PGP SIGNATURE-----
Merge tag 'x86-entry-2020-08-04' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 conversion to generic entry code from Thomas Gleixner:
"The conversion of X86 syscall, interrupt and exception entry/exit
handling to the generic code.
Pretty much a straight-forward 1:1 conversion plus the consolidation
of the KVM handling of pending work before entering guest mode"
* tag 'x86-entry-2020-08-04' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/kvm: Use __xfer_to_guest_mode_work_pending() in kvm_run_vcpu()
x86/kvm: Use generic xfer to guest work function
x86/entry: Cleanup idtentry_enter/exit
x86/entry: Use generic interrupt entry/exit code
x86/entry: Cleanup idtentry_entry/exit_user
x86/entry: Use generic syscall exit functionality
x86/entry: Use generic syscall entry function
x86/ptrace: Provide pt_regs helper for entry/exit
x86/entry: Move user return notifier out of loop
x86/entry: Consolidate 32/64 bit syscall entry
x86/entry: Consolidate check_user_regs()
x86: Correct noinstr qualifiers
x86/idtentry: Remove stale comment
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCXygcpgAKCRCRxhvAZXjc
ogPeAQDv1ncqtNroFAC4pJ4tQhH7JSjW0OltiMk/AocY/J2SdQD9GJ15luYJ0/om
697q/Z68sndRynhdoZlMuf3oYuBlHQw=
=3ZhE
-----END PGP SIGNATURE-----
Merge tag 'close-range-v5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull close_range() implementation from Christian Brauner:
"This adds the close_range() syscall. It allows to efficiently close a
range of file descriptors up to all file descriptors of a calling
task.
This is coordinated with the FreeBSD folks which have copied our
version of this syscall and in the meantime have already merged it in
April 2019:
https://reviews.freebsd.org/D21627https://svnweb.freebsd.org/base?view=revision&revision=359836
The syscall originally came up in a discussion around the new mount
API and making new file descriptor types cloexec by default. During
this discussion, Al suggested the close_range() syscall.
First, it helps to close all file descriptors of an exec()ing task.
This can be done safely via (quoting Al's example from [1] verbatim):
/* that exec is sensitive */
unshare(CLONE_FILES);
/* we don't want anything past stderr here */
close_range(3, ~0U);
execve(....);
The code snippet above is one way of working around the problem that
file descriptors are not cloexec by default. This is aggravated by the
fact that we can't just switch them over without massively regressing
userspace. For a whole class of programs having an in-kernel method of
closing all file descriptors is very helpful (e.g. demons, service
managers, programming language standard libraries, container managers
etc.).
Second, it allows userspace to avoid implementing closing all file
descriptors by parsing through /proc/<pid>/fd/* and calling close() on
each file descriptor and other hacks. From looking at various
large(ish) userspace code bases this or similar patterns are very
common in service managers, container runtimes, and programming
language runtimes/standard libraries such as Python or Rust.
In addition, the syscall will also work for tasks that do not have
procfs mounted and on kernels that do not have procfs support compiled
in. In such situations the only way to make sure that all file
descriptors are closed is to call close() on each file descriptor up
to UINT_MAX or RLIMIT_NOFILE, OPEN_MAX trickery.
Based on Linus' suggestion close_range() also comes with a new flag
CLOSE_RANGE_UNSHARE to more elegantly handle file descriptor dropping
right before exec. This would usually be expressed in the sequence:
unshare(CLONE_FILES);
close_range(3, ~0U);
as pointed out by Linus it might be desirable to have this be a part
of close_range() itself under a new flag CLOSE_RANGE_UNSHARE which
gets especially handy when we're closing all file descriptors above a
certain threshold.
Test-suite as always included"
* tag 'close-range-v5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
tests: add CLOSE_RANGE_UNSHARE tests
close_range: add CLOSE_RANGE_UNSHARE
tests: add close_range() tests
arch: wire-up close_range()
open: add close_range()
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCXygcLwAKCRCRxhvAZXjc
ohajAP4n5E3BmN0jpIviXT4eNhP62jzxJtxlVXtgGT3D8b1mpQEA5n8NSOlQLoAh
yUGsjtwR9xDcHMcrhXD3yN6eYJSK0A8=
=tn4R
-----END PGP SIGNATURE-----
Merge tag 'threads-v5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull thread updates from Christian Brauner:
"This contains the changes to add the missing support for attaching to
time namespaces via pidfds.
Last cycle setns() was changed to support attaching to multiple
namespaces atomically. This requires all namespaces to have a point of
no return where they can't fail anymore.
Specifically, <namespace-type>_install() is allowed to perform
permission checks and install the namespace into the new struct nsset
that it has been given but it is not allowed to make visible changes
to the affected task. Once <namespace-type>_install() returns,
anything that the given namespace type additionally requires to be
setup needs to ideally be done in a function that can't fail or if it
fails the failure must be non-fatal.
For time namespaces the relevant functions that fell into this
category were timens_set_vvar_page() and vdso_join_timens(). The
latter could still fail although it didn't need to. This function is
only implemented for vdso_join_timens() in current mainline. As
discussed on-list (cf. [1]), in order to make setns() support time
namespaces when attaching to multiple namespaces at once properly we
changed vdso_join_timens() to always succeed. So vdso_join_timens()
replaces the mmap_write_lock_killable() with mmap_read_lock().
Please note that arm is about to grow vdso support for time namespaces
(possibly this merge window). We've synced on this change and arm64
also uses mmap_read_lock(), i.e. makes vdso_join_timens() a function
that can't fail. Once the changes here and the arm64 changes have
landed, vdso_join_timens() should be turned into a void function so
it's obvious to callers and implementers on other architectures that
the expectation is that it can't fail.
We didn't do this right away because it would've introduced
unnecessary merge conflicts between the two trees for no major gain.
As always, tests included"
[1]: https://lore.kernel.org/lkml/20200611110221.pgd3r5qkjrjmfqa2@wittgenstein
* tag 'threads-v5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
tests: add CLONE_NEWTIME setns tests
nsproxy: support CLONE_NEWTIME with setns()
timens: add timens_commit() helper
timens: make vdso_join_timens() always succeed
Pull execve updates from Eric Biederman:
"During the development of v5.7 I ran into bugs and quality of
implementation issues related to exec that could not be easily fixed
because of the way exec is implemented. So I have been diggin into
exec and cleaning up what I can.
This cycle I have been looking at different ideas and different
implementations to see what is possible to improve exec, and cleaning
the way exec interfaces with in kernel users. Only cleaning up the
interfaces of exec with rest of the kernel has managed to stabalize
and make it through review in time for v5.9-rc1 resulting in 2 sets of
changes this cycle.
- Implement kernel_execve
- Make the user mode driver code a better citizen
With kernel_execve the code size got a little larger as the copying of
parameters from userspace and copying of parameters from userspace is
now separate. The good news is kernel threads no longer need to play
games with set_fs to use exec. Which when combined with the rest of
Christophs set_fs changes should security bugs with set_fs much more
difficult"
* 'exec-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (23 commits)
exec: Implement kernel_execve
exec: Factor bprm_stack_limits out of prepare_arg_pages
exec: Factor bprm_execve out of do_execve_common
exec: Move bprm_mm_init into alloc_bprm
exec: Move initialization of bprm->filename into alloc_bprm
exec: Factor out alloc_bprm
exec: Remove unnecessary spaces from binfmts.h
umd: Stop using split_argv
umd: Remove exit_umh
bpfilter: Take advantage of the facilities of struct pid
exit: Factor thread_group_exited out of pidfd_poll
umd: Track user space drivers with struct pid
bpfilter: Move bpfilter_umh back into init data
exec: Remove do_execve_file
umh: Stop calling do_execve_file
umd: Transform fork_usermode_blob into fork_usermode_driver
umd: Rename umd_info.cmdline umd_info.driver_name
umd: For clarity rename umh_info umd_info
umh: Separate the user mode driver and the user mode helper support
umh: Remove call_usermodehelper_setup_file.
...
Resolve conflicts with ongoing lockdep work that fixed the NMI entry code.
Conflicts:
arch/x86/entry/common.c
arch/x86/include/asm/idtentry.h
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The UDP reuseport conflict was a little bit tricky.
The net-next code, via bpf-next, extracted the reuseport handling
into a helper so that the BPF sk lookup code could invoke it.
At the same time, the logic for reuseport handling of unconnected
sockets changed via commit efc6b6f6c3113e8b203b9debfb72d81e0f3dcace
which changed the logic to carry on the reuseport result into the
rest of the lookup loop if we do not return immediately.
This requires moving the reuseport_has_conns() logic into the callers.
While we are here, get rid of inline directives as they do not belong
in foo.c files.
The other changes were cases of more straightforward overlapping
modifications.
Signed-off-by: David S. Miller <davem@davemloft.net>
Replace the x86 variant with the generic version. Provide the relevant
architecture specific helper functions and defines.
Use a temporary define for idtentry_exit_user which will be cleaned up
seperately.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/20200722220520.494648601@linutronix.de
Replace the syscall entry work handling with the generic version. Provide
the necessary helper inlines to handle the real architecture specific
parts, e.g. ptrace.
Use a temporary define for idtentry_enter_user which will be cleaned up
seperately.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/20200722220520.376213694@linutronix.de
Guests and user space share certain MSRs. KVM sets these MSRs to guest
values once and does not set them back to user space values on every VM
exit to spare the costly MSR operations.
User return notifiers ensure that these MSRs are set back to the correct
values before returning to user space in exit_to_usermode_loop().
There is no reason to evaluate the TIF flag indicating that user return
notifiers need to be invoked in the loop. The important point is that they
are invoked before returning to user space.
Move the invocation out of the loop into the section which does the last
preperatory steps before returning to user space. That section is not
preemptible and runs with interrupts disabled until the actual return.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200722220520.159112003@linutronix.de
64bit and 32bit entry code have the same open coded syscall entry handling
after the bitwidth specific bits.
Move it to a helper function and share the code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200722220520.051234096@linutronix.de
The user register sanity check is sprinkled all over the place. Move it
into enter_from_user_mode().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/20200722220519.943016204@linutronix.de
To allow the kernel not to play games with set_fs to call exec
implement kernel_execve. The function kernel_execve takes pointers
into kernel memory and copies the values pointed to onto the new
userspace stack.
The calls with arguments from kernel space of do_execve are replaced
with calls to kernel_execve.
The calls do_execve and do_execveat are made static as there are now
no callers outside of exec.
The comments that mention do_execve are updated to refer to
kernel_execve or execve depending on the circumstances. In addition
to correcting the comments, this makes it easy to grep for do_execve
and verify it is not used.
Inspired-by: https://lkml.kernel.org/r/20200627072704.2447163-1-hch@lst.de
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/87wo365ikj.fsf@x220.int.ebiederm.org
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Now that the ->compat_{get,set}sockopt proto_ops methods are gone
there is no good reason left to keep the compat syscalls separate.
This fixes the odd use of unsigned int for the compat_setsockopt
optlen and the missing sock_use_custom_sol_socket.
It would also easily allow running the eBPF hooks for the compat
syscalls, but such a large change in behavior does not belong into
a consolidation patch like this one.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
Some builds of GCC enable stack protector by default. Simply removing
the arguments is not sufficient to disable stack protector, as the stack
protector for those GCC builds must be explicitly disabled. Remove the
argument removals and add -fno-stack-protector. Additionally include
missed x32 argument updates, and adjust whitespace for readability.
Fixes: 20355e5f73a7 ("x86/entry: Exclude low level entry code from sanitizing")
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/202006261333.585319CA6B@keescook
While the nmi_enter() users did
trace_hardirqs_{off_prepare,on_finish}() there was no matching
lockdep_hardirqs_*() calls to complete the picture.
Introduce idtentry_{enter,exit}_nmi() to enable proper IRQ state
tracking across the NMIs.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200623083721.216740948@infradead.org
It's called from the non-instrumentable section.
Fixes: c9c26150e61d ("x86/entry: Assert that syscalls are on the right stack")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200708192934.191497962@linutronix.de
As discussed on-list (cf. [1]), in order to make setns() support time
namespaces when attaching to multiple namespaces at once properly we
need to tweak vdso_join_timens() to always succeed. So switch
vdso_join_timens() to using a read lock and replacing
mmap_write_lock_killable() to mmap_read_lock() as we discussed.
Last cycle setns() was changed to support attaching to multiple namespaces
atomically. This requires all namespaces to have a point of no return where
they can't fail anymore. Specifically, <namespace-type>_install() is
allowed to perform permission checks and install the namespace into the new
struct nsset that it has been given but it is not allowed to make visible
changes to the affected task. Once <namespace-type>_install() returns
anything that the given namespace type requires to be setup in addition
needs to ideally be done in a function that can't fail or if it fails the
failure is not fatal. For time namespaces the relevant functions that fall
into this category are timens_set_vvar_page() and vdso_join_timens().
Currently the latter can fail but doesn't need to. With this we can go on
to implement a timens_commit() helper in a follow up patch to be used by
setns().
[1]: https://lore.kernel.org/lkml/20200611110221.pgd3r5qkjrjmfqa2@wittgenstein
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: Andrei Vagin <avagin@gmail.com>
Cc: Will Deacon <will@kernel.org>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Dmitry Safonov <dima@arista.com>
Cc: linux-arm-kernel@lists.infradead.org
Link: https://lore.kernel.org/r/20200706154912.3248030-2-christian.brauner@ubuntu.com
Some Makefiles already pass -fno-stack-protector unconditionally.
For example, arch/arm64/kernel/vdso/Makefile, arch/x86/xen/Makefile.
No problem report so far about hard-coding this option. So, we can
assume all supported compilers know -fno-stack-protector.
GCC 4.8 and Clang support this option (https://godbolt.org/z/_HDGzN)
Get rid of cc-option from -fno-stack-protector.
Remove CONFIG_CC_HAS_STACKPROTECTOR_NONE, which is always 'y'.
Note:
arch/mips/vdso/Makefile adds -fno-stack-protector twice, first
unconditionally, and second conditionally. I removed the second one.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
They were originally called _cond_rcu because they were special versions
with conditional RCU handling. Now they're the standard entry and exit
path, so the _cond_rcu part is just confusing. Drop it.
Also change the signature to make them more extensible and more foolproof.
No functional change -- it's pure refactoring.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/247fc67685263e0b673e1d7f808182d28ff80359.1593795633.git.luto@kernel.org
Move the clearing of the high bits of RAX after Xen PV joins the SYSENTER
path so that Xen PV doesn't skip it.
Arguably this code should be deleted instead, but that would belong in the
merge window.
Fixes: ffae641f5747 ("x86/entry/64/compat: Fix Xen PV SYSENTER frame setup")
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/9d33b3f3216dcab008070f1c28b6091ae7199969.1593795633.git.luto@kernel.org
The SYSENTER frame setup was nonsense. It worked by accident because the
normal code into which the Xen asm jumped (entry_SYSENTER_32/compat) threw
away SP without touching the stack. entry_SYSENTER_compat was recently
modified such that it relied on having a valid stack pointer, so now the
Xen asm needs to invoke it with a valid stack.
Fix it up like SYSCALL: use the Xen-provided frame and skip the bare
metal prologue.
Fixes: 1c3e5d3f60e2 ("x86/entry: Make entry_64_compat.S objtool clean")
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Link: https://lkml.kernel.org/r/947880c41ade688ff4836f665d0c9fcaa9bd1201.1593191971.git.luto@kernel.org
The SYSENTER asm (32-bit and compat) contains fixups for regs->sp and
regs->flags. Move the fixups into C and fix some comments while at it.
This is a valid cleanup all by itself, and it also simplifies the
subsequent patch that will fix Xen PV SYSENTER.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/fe62bef67eda7fac75b8f3dbafccf571dc4ece6b.1593191971.git.luto@kernel.org
Now that the entry stack is a full page, it's too easy to regress the
system call entry code and end up on the wrong stack without noticing.
Assert that all system calls (SYSCALL64, SYSCALL32, SYSENTER, and INT80)
are on the right stack and have pt_regs in the right place.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/52059e42bb0ab8551153d012d68f7be18d72ff8e.1593191971.git.luto@kernel.org
Without FSGSBASE, user space cannot change GSBASE other than through a
PRCTL. The kernel enforces that the user space GSBASE value is postive as
negative values are used for detecting the kernel space GSBASE value in the
paranoid entry code.
If FSGSBASE is enabled, user space can set arbitrary GSBASE values without
kernel intervention, including negative ones, which breaks the paranoid
entry assumptions.
To avoid this, paranoid entry needs to unconditionally save the current
GSBASE value independent of the interrupted context, retrieve and write the
kernel GSBASE and unconditionally restore the saved value on exit. The
restore happens either in paranoid_exit or in the special exit path of the
NMI low level code.
All other entry code pathes which use unconditional SWAPGS are not affected
as they do not depend on the actual content.
[ tglx: Massaged changelogs and comments ]
Suggested-by: H. Peter Anvin <hpa@zytor.com>
Suggested-by: Andy Lutomirski <luto@kernel.org>
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1557309753-24073-13-git-send-email-chang.seok.bae@intel.com
Link: https://lkml.kernel.org/r/20200528201402.1708239-12-sashal@kernel.org
GSBASE is used to find per-CPU data in the kernel. But when GSBASE is
unknown, the per-CPU base can be found from the per_cpu_offset table with a
CPU NR. The CPU NR is extracted from the limit field of the CPUNODE entry
in GDT, or by the RDPID instruction. This is a prerequisite for using
FSGSBASE in the low level entry code.
Also, add the GAS-compatible RDPID macro as binutils 2.23 do not support
it. Support is added in version 2.27.
[ tglx: Massaged changelog ]
Suggested-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1557309753-24073-12-git-send-email-chang.seok.bae@intel.com
Link: https://lkml.kernel.org/r/20200528201402.1708239-11-sashal@kernel.org
When FSGSBASE is enabled, the GSBASE handling in paranoid entry will need
to retrieve the kernel GSBASE which requires that the kernel page table is
active.
As the CR3 switch to the kernel page tables (PTI is active) does not depend
on kernel GSBASE, move the CR3 switch in front of the GSBASE handling.
Comment the EBX content while at it.
No functional change.
[ tglx: Rewrote changelog and comments ]
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1557309753-24073-11-git-send-email-chang.seok.bae@intel.com
Link: https://lkml.kernel.org/r/20200528201402.1708239-10-sashal@kernel.org
This all started about 6 month ago with the attempt to move the Posix CPU
timer heavy lifting out of the timer interrupt code and just have lockless
quick checks in that code path. Trivial 5 patches.
This unearthed an inconsistency in the KVM handling of task work and the
review requested to move all of this into generic code so other
architectures can share.
Valid request and solved with another 25 patches but those unearthed
inconsistencies vs. RCU and instrumentation.
Digging into this made it obvious that there are quite some inconsistencies
vs. instrumentation in general. The int3 text poke handling in particular
was completely unprotected and with the batched update of trace events even
more likely to expose to endless int3 recursion.
In parallel the RCU implications of instrumenting fragile entry code came
up in several discussions.
The conclusion of the X86 maintainer team was to go all the way and make
the protection against any form of instrumentation of fragile and dangerous
code pathes enforcable and verifiable by tooling.
A first batch of preparatory work hit mainline with commit d5f744f9a2ac.
The (almost) full solution introduced a new code section '.noinstr.text'
into which all code which needs to be protected from instrumentation of all
sorts goes into. Any call into instrumentable code out of this section has
to be annotated. objtool has support to validate this. Kprobes now excludes
this section fully which also prevents BPF from fiddling with it and all
'noinstr' annotated functions also keep ftrace off. The section, kprobes
and objtool changes are already merged.
The major changes coming with this are:
- Preparatory cleanups
- Annotating of relevant functions to move them into the noinstr.text
section or enforcing inlining by marking them __always_inline so the
compiler cannot misplace or instrument them.
- Splitting and simplifying the idtentry macro maze so that it is now
clearly separated into simple exception entries and the more
interesting ones which use interrupt stacks and have the paranoid
handling vs. CR3 and GS.
- Move quite some of the low level ASM functionality into C code:
- enter_from and exit to user space handling. The ASM code now calls
into C after doing the really necessary ASM handling and the return
path goes back out without bells and whistels in ASM.
- exception entry/exit got the equivivalent treatment
- move all IRQ tracepoints from ASM to C so they can be placed as
appropriate which is especially important for the int3 recursion
issue.
- Consolidate the declaration and definition of entry points between 32
and 64 bit. They share a common header and macros now.
- Remove the extra device interrupt entry maze and just use the regular
exception entry code.
- All ASM entry points except NMI are now generated from the shared header
file and the corresponding macros in the 32 and 64 bit entry ASM.
- The C code entry points are consolidated as well with the help of
DEFINE_IDTENTRY*() macros. This allows to ensure at one central point
that all corresponding entry points share the same semantics. The
actual function body for most entry points is in an instrumentable
and sane state.
There are special macros for the more sensitive entry points,
e.g. INT3 and of course the nasty paranoid #NMI, #MCE, #DB and #DF.
They allow to put the whole entry instrumentation and RCU handling
into safe places instead of the previous pray that it is correct
approach.
- The INT3 text poke handling is now completely isolated and the
recursion issue banned. Aside of the entry rework this required other
isolation work, e.g. the ability to force inline bsearch.
- Prevent #DB on fragile entry code, entry relevant memory and disable
it on NMI, #MC entry, which allowed to get rid of the nested #DB IST
stack shifting hackery.
- A few other cleanups and enhancements which have been made possible
through this and already merged changes, e.g. consolidating and
further restricting the IDT code so the IDT table becomes RO after
init which removes yet another popular attack vector
- About 680 lines of ASM maze are gone.
There are a few open issues:
- An escape out of the noinstr section in the MCE handler which needs
some more thought but under the aspect that MCE is a complete
trainwreck by design and the propability to survive it is low, this was
not high on the priority list.
- Paravirtualization
When PV is enabled then objtool complains about a bunch of indirect
calls out of the noinstr section. There are a few straight forward
ways to fix this, but the other issues vs. general correctness were
more pressing than parawitz.
- KVM
KVM is inconsistent as well. Patches have been posted, but they have
not yet been commented on or picked up by the KVM folks.
- IDLE
Pretty much the same problems can be found in the low level idle code
especially the parts where RCU stopped watching. This was beyond the
scope of the more obvious and exposable problems and is on the todo
list.
The lesson learned from this brain melting exercise to morph the evolved
code base into something which can be validated and understood is that once
again the violation of the most important engineering principle
"correctness first" has caused quite a few people to spend valuable time on
problems which could have been avoided in the first place. The "features
first" tinkering mindset really has to stop.
With that I want to say thanks to everyone involved in contributing to this
effort. Special thanks go to the following people (alphabetical order):
Alexandre Chartre
Andy Lutomirski
Borislav Petkov
Brian Gerst
Frederic Weisbecker
Josh Poimboeuf
Juergen Gross
Lai Jiangshan
Macro Elver
Paolo Bonzini
Paul McKenney
Peter Zijlstra
Vitaly Kuznetsov
Will Deacon
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl7j510THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoU2WD/4refvaNm08fG7aiVYem3JJzr0+Pq5O
/opwnI/1D973ApApj5W/Nd53sN5tVqOiXncSKgywRBWZxRCAGjVYypl9rjpvXu4l
HlMjhEKBmWkDryxxrM98Vr7hl3hnId5laR56oFfH+G4LUsItaV6Uak/HfXZ4Mq1k
iYVbEtl2CN+KJjvSgZ6Y1l853Ab5mmGvmeGNHHWCj8ZyjF3cOLoelDTQNnsb0wXM
crKXBcXJSsCWKYyJ5PTvB82crQCET7Su+LgwK06w/ZbW1//2hVIjSCiN5o/V+aRJ
06BZNMj8v9tfglkN8LEQvRIjTlnEQ2sq3GxbrVtA53zxkzbBCBJQ96w8yYzQX0ux
yhqQ/aIZJ1wTYEjJzSkftwLNMRHpaOUnKvJndXRKAYi+eGI7syF61qcZSYGKuAQ/
bK3b/CzU6QWr1235oTADxh4isEwxA0Pg5wtJCfDDOG0MJ9ALMSOGUkhoiz5EqpkU
mzFAwfG/Uj7hRjlkms7Yj2OjZfnU7iypj63GgpXghLjr5ksRFKEOMw8e1GXltVHs
zzwghUjqp2EPq0VOOQn3lp9lol5Prc3xfFHczKpO+CJW6Rpa4YVdqJmejBqJy/on
Hh/T/ST3wa2qBeAw89vZIeWiUJZZCsQ0f//+2hAbzJY45Y6DuR9vbTAPb9agRgOM
xg+YaCfpQqFc1A==
=llba
-----END PGP SIGNATURE-----
Merge tag 'x86-entry-2020-06-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 entry updates from Thomas Gleixner:
"The x86 entry, exception and interrupt code rework
This all started about 6 month ago with the attempt to move the Posix
CPU timer heavy lifting out of the timer interrupt code and just have
lockless quick checks in that code path. Trivial 5 patches.
This unearthed an inconsistency in the KVM handling of task work and
the review requested to move all of this into generic code so other
architectures can share.
Valid request and solved with another 25 patches but those unearthed
inconsistencies vs. RCU and instrumentation.
Digging into this made it obvious that there are quite some
inconsistencies vs. instrumentation in general. The int3 text poke
handling in particular was completely unprotected and with the batched
update of trace events even more likely to expose to endless int3
recursion.
In parallel the RCU implications of instrumenting fragile entry code
came up in several discussions.
The conclusion of the x86 maintainer team was to go all the way and
make the protection against any form of instrumentation of fragile and
dangerous code pathes enforcable and verifiable by tooling.
A first batch of preparatory work hit mainline with commit
d5f744f9a2ac ("Pull x86 entry code updates from Thomas Gleixner")
That (almost) full solution introduced a new code section
'.noinstr.text' into which all code which needs to be protected from
instrumentation of all sorts goes into. Any call into instrumentable
code out of this section has to be annotated. objtool has support to
validate this.
Kprobes now excludes this section fully which also prevents BPF from
fiddling with it and all 'noinstr' annotated functions also keep
ftrace off. The section, kprobes and objtool changes are already
merged.
The major changes coming with this are:
- Preparatory cleanups
- Annotating of relevant functions to move them into the
noinstr.text section or enforcing inlining by marking them
__always_inline so the compiler cannot misplace or instrument
them.
- Splitting and simplifying the idtentry macro maze so that it is
now clearly separated into simple exception entries and the more
interesting ones which use interrupt stacks and have the paranoid
handling vs. CR3 and GS.
- Move quite some of the low level ASM functionality into C code:
- enter_from and exit to user space handling. The ASM code now
calls into C after doing the really necessary ASM handling and
the return path goes back out without bells and whistels in
ASM.
- exception entry/exit got the equivivalent treatment
- move all IRQ tracepoints from ASM to C so they can be placed as
appropriate which is especially important for the int3
recursion issue.
- Consolidate the declaration and definition of entry points between
32 and 64 bit. They share a common header and macros now.
- Remove the extra device interrupt entry maze and just use the
regular exception entry code.
- All ASM entry points except NMI are now generated from the shared
header file and the corresponding macros in the 32 and 64 bit
entry ASM.
- The C code entry points are consolidated as well with the help of
DEFINE_IDTENTRY*() macros. This allows to ensure at one central
point that all corresponding entry points share the same
semantics. The actual function body for most entry points is in an
instrumentable and sane state.
There are special macros for the more sensitive entry points, e.g.
INT3 and of course the nasty paranoid #NMI, #MCE, #DB and #DF.
They allow to put the whole entry instrumentation and RCU handling
into safe places instead of the previous pray that it is correct
approach.
- The INT3 text poke handling is now completely isolated and the
recursion issue banned. Aside of the entry rework this required
other isolation work, e.g. the ability to force inline bsearch.
- Prevent #DB on fragile entry code, entry relevant memory and
disable it on NMI, #MC entry, which allowed to get rid of the
nested #DB IST stack shifting hackery.
- A few other cleanups and enhancements which have been made
possible through this and already merged changes, e.g.
consolidating and further restricting the IDT code so the IDT
table becomes RO after init which removes yet another popular
attack vector
- About 680 lines of ASM maze are gone.
There are a few open issues:
- An escape out of the noinstr section in the MCE handler which needs
some more thought but under the aspect that MCE is a complete
trainwreck by design and the propability to survive it is low, this
was not high on the priority list.
- Paravirtualization
When PV is enabled then objtool complains about a bunch of indirect
calls out of the noinstr section. There are a few straight forward
ways to fix this, but the other issues vs. general correctness were
more pressing than parawitz.
- KVM
KVM is inconsistent as well. Patches have been posted, but they
have not yet been commented on or picked up by the KVM folks.
- IDLE
Pretty much the same problems can be found in the low level idle
code especially the parts where RCU stopped watching. This was
beyond the scope of the more obvious and exposable problems and is
on the todo list.
The lesson learned from this brain melting exercise to morph the
evolved code base into something which can be validated and understood
is that once again the violation of the most important engineering
principle "correctness first" has caused quite a few people to spend
valuable time on problems which could have been avoided in the first
place. The "features first" tinkering mindset really has to stop.
With that I want to say thanks to everyone involved in contributing to
this effort. Special thanks go to the following people (alphabetical
order): Alexandre Chartre, Andy Lutomirski, Borislav Petkov, Brian
Gerst, Frederic Weisbecker, Josh Poimboeuf, Juergen Gross, Lai
Jiangshan, Macro Elver, Paolo Bonzin,i Paul McKenney, Peter Zijlstra,
Vitaly Kuznetsov, and Will Deacon"
* tag 'x86-entry-2020-06-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (142 commits)
x86/entry: Force rcu_irq_enter() when in idle task
x86/entry: Make NMI use IDTENTRY_RAW
x86/entry: Treat BUG/WARN as NMI-like entries
x86/entry: Unbreak __irqentry_text_start/end magic
x86/entry: __always_inline CR2 for noinstr
lockdep: __always_inline more for noinstr
x86/entry: Re-order #DB handler to avoid *SAN instrumentation
x86/entry: __always_inline arch_atomic_* for noinstr
x86/entry: __always_inline irqflags for noinstr
x86/entry: __always_inline debugreg for noinstr
x86/idt: Consolidate idt functionality
x86/idt: Cleanup trap_init()
x86/idt: Use proper constants for table size
x86/idt: Add comments about early #PF handling
x86/idt: Mark init only functions __init
x86/entry: Rename trace_hardirqs_off_prepare()
x86/entry: Clarify irq_{enter,exit}_rcu()
x86/entry: Remove DBn stacks
x86/entry: Remove debug IDT frobbing
x86/entry: Optimize local_db_save() for virt
...
The idea of conditionally calling into rcu_irq_enter() only when RCU is
not watching turned out to be not completely thought through.
Paul noticed occasional premature end of grace periods in RCU torture
testing. Bisection led to the commit which made the invocation of
rcu_irq_enter() conditional on !rcu_is_watching().
It turned out that this conditional breaks RCU assumptions about the idle
task when the scheduler tick happens to be a nested interrupt. Nested
interrupts can happen when the first interrupt invokes softirq processing
on return which enables interrupts.
If that nested tick interrupt does not invoke rcu_irq_enter() then the
RCU's irq-nesting checks will believe that this interrupt came directly
from idle, which will cause RCU to report a quiescent state. Because this
interrupt instead came from a softirq handler which might have been
executing an RCU read-side critical section, this can cause the grace
period to end prematurely.
Change the condition from !rcu_is_watching() to is_idle_task(current) which
enforces that interrupts in the idle task unconditionally invoke
rcu_irq_enter() independent of the RCU state.
This is also correct vs. user mode entries in NOHZ full scenarios because
user mode entries bring RCU out of EQS and force the RCU irq nesting state
accounting to nested. As only the first interrupt can enter from user mode
a nested tick interrupt will enter from kernel mode and as the nesting
state accounting is forced to nesting it will not do anything stupid even
if rcu_irq_enter() has not been invoked.
Fixes: 3eeec3858488 ("x86/entry: Provide idtentry_entry/exit_cond_rcu()")
Reported-by: "Paul E. McKenney" <paulmck@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: "Paul E. McKenney" <paulmck@kernel.org>
Reviewed-by: "Paul E. McKenney" <paulmck@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/87wo4cxubv.fsf@nanos.tec.linutronix.de
Merge the state of the locking kcsan branch before the read/write_once()
and the atomics modifications got merged.
Squash the fallout of the rebase on top of the read/write once and atomic
fallback work into the merge. The history of the original branch is
preserved in tag locking-kcsan-2020-06-02.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The entry rework moved interrupt entry code from the irqentry to the
noinstr section which made the irqentry section empty.
This breaks boundary checks which rely on the __irqentry_text_start/end
markers to find out whether a function in a stack trace is
interrupt/exception entry code. This affects the function graph tracer and
filter_irq_stacks().
As the IDT entry points are all sequentialy emitted this is rather simple
to unbreak by injecting __irqentry_text_start/end as global labels.
To make this work correctly:
- Remove the IRQENTRY_TEXT section from the x86 linker script
- Define __irqentry so it breaks the build if it's used
- Adjust the entry mirroring in PTI
- Remove the redundant kprobes and unwinder bound checks
Reported-by: Qian Cai <cai@lca.pw>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The typical pattern for trace_hardirqs_off_prepare() is:
ENTRY
lockdep_hardirqs_off(); // because hardware
... do entry magic
instrumentation_begin();
trace_hardirqs_off_prepare();
... do actual work
trace_hardirqs_on_prepare();
lockdep_hardirqs_on_prepare();
instrumentation_end();
... do exit magic
lockdep_hardirqs_on();
which shows that it's named wrong, rename it to
trace_hardirqs_off_finish(), as it concludes the hardirq_off transition.
Also, given that the above is the only correct order, make the traditional
all-in-one trace_hardirqs_off() follow suit.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200529213321.415774872@infradead.org