IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Normally opening a file, unlinking it and then closing will have
the inode freed upon close() (provided that it's not otherwise busy and
has no remaining links, of course). However, there's one case where that
does *not* happen. Namely, if you open it by fhandle with cold dcache,
then unlink() and close().
In normal case you get d_delete() in unlink(2) notice that dentry
is busy and unhash it; on the final dput() it will be forcibly evicted from
dcache, triggering iput() and inode removal. In this case, though, we end
up with *two* dentries - disconnected (created by open-by-fhandle) and
regular one (used by unlink()). The latter will have its reference to inode
dropped just fine, but the former will not - it's considered hashed (it
is on the ->s_anon list), so it will stay around until the memory pressure
will finally do it in. As the result, we have the final iput() delayed
indefinitely. It's trivial to reproduce -
void flush_dcache(void)
{
system("mount -o remount,rw /");
}
static char buf[20 * 1024 * 1024];
main()
{
int fd;
union {
struct file_handle f;
char buf[MAX_HANDLE_SZ];
} x;
int m;
x.f.handle_bytes = sizeof(x);
chdir("/root");
mkdir("foo", 0700);
fd = open("foo/bar", O_CREAT | O_RDWR, 0600);
close(fd);
name_to_handle_at(AT_FDCWD, "foo/bar", &x.f, &m, 0);
flush_dcache();
fd = open_by_handle_at(AT_FDCWD, &x.f, O_RDWR);
unlink("foo/bar");
write(fd, buf, sizeof(buf));
system("df ."); /* 20Mb eaten */
close(fd);
system("df ."); /* should've freed those 20Mb */
flush_dcache();
system("df ."); /* should be the same as #2 */
}
will spit out something like
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/root 322023 303843 1131 100% /
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/root 322023 303843 1131 100% /
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/root 322023 283282 21692 93% /
- inode gets freed only when dentry is finally evicted (here we trigger
than by remount; normally it would've happened in response to memory
pressure hell knows when).
Cc: stable@vger.kernel.org # v2.6.38+; earlier ones need s/kill_it/unhash_it/
Acked-by: J. Bruce Fields <bfields@fieldses.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
when opening a directory we want the overlayfs inode, not one from
the topmost layer.
Reported-By: Andrey Jr. Melnikov <temnota.am@gmail.com>
Tested-By: Andrey Jr. Melnikov <temnota.am@gmail.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
When we have an extent that got N references removed and N new references
added in the same transaction, we must run the insertion of the references
first because otherwise the last removed reference will remove the extent
item from the extent tree, resulting in a failure for the insertions.
This is a regression introduced in the 4.2-rc1 release and this fix just
brings back the behaviour of selecting reference additions before any
reference removals.
The following test case for fstests reproduces the issue:
seq=`basename $0`
seqres=$RESULT_DIR/$seq
echo "QA output created by $seq"
tmp=/tmp/$$
status=1 # failure is the default!
trap "_cleanup; exit \$status" 0 1 2 3 15
_cleanup()
{
_cleanup_flakey
rm -f $tmp.*
}
# get standard environment, filters and checks
. ./common/rc
. ./common/filter
. ./common/dmflakey
# real QA test starts here
_need_to_be_root
_supported_fs btrfs
_supported_os Linux
_require_scratch
_require_dm_flakey
_require_cloner
_require_metadata_journaling $SCRATCH_DEV
rm -f $seqres.full
_scratch_mkfs >>$seqres.full 2>&1
_init_flakey
_mount_flakey
# Create prealloc extent covering range [160K, 620K[
$XFS_IO_PROG -f -c "falloc 160K 460K" $SCRATCH_MNT/foo
# Now write to the last 80K of the prealloc extent plus 40K to the unallocated
# space that immediately follows it. This creates a new extent of 40K that spans
# the range [620K, 660K[.
$XFS_IO_PROG -c "pwrite -S 0xaa 540K 120K" $SCRATCH_MNT/foo | _filter_xfs_io
# At this point, there are now 2 back references to the prealloc extent in our
# extent tree. Both are for our file offset 160K and one relates to a file
# extent item with a data offset of 0 and a length of 380K, while the other
# relates to a file extent item with a data offset of 380K and a length of 80K.
# Make sure everything done so far is durably persisted (all back references are
# in the extent tree, etc).
sync
# Now clone all extents of our file that cover the offset 160K up to its eof
# (660K at this point) into itself at offset 2M. This leaves a hole in the file
# covering the range [660K, 2M[. The prealloc extent will now be referenced by
# the file twice, once for offset 160K and once for offset 2M. The 40K extent
# that follows the prealloc extent will also be referenced twice by our file,
# once for offset 620K and once for offset 2M + 460K.
$CLONER_PROG -s $((160 * 1024)) -d $((2 * 1024 * 1024)) -l 0 $SCRATCH_MNT/foo \
$SCRATCH_MNT/foo
# Now create one new extent in our file with a size of 100Kb. It will span the
# range [3M, 3M + 100K[. It also will cause creation of a hole spanning the
# range [2M + 460K, 3M[. Our new file size is 3M + 100K.
$XFS_IO_PROG -c "pwrite -S 0xbb 3M 100K" $SCRATCH_MNT/foo | _filter_xfs_io
# At this point, there are now (in memory) 4 back references to the prealloc
# extent.
#
# Two of them are for file offset 160K, related to file extent items
# matching the file offsets 160K and 540K respectively, with data offsets of
# 0 and 380K respectively, and with lengths of 380K and 80K respectively.
#
# The other two references are for file offset 2M, related to file extent items
# matching the file offsets 2M and 2M + 380K respectively, with data offsets of
# 0 and 380K respectively, and with lengths of 389K and 80K respectively.
#
# The 40K extent has 2 back references, one for file offset 620K and the other
# for file offset 2M + 460K.
#
# The 100K extent has a single back reference and it relates to file offset 3M.
# Now clone our 100K extent into offset 600K. That offset covers the last 20K
# of the prealloc extent, the whole 40K extent and 40K of the hole starting at
# offset 660K.
$CLONER_PROG -s $((3 * 1024 * 1024)) -d $((600 * 1024)) -l $((100 * 1024)) \
$SCRATCH_MNT/foo $SCRATCH_MNT/foo
# At this point there's only one reference to the 40K extent, at file offset
# 2M + 460K, we have 4 references for the prealloc extent (2 for file offset
# 160K and 2 for file offset 2M) and 2 references for the 100K extent (1 for
# file offset 3M and a new one for file offset 600K).
# Now fsync our file to make all its new data and metadata updates are durably
# persisted and present if a power failure/crash happens after a successful
# fsync and before the next transaction commit.
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo
echo "File digest before power failure:"
md5sum $SCRATCH_MNT/foo | _filter_scratch
# Silently drop all writes and ummount to simulate a crash/power failure.
_load_flakey_table $FLAKEY_DROP_WRITES
_unmount_flakey
# Allow writes again, mount to trigger log replay and validate file contents.
# During log replay, the btrfs delayed references implementation used to run the
# deletion of back references before the addition of new back references, which
# made the addition fail as it didn't find the key in the extent tree that it
# was looking for. The failure triggered by this test was related to the 40K
# extent, which got 1 reference dropped and 1 reference added during the fsync
# log replay - when running the delayed references at transaction commit time,
# btrfs was applying the deletion before the insertion, resulting in a failure
# of the insertion that ended up turning the fs into read-only mode.
_load_flakey_table $FLAKEY_ALLOW_WRITES
_mount_flakey
echo "File digest after log replay:"
md5sum $SCRATCH_MNT/foo | _filter_scratch
_unmount_flakey
status=0
exit
This issue turned the filesystem into read-only mode (current transaction
aborted) and produced the following traces:
[ 8247.578385] ------------[ cut here ]------------
[ 8247.579947] WARNING: CPU: 0 PID: 11341 at fs/btrfs/extent-tree.c:1547 lookup_inline_extent_backref+0x17d/0x45d [btrfs]()
(...)
[ 8247.601697] Call Trace:
[ 8247.602222] [<ffffffff8145f077>] dump_stack+0x4f/0x7b
[ 8247.604320] [<ffffffff8104b3b0>] warn_slowpath_common+0xa1/0xbb
[ 8247.605488] [<ffffffffa0506c8d>] ? lookup_inline_extent_backref+0x17d/0x45d [btrfs]
[ 8247.608226] [<ffffffffa0506c8d>] lookup_inline_extent_backref+0x17d/0x45d [btrfs]
[ 8247.617061] [<ffffffffa0507957>] insert_inline_extent_backref+0x41/0xb2 [btrfs]
[ 8247.621856] [<ffffffffa0507c4f>] __btrfs_inc_extent_ref+0x8c/0x20a [btrfs]
[ 8247.624366] [<ffffffffa050ee60>] __btrfs_run_delayed_refs+0xb0c/0xd49 [btrfs]
[ 8247.626176] [<ffffffffa0510dcd>] btrfs_run_delayed_refs+0x6d/0x1d4 [btrfs]
[ 8247.627435] [<ffffffff81155c9b>] ? __cache_free+0x4a7/0x4b6
[ 8247.628531] [<ffffffffa0520482>] btrfs_commit_transaction+0x4c/0xa20 [btrfs]
(...)
[ 8247.648430] ---[ end trace 2461e55f92c2ac2d ]---
[ 8247.727263] WARNING: CPU: 3 PID: 11341 at fs/btrfs/extent-tree.c:2771 btrfs_run_delayed_refs+0xa4/0x1d4 [btrfs]()
[ 8247.728954] BTRFS: Transaction aborted (error -5)
(...)
[ 8247.760866] Call Trace:
[ 8247.761534] [<ffffffff8145f077>] dump_stack+0x4f/0x7b
[ 8247.764271] [<ffffffff8104b3b0>] warn_slowpath_common+0xa1/0xbb
[ 8247.767582] [<ffffffffa0510e04>] ? btrfs_run_delayed_refs+0xa4/0x1d4 [btrfs]
[ 8247.769373] [<ffffffff8104b410>] warn_slowpath_fmt+0x46/0x48
[ 8247.770836] [<ffffffffa0510e04>] btrfs_run_delayed_refs+0xa4/0x1d4 [btrfs]
[ 8247.772532] [<ffffffff81155c9b>] ? __cache_free+0x4a7/0x4b6
[ 8247.773664] [<ffffffffa0520482>] btrfs_commit_transaction+0x4c/0xa20 [btrfs]
[ 8247.775047] [<ffffffff81087310>] ? trace_hardirqs_on+0xd/0xf
[ 8247.776176] [<ffffffff81155dd5>] ? kmem_cache_free+0x12b/0x189
[ 8247.777427] [<ffffffffa055a920>] btrfs_recover_log_trees+0x2da/0x33d [btrfs]
[ 8247.778575] [<ffffffffa055898e>] ? replay_one_extent+0x4fc/0x4fc [btrfs]
[ 8247.779838] [<ffffffffa051e265>] open_ctree+0x1cc0/0x201a [btrfs]
[ 8247.781020] [<ffffffff81120f48>] ? register_shrinker+0x56/0x81
[ 8247.782285] [<ffffffffa04fb12c>] btrfs_mount+0x5f0/0x734 [btrfs]
(...)
[ 8247.793394] ---[ end trace 2461e55f92c2ac2e ]---
[ 8247.794276] BTRFS: error (device dm-0) in btrfs_run_delayed_refs:2771: errno=-5 IO failure
[ 8247.797335] BTRFS: error (device dm-0) in btrfs_replay_log:2375: errno=-5 IO failure (Failed to recover log tree)
Fixes: c6fc24549960 ("btrfs: delayed-ref: Use list to replace the ref_root in ref_head.")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Acked-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
When we call btrfs_commit_transaction(), we splice the list "ordered"
of our transaction handle into the transaction's "pending_ordered"
list, but we don't re-initialize the "ordered" list of our transaction
handle, this means it still points to the same elements it used to
before the splice. Then we check if the current transaction's state is
>= TRANS_STATE_COMMIT_START and if it is we end up calling
btrfs_end_transaction() which simply splices again the "ordered" list
of our handle into the transaction's "pending_ordered" list, leaving
multiple pointers to the same ordered extents which results in list
corruption when we are iterating, removing and freeing ordered extents
at btrfs_wait_pending_ordered(), resulting in access to dangling
pointers / use-after-free issues.
Similarly, btrfs_end_transaction() can end up in some cases calling
btrfs_commit_transaction(), and both did a list splice of the transaction
handle's "ordered" list into the transaction's "pending_ordered" without
re-initializing the handle's "ordered" list, resulting in exactly the
same problem.
This produces the following warning on a kernel with linked list
debugging enabled:
[109749.265416] ------------[ cut here ]------------
[109749.266410] WARNING: CPU: 7 PID: 324 at lib/list_debug.c:59 __list_del_entry+0x5a/0x98()
[109749.267969] list_del corruption. prev->next should be ffff8800ba087e20, but was fffffff8c1f7c35d
(...)
[109749.287505] Call Trace:
[109749.288135] [<ffffffff8145f077>] dump_stack+0x4f/0x7b
[109749.298080] [<ffffffff81095de5>] ? console_unlock+0x356/0x3a2
[109749.331605] [<ffffffff8104b3b0>] warn_slowpath_common+0xa1/0xbb
[109749.334849] [<ffffffff81260642>] ? __list_del_entry+0x5a/0x98
[109749.337093] [<ffffffff8104b410>] warn_slowpath_fmt+0x46/0x48
[109749.337847] [<ffffffff81260642>] __list_del_entry+0x5a/0x98
[109749.338678] [<ffffffffa053e8bf>] btrfs_wait_pending_ordered+0x46/0xdb [btrfs]
[109749.340145] [<ffffffffa058a65f>] ? __btrfs_run_delayed_items+0x149/0x163 [btrfs]
[109749.348313] [<ffffffffa054077d>] btrfs_commit_transaction+0x36b/0xa10 [btrfs]
[109749.349745] [<ffffffff81087310>] ? trace_hardirqs_on+0xd/0xf
[109749.350819] [<ffffffffa055370d>] btrfs_sync_file+0x36f/0x3fc [btrfs]
[109749.351976] [<ffffffff8118ec98>] vfs_fsync_range+0x8f/0x9e
[109749.360341] [<ffffffff8118ecc3>] vfs_fsync+0x1c/0x1e
[109749.368828] [<ffffffff8118ee1d>] do_fsync+0x34/0x4e
[109749.369790] [<ffffffff8118f045>] SyS_fsync+0x10/0x14
[109749.370925] [<ffffffff81465197>] system_call_fastpath+0x12/0x6f
[109749.382274] ---[ end trace 48e0d07f7c03d95a ]---
On a non-debug kernel this leads to invalid memory accesses, causing a
crash. Fix this by using list_splice_init() instead of list_splice() in
btrfs_commit_transaction() and btrfs_end_transaction().
Cc: stable@vger.kernel.org
Fixes: 50d9aa99bd35 ("Btrfs: make sure logged extents complete in the current transaction V3"
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
We were allocating memory with memdup_user() but we were never releasing
that memory. This affected pretty much every call to the ioctl, whether
it deduplicated extents or not.
This issue was reported on IRC by Julian Taylor and on the mailing list
by Marcel Ritter, credit goes to them for finding the issue.
Reported-by: Julian Taylor <jtaylor.debian@googlemail.com>
Reported-by: Marcel Ritter <ritter.marcel@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Mark Fasheh <mfasheh@suse.de>
If the no_holes feature is enabled, we attempt to shrink a file to a size
that ends up in the middle of a hole and we don't have any file extent
items in the fs/subvol tree that go beyond the new file size (or any
ordered extents that will insert such file extent items), we end up not
updating the inode's disk_i_size, we only update the inode's i_size.
This means that after unmounting and mounting the filesystem, or after
the inode is evicted and reloaded, its i_size ends up being incorrect
(an inode's i_size is set to the disk_i_size field when an inode is
loaded). This happens when btrfs_truncate_inode_items() doesn't find
any file extent items to drop - in this case it never makes a call to
btrfs_ordered_update_i_size() in order to update the inode's disk_i_size.
Example reproducer:
$ mkfs.btrfs -O no-holes -f /dev/sdd
$ mount /dev/sdd /mnt
# Create our test file with some data and durably persist it.
$ xfs_io -f -c "pwrite -S 0xaa 0 128K" /mnt/foo
$ sync
# Append some data to the file, increasing its size, and leave a hole
# between the old size and the start offset if the following write. So
# our file gets a hole in the range [128Kb, 256Kb[.
$ xfs_io -c "truncate 160K" /mnt/foo
# We expect to see our file with a size of 160Kb, with the first 128Kb
# of data all having the value 0xaa and the remaining 32Kb of data all
# having the value 0x00.
$ od -t x1 /mnt/foo
0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa
*
0400000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
*
0500000
# Now cleanly unmount and mount again the filesystem.
$ umount /mnt
$ mount /dev/sdd /mnt
# We expect to get the same result as before, a file with a size of
# 160Kb, with the first 128Kb of data all having the value 0xaa and the
# remaining 32Kb of data all having the value 0x00.
$ od -t x1 /mnt/foo
0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa
*
0400000
In the example above the file size/data do not match what they were before
the remount.
Fix this by always calling btrfs_ordered_update_i_size() with a size
matching the size the file was truncated to if btrfs_truncate_inode_items()
is not called for a log tree and no file extent items were dropped. This
ensures the same behaviour as when the no_holes feature is not enabled.
A test case for fstests follows soon.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Pull btrfs fixes from Chris Mason:
"This is an assortment of fixes. Most of the commits are from Filipe
(fsync, the inode allocation cache and a few others). Mark kicked in
a series fixing corners in the extent sharing ioctls, and everyone
else fixed up on assorted other problems"
* 'for-linus-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix wrong check for btrfs_force_chunk_alloc()
Btrfs: fix warning of bytes_may_use
Btrfs: fix hang when failing to submit bio of directIO
Btrfs: fix a comment in inode.c:evict_inode_truncate_pages()
Btrfs: fix memory corruption on failure to submit bio for direct IO
btrfs: don't update mtime/ctime on deduped inodes
btrfs: allow dedupe of same inode
btrfs: fix deadlock with extent-same and readpage
btrfs: pass unaligned length to btrfs_cmp_data()
Btrfs: fix fsync after truncate when no_holes feature is enabled
Btrfs: fix fsync xattr loss in the fast fsync path
Btrfs: fix fsync data loss after append write
Btrfs: fix crash on close_ctree() if cleaner starts new transaction
Btrfs: fix race between caching kthread and returning inode to inode cache
Btrfs: use kmem_cache_free when freeing entry in inode cache
Btrfs: fix race between balance and unused block group deletion
btrfs: add error handling for scrub_workers_get()
btrfs: cleanup noused initialization of dev in btrfs_end_bio()
btrfs: qgroup: allow user to clear the limitation on qgroup
It is OK for layout segments to remain hashed even if no-one holds any
references to them, provided that the segments are still valid.
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
If a process reopens the file before we can send off the CLOSE/DELEGRETURN,
then pnfs_roc_drain() may end up waiting for a new set of layout segments
that are marked as return-on-close, but haven't yet been returned.
Fix this by only waiting for those layout segments that were invalidated in
pnfs_roc().
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
If one or more of the layout segments reports an error during I/O, then
we may have to send a layoutreturn to report the error back to the NFS
metadata server.
This patch ensures that the return-on-close code can detect the
outstanding layoutreturn, and not preempt it.
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
There is a possibility of nothing being allocated to the new_opts in
case of memory pressure, therefore return ENOMEM for such case.
Signed-off-by: Sanidhya Kashyap <sanidhya.gatech@gmail.com>
Signed-off-by: Mikulas Patocka <mikulas@twibright.com>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch adds support for fstrim to the HPFS filesystem.
Signed-off-by: Mikulas Patocka <mikulas@twibright.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The FITRIM ioctl has the same arguments on 32-bit and 64-bit
architectures, so we can add it to the list of compatible ioctls and
drop it from compat_ioctl method of various filesystems.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Ted Ts'o <tytso@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For a UDF filesystem configured with an Unallocated Space Table,
a filesystem operation that triggers an update to the table results
in on-disk corruption that prevents remounting:
udf_read_tagged: tag version 0x0000 != 0x0002 || 0x0003, block 274
For example:
1. Create a filesystem
$ mkudffs --media-type=hd --blocksize=512 --lvid=BUGTEST \
--vid=BUGTEST --fsid=BUGTEST --space=unalloctable \
/dev/mmcblk0
2. Mount it
# mount /dev/mmcblk0 /mnt
3. Create a file
$ echo "No corruption, please" > /mnt/new.file
4. Umount
# umount /mnt
5. Attempt remount
# mount /dev/mmcblk0 /mnt
This appears to be a longstanding bug caused by zero-initialization of
the Unallocated Space Entry block buffer and only partial repopulation
of required fields before writing to disk.
Commit 0adfb339fd64 ("udf: Fix unalloc space handling in udf_update_inode")
addressed one such field, but several others are required.
Signed-off-by: Steven J. Magnani <steve@digidescorp.com>
Signed-off-by: Jan Kara <jack@suse.com>
* address corner cases for indirect blocks->extent migration
* fix reserved block accounting invalidate_page when
page_size != block_size (i.e., ppc or 1k block size file systems)
* fix deadlocks when a memcg is under heavy memory pressure
* fix fencepost error in lazytime optimization
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQEcBAABCAAGBQJVmW27AAoJEPL5WVaVDYGjmEkIAJsGHVIKur1Kp//FhejSB/wI
B0d+UuQt5kdAE3lNxC7lHO1NqIhvnS7eBho+52LG8V4JDRrzTbE1GdbsBhAIk6FW
CcsQvsHAI99QJMdqOCachu/+nhCwIINGkxmbumhNaZoJPn6wmGQzCA3Cn5qmnGnK
Ctbk6li1HuMXyzbbvxCLfaD/xCUs1NCdufEnRU44i0U4OfaYNpiAhddeGIQ8WMEQ
G14l2JvhIfye6fG8lnCzfacFvnT9zvvSGfRO3ZQjC4Az1EogIUbhCPLvq0ebDbPp
i4eRfrSRdXmMojqmW/knET8skXQVZVnD7LWuvkue+n47UbTH2c0roTbp4l76W+U=
=x8Cc
-----END PGP SIGNATURE-----
Merge tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
Pull ext4 bugfixes from Ted Ts'o:
"Bug fixes (all for stable kernels) for ext4:
- address corner cases for indirect blocks->extent migration
- fix reserved block accounting invalidate_page when
page_size != block_size (i.e., ppc or 1k block size file systems)
- fix deadlocks when a memcg is under heavy memory pressure
- fix fencepost error in lazytime optimization"
* tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4:
ext4: replace open coded nofail allocation in ext4_free_blocks()
ext4: correctly migrate a file with a hole at the beginning
ext4: be more strict when migrating to non-extent based file
ext4: fix reservation release on invalidatepage for delalloc fs
ext4: avoid deadlocks in the writeback path by using sb_getblk_gfp
bufferhead: Add _gfp version for sb_getblk()
ext4: fix fencepost error in lazytime optimization
Ensure that the calls to renew_lease() in open_done() etc. only apply
to session-less versions of NFSv4.x (i.e. NFSv4.0).
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Instead of just kicking off lease recovery, we should look into the
sequence flag errors and handle them.
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
RFC5661 states:
The server has encountered an unrecoverable fault with the
backchannel (e.g., it has lost track of the sequence ID for a slot
in the backchannel). The client MUST stop sending more requests
on the session's fore channel, wait for all outstanding requests
to complete on the fore and back channel, and then destroy the
session.
Ensure we do so...
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Try to handle this for now by invalidating all outstanding layouts for this
server and then testing all the open+lock+delegation stateids.
At some later stage, we may want to optimise by separating out the testing of
delegation stateids only, and adding testing of layout stateids.
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
If the server tells us that only some state has been revoked, then we
need to run the full TEST_STATEID dog and pony show in order to discover
which locks and delegations are still OK. Currently we blow away all
state, which means that we lose all locks!
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
ext4_free_blocks is looping around the allocation request and mimics
__GFP_NOFAIL behavior without any allocation fallback strategy. Let's
remove the open coded loop and replace it with __GFP_NOFAIL. Without the
flag the allocator has no way to find out never-fail requirement and
cannot help in any way.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@vger.kernel.org
Pull more vfs updates from Al Viro:
"Assorted VFS fixes and related cleanups (IMO the most interesting in
that part are f_path-related things and Eric's descriptor-related
stuff). UFS regression fixes (it got broken last cycle). 9P fixes.
fs-cache series, DAX patches, Jan's file_remove_suid() work"
[ I'd say this is much more than "fixes and related cleanups". The
file_table locking rule change by Eric Dumazet is a rather big and
fundamental update even if the patch isn't huge. - Linus ]
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (49 commits)
9p: cope with bogus responses from server in p9_client_{read,write}
p9_client_write(): avoid double p9_free_req()
9p: forgetting to cancel request on interrupted zero-copy RPC
dax: bdev_direct_access() may sleep
block: Add support for DAX reads/writes to block devices
dax: Use copy_from_iter_nocache
dax: Add block size note to documentation
fs/file.c: __fget() and dup2() atomicity rules
fs/file.c: don't acquire files->file_lock in fd_install()
fs:super:get_anon_bdev: fix race condition could cause dev exceed its upper limitation
vfs: avoid creation of inode number 0 in get_next_ino
namei: make set_root_rcu() return void
make simple_positive() public
ufs: use dir_pages instead of ufs_dir_pages()
pagemap.h: move dir_pages() over there
remove the pointless include of lglock.h
fs: cleanup slight list_entry abuse
xfs: Correctly lock inode when removing suid and file capabilities
fs: Call security_ops->inode_killpriv on truncate
fs: Provide function telling whether file_remove_privs() will do anything
...
The brd driver is the only in-tree driver that may sleep currently.
After some discussion on linux-fsdevel, we decided that any driver
may choose to sleep in its ->direct_access method. To ensure that all
callers of bdev_direct_access() are prepared for this, add a call
to might_sleep().
Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
If a block device supports the ->direct_access methods, bypass the normal
DIO path and use DAX to go straight to memcpy() instead of allocating
a DIO and a BIO.
Includes support for the DIO_SKIP_DIO_COUNT flag in DAX, as is done in
do_blockdev_direct_IO().
Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
When userspace does a write, there's no need for the written data to
pollute the CPU cache. This matches the original XIP code.
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull scheduler fixes from Ingo Molnar:
"Debug info and other statistics fixes and related enhancements"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/numa: Fix numa balancing stats in /proc/pid/sched
sched/numa: Show numa_group ID in /proc/sched_debug task listings
sched/debug: Move print_cfs_rq() declaration to kernel/sched/sched.h
sched/stat: Expose /proc/pid/schedstat if CONFIG_SCHED_INFO=y
sched/stat: Simplify the sched_info accounting dependency
Currently ext4_ind_migrate() doesn't correctly handle a file which
contains a hole at the beginning of the file. This caused the migration
to be done incorrectly, and then if there is a subsequent following
delayed allocation write to the "hole", this would reclaim the same data
blocks again and results in fs corruption.
# assmuing 4k block size ext4, with delalloc enabled
# skip the first block and write to the second block
xfs_io -fc "pwrite 4k 4k" -c "fsync" /mnt/ext4/testfile
# converting to indirect-mapped file, which would move the data blocks
# to the beginning of the file, but extent status cache still marks
# that region as a hole
chattr -e /mnt/ext4/testfile
# delayed allocation writes to the "hole", reclaim the same data block
# again, results in i_blocks corruption
xfs_io -c "pwrite 0 4k" /mnt/ext4/testfile
umount /mnt/ext4
e2fsck -nf /dev/sda6
...
Inode 53, i_blocks is 16, should be 8. Fix? no
...
Signed-off-by: Eryu Guan <guaneryu@gmail.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@vger.kernel.org
Currently the check in ext4_ind_migrate() is not enough before doing the
real conversion:
a) delayed allocated extents could bypass the check on eh->eh_entries
and eh->eh_depth
This can be demonstrated by this script
xfs_io -fc "pwrite 0 4k" -c "pwrite 8k 4k" /mnt/ext4/testfile
chattr -e /mnt/ext4/testfile
where testfile has two extents but still be converted to non-extent
based file format.
b) only extent length is checked but not the offset, which would result
in data lose (delalloc) or fs corruption (nodelalloc), because
non-extent based file only supports at most (12 + 2^10 + 2^20 + 2^30)
blocks
This can be demostrated by
xfs_io -fc "pwrite 5T 4k" /mnt/ext4/testfile
chattr -e /mnt/ext4/testfile
sync
If delalloc is enabled, dmesg prints
EXT4-fs warning (device dm-4): ext4_block_to_path:105: block 1342177280 > max in inode 53
EXT4-fs (dm-4): Delayed block allocation failed for inode 53 at logical offset 1342177280 with max blocks 1 with error 5
EXT4-fs (dm-4): This should not happen!! Data will be lost
If delalloc is disabled, e2fsck -nf shows corruption
Inode 53, i_size is 5497558142976, should be 4096. Fix? no
Fix the two issues by
a) forcing all delayed allocation blocks to be allocated before checking
eh->eh_depth and eh->eh_entries
b) limiting the last logical block of the extent is within direct map
Signed-off-by: Eryu Guan <guaneryu@gmail.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@vger.kernel.org
On delalloc enabled file system on invalidatepage operation
in ext4_da_page_release_reservation() we want to clear the delayed
buffer and remove the extent covering the delayed buffer from the extent
status tree.
However currently there is a bug where on the systems with page size >
block size we will always remove extents from the start of the page
regardless where the actual delayed buffers are positioned in the page.
This leads to the errors like this:
EXT4-fs warning (device loop0): ext4_da_release_space:1225:
ext4_da_release_space: ino 13, to_free 1 with only 0 reserved data
blocks
This however can cause data loss on writeback time if the file system is
in ENOSPC condition because we're releasing reservation for someones
else delayed buffer.
Fix this by only removing extents that corresponds to the part of the
page we want to invalidate.
This problem is reproducible by the following fio receipt (however I was
only able to reproduce it with fio-2.1 or older.
[global]
bs=8k
iodepth=1024
iodepth_batch=60
randrepeat=1
size=1m
directory=/mnt/test
numjobs=20
[job1]
ioengine=sync
bs=1k
direct=1
rw=randread
filename=file1:file2
[job2]
ioengine=libaio
rw=randwrite
direct=1
filename=file1:file2
[job3]
bs=1k
ioengine=posixaio
rw=randwrite
direct=1
filename=file1:file2
[job5]
bs=1k
ioengine=sync
rw=randread
filename=file1:file2
[job7]
ioengine=libaio
rw=randwrite
filename=file1:file2
[job8]
ioengine=posixaio
rw=randwrite
filename=file1:file2
[job10]
ioengine=mmap
rw=randwrite
bs=1k
filename=file1:file2
[job11]
ioengine=mmap
rw=randwrite
direct=1
filename=file1:file2
Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: stable@vger.kernel.org
Pull user namespace updates from Eric Biederman:
"Long ago and far away when user namespaces where young it was realized
that allowing fresh mounts of proc and sysfs with only user namespace
permissions could violate the basic rule that only root gets to decide
if proc or sysfs should be mounted at all.
Some hacks were put in place to reduce the worst of the damage could
be done, and the common sense rule was adopted that fresh mounts of
proc and sysfs should allow no more than bind mounts of proc and
sysfs. Unfortunately that rule has not been fully enforced.
There are two kinds of gaps in that enforcement. Only filesystems
mounted on empty directories of proc and sysfs should be ignored but
the test for empty directories was insufficient. So in my tree
directories on proc, sysctl and sysfs that will always be empty are
created specially. Every other technique is imperfect as an ordinary
directory can have entries added even after a readdir returns and
shows that the directory is empty. Special creation of directories
for mount points makes the code in the kernel a smidge clearer about
it's purpose. I asked container developers from the various container
projects to help test this and no holes were found in the set of mount
points on proc and sysfs that are created specially.
This set of changes also starts enforcing the mount flags of fresh
mounts of proc and sysfs are consistent with the existing mount of
proc and sysfs. I expected this to be the boring part of the work but
unfortunately unprivileged userspace winds up mounting fresh copies of
proc and sysfs with noexec and nosuid clear when root set those flags
on the previous mount of proc and sysfs. So for now only the atime,
read-only and nodev attributes which userspace happens to keep
consistent are enforced. Dealing with the noexec and nosuid
attributes remains for another time.
This set of changes also addresses an issue with how open file
descriptors from /proc/<pid>/ns/* are displayed. Recently readlink of
/proc/<pid>/fd has been triggering a WARN_ON that has not been
meaningful since it was added (as all of the code in the kernel was
converted) and is not now actively wrong.
There is also a short list of issues that have not been fixed yet that
I will mention briefly.
It is possible to rename a directory from below to above a bind mount.
At which point any directory pointers below the renamed directory can
be walked up to the root directory of the filesystem. With user
namespaces enabled a bind mount of the bind mount can be created
allowing the user to pick a directory whose children they can rename
to outside of the bind mount. This is challenging to fix and doubly
so because all obvious solutions must touch code that is in the
performance part of pathname resolution.
As mentioned above there is also a question of how to ensure that
developers by accident or with purpose do not introduce exectuable
files on sysfs and proc and in doing so introduce security regressions
in the current userspace that will not be immediately obvious and as
such are likely to require breaking userspace in painful ways once
they are recognized"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
vfs: Remove incorrect debugging WARN in prepend_path
mnt: Update fs_fully_visible to test for permanently empty directories
sysfs: Create mountpoints with sysfs_create_mount_point
sysfs: Add support for permanently empty directories to serve as mount points.
kernfs: Add support for always empty directories.
proc: Allow creating permanently empty directories that serve as mount points
sysctl: Allow creating permanently empty directories that serve as mountpoints.
fs: Add helper functions for permanently empty directories.
vfs: Ignore unlocked mounts in fs_fully_visible
mnt: Modify fs_fully_visible to deal with locked ro nodev and atime
mnt: Refactor the logic for mounting sysfs and proc in a user namespace
Pull Ceph updates from Sage Weil:
"We have a pile of bug fixes from Ilya, including a few patches that
sync up the CRUSH code with the latest from userspace.
There is also a long series from Zheng that fixes various issues with
snapshots, inline data, and directory fsync, some simplification and
improvement in the cap release code, and a rework of the caching of
directory contents.
To top it off there are a few small fixes and cleanups from Benoit and
Hong"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph-client: (40 commits)
rbd: use GFP_NOIO in rbd_obj_request_create()
crush: fix a bug in tree bucket decode
libceph: Fix ceph_tcp_sendpage()'s more boolean usage
libceph: Remove spurious kunmap() of the zero page
rbd: queue_depth map option
rbd: store rbd_options in rbd_device
rbd: terminate rbd_opts_tokens with Opt_err
ceph: fix ceph_writepages_start()
rbd: bump queue_max_segments
ceph: rework dcache readdir
crush: sync up with userspace
crush: fix crash from invalid 'take' argument
ceph: switch some GFP_NOFS memory allocation to GFP_KERNEL
ceph: pre-allocate data structure that tracks caps flushing
ceph: re-send flushing caps (which are revoked) in reconnect stage
ceph: send TID of the oldest pending caps flush to MDS
ceph: track pending caps flushing globally
ceph: track pending caps flushing accurately
libceph: fix wrong name "Ceph filesystem for Linux"
ceph: fix directory fsync
...
Highlights include:
Stable patches:
- Fix a crash in the NFSv4 file locking code.
- Fix an fsync() regression, where we were failing to retry I/O in some
circumstances.
- Fix an infinite loop in NFSv4.0 OPEN stateid recovery
- Fix a memory leak when an attempted pnfs fails.
- Fix a memory leak in the backchannel code
- Large hostnames were not supported correctly in NFSv4.1
- Fix a pNFS/flexfiles bug that was impeding error reporting on I/O.
- Fix a couple of credential issues in pNFS/flexfiles
Bugfixes + cleanups:
- Open flag sanity checks in the NFSv4 atomic open codepath
- More NFSv4 delegation related bugfixes
- Various NFSv4.1 backchannel bugfixes and cleanups
- Fix the NFS swap socket code
- Various cleanups of the NFSv4 SETCLIENTID and EXCHANGE_ID code
- Fix a UDP transport deadlock issue
Features:
- More RDMA client transport improvements
- NFSv4.2 LAYOUTSTATS functionality for pnfs flexfiles.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJVlWQgAAoJEGcL54qWCgDyXtcP/2Y3HJ9xu5qU3Bo/jzCAw4E1
jPPMSFAz4kqy/LGoslyc1cNDEiKGzJYWU8TtCGI3KAyNxb6n3pT1mEE1tvIsSdis
D8bpV13M452PPpZYrBawIf4+OuohXmuYHpFiVNSpLbH3Uo7dthvFFnbqCGaGlnqY
rXYZHAnx637OGBcJsT4AXCUz12ILvxMYRnqwW6Xn+j9JmwR1coQX3v8W8e7SMf6i
J+zOny7Uetjrg1U9C9uQB6ZvIoxUMo9QOVmtGCwsBl8lM3fLmzaQfcUf9fm76pMT
yTrKJs4jBLvVf00bRHFDv9EHWCy97oqCkeQEw1EY2lnxp/lmM5SiI4zQqjbf0QTW
5VQScT1MK6xwHoUbuI/sYdXXR8KGDVT1xCFFHUNcg69CvgqdgWslPQY7xLJMvUJZ
vBWfWDd8ppdCw2ZVX4ae/bnhfc+/mVh4wRPF7tgVAjT0pobBV9xMOeMkF4mo76Wa
pvo/nTRMt68hpESVSvq9dYEMVhy5haqFhPrSbyAGOpT4SE2V3RCCZQfhu15TMKdW
BdvItG+mdAVPbIHqhx7vRdAudcOEZKyxbFA+l3E5FyCAXLV7XS3M8CEl3P1w7gmm
Ccr8DW9abKFJf1RAKdX3stexIoJLGTwciSMR5smsbup/xNcx/fRgx2f1w31JMPxb
kG3Izfk25w9uGSsbR39D
=AREr
-----END PGP SIGNATURE-----
Merge tag 'nfs-for-4.2-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
Pull NFS client updates from Trond Myklebust:
"Highlights include:
Stable patches:
- Fix a crash in the NFSv4 file locking code.
- Fix an fsync() regression, where we were failing to retry I/O in
some circumstances.
- Fix an infinite loop in NFSv4.0 OPEN stateid recovery
- Fix a memory leak when an attempted pnfs fails.
- Fix a memory leak in the backchannel code
- Large hostnames were not supported correctly in NFSv4.1
- Fix a pNFS/flexfiles bug that was impeding error reporting on I/O.
- Fix a couple of credential issues in pNFS/flexfiles
Bugfixes + cleanups:
- Open flag sanity checks in the NFSv4 atomic open codepath
- More NFSv4 delegation related bugfixes
- Various NFSv4.1 backchannel bugfixes and cleanups
- Fix the NFS swap socket code
- Various cleanups of the NFSv4 SETCLIENTID and EXCHANGE_ID code
- Fix a UDP transport deadlock issue
Features:
- More RDMA client transport improvements
- NFSv4.2 LAYOUTSTATS functionality for pnfs flexfiles"
* tag 'nfs-for-4.2-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs: (87 commits)
nfs: Remove invalid tk_pid from debug message
nfs: Remove invalid NFS_ATTR_FATTR_V4_REFERRAL checking in nfs4_get_rootfh
nfs: Drop bad comment in nfs41_walk_client_list()
nfs: Remove unneeded micro checking of CONFIG_PROC_FS
nfs: Don't setting FILE_CREATED flags always
nfs: Use remove_proc_subtree() instead remove_proc_entry()
nfs: Remove unused argument in nfs_server_set_fsinfo()
nfs: Fix a memory leak when meeting an unsupported state protect
nfs: take extra reference to fl->fl_file when running a LOCKU operation
NFSv4: When returning a delegation, don't reclaim an incompatible open mode.
NFSv4.2: LAYOUTSTATS is optional to implement
NFSv4.2: Fix up a decoding error in layoutstats
pNFS/flexfiles: Fix the reset of struct pgio_header when resending
pNFS/flexfiles: Turn off layoutcommit for servers that don't need it
pnfs/flexfiles: protect ktime manipulation with mirror lock
nfs: provide pnfs_report_layoutstat when NFS42 is disabled
nfs: verify open flags before allowing open
nfs: always update creds in mirror, even when we have an already connected ds
nfs: fix potential credential leak in ff_layout_update_mirror_cred
pnfs/flexfiles: report layoutstat regularly
...
Pull overlayfs updates from Miklos Szeredi:
"This relaxes the requirements on the lower layer filesystem: now ones
that implement .d_revalidate, such as NFS, can be used.
Upper layer filesystems still has the "no .d_revalidate" requirement.
Also a bad interaction with jffs2 locking has been fixed"
* 'overlayfs-next' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs:
ovl: lookup whiteouts outside iterate_dir()
ovl: allow distributed fs as lower layer
ovl: don't traverse automount points
Pull fuse updates from Miklos Szeredi:
"This is the start of improving fuse scalability.
An input queue and a processing queue is split out from the monolithic
fuse connection, each of those having their own spinlock. The end of
the patchset adds the ability to clone a fuse connection. This means,
that instead of having to read/write requests/answers on a single fuse
device fd, the fuse daemon can have multiple distinct file descriptors
open. Each of those can be used to receive requests and send answers,
currently the only constraint is that a request must be answered on
the same fd as it was read from.
This can be extended further to allow binding a device clone to a
specific CPU or NUMA node.
Based on a patchset by Srinivas Eeda and Ashish Samant. Thanks to
Ashish for the review of this series"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/fuse: (40 commits)
fuse: update MAINTAINERS entry
fuse: separate pqueue for clones
fuse: introduce per-instance fuse_dev structure
fuse: device fd clone
fuse: abort: no fc->lock needed for request ending
fuse: no fc->lock for pqueue parts
fuse: no fc->lock in request_end()
fuse: cleanup request_end()
fuse: request_end(): do once
fuse: add req flag for private list
fuse: pqueue locking
fuse: abort: group pqueue accesses
fuse: cleanup fuse_dev_do_read()
fuse: move list_del_init() from request_end() into callers
fuse: duplicate ->connected in pqueue
fuse: separate out processing queue
fuse: simplify request_wait()
fuse: no fc->lock for iqueue parts
fuse: allow interrupt queuing without fc->lock
fuse: iqueue locking
...
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJVkO6nAAoJEOvOhAQsB9HWpHMP/Aknc+lmX2dZeIn96gdkP+UK
1qL24C5oq2sm/9yTZLdoXbyApLaaTbAJHS9O4kolaOU6uOs3JrgtXqL1697PVp1R
qV4f4DOzXmmEHaE2oO21afAri3tXIVQNqA2NQl2TmKfwz0Atu01Vj5RJPu/ZOBPl
dONXcFnE6nO2p7AEFRP/GfDZwkng4xALyZPhwL7tJDAeGaBpqG/n2hCuq+Szn9g8
wjTFACBdad/mRrYsL6YsWZ1e+LKI8vsArQbdPTam+jPaEUlK7yjFReFKCJVzL2JP
xfQoTcCgFztzTUV0JTGR9sqeYA3WH9AkJOFDxNE/eIili4xiTh789WbEpHLVECSX
1LsW025I3DkRWBPT4L+9ZP805ha71kNXDFc5N3XJkzrCYaFvD2BgsUzxi6FXj7aC
9lEVKt6xO04FFG5SwTKnO0f8PEhPemZH3BDnVvjBDWQYLjUcPSNz7bfyHUhif0G5
ulOGVB0ncJJF9iP8PyZs1RA/F8kKxXWnhYMIHzvl0f0vLUA7rAKsACnhBgq8s9ZQ
uM5YjzU91Z/4pe5C2E5MmQIZ84b79ZPsee1lF0GJdjK5W3PDvnCjIdXfQ5M/f3S8
76cssXWNhS78/P+19YqirLeb0u7Zw0jf73m9t9ywRgcByWfY5ZUDm0DFpQnWKkoR
QY/aFO/yHKTO3VHj8Ril
=KDJO
-----END PGP SIGNATURE-----
Merge tag 'module_init-alternate_initcall-v4.1-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux
Pull module_init replacement part two from Paul Gortmaker:
"Replace module_init with appropriate alternate initcall in non
modules.
This series converts non-modular code that is using the module_init()
call to hook itself into the system to instead use one of our
alternate priority initcalls.
Unlike the previous series that used device_initcall and hence was a
runtime no-op, these commits change to one of the alternate initcalls,
because (a) we have them and (b) it seems like the right thing to do.
For example, it would seem logical to use arch_initcall for arch
specific setup code and fs_initcall for filesystem setup code.
This does mean however, that changes in the init ordering will be
taking place, and so there is a small risk that some kind of implicit
init ordering issue may lie uncovered. But I think it is still better
to give these ones sensible priorities than to just assign them all to
device_initcall in order to exactly preserve the old ordering.
Thad said, we have already made similar changes in core kernel code in
commit c96d6660dc65 ("kernel: audit/fix non-modular users of
module_init in core code") without any regressions reported, so this
type of change isn't without precedent. It has also got the same
local testing and linux-next coverage as all the other pull requests
that I'm sending for this merge window have got.
Once again, there is an unused module_exit function removal that shows
up as an outlier upon casual inspection of the diffstat"
* tag 'module_init-alternate_initcall-v4.1-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux:
x86: perf_event_intel_pt.c: use arch_initcall to hook in enabling
x86: perf_event_intel_bts.c: use arch_initcall to hook in enabling
mm/page_owner.c: use late_initcall to hook in enabling
lib/list_sort: use late_initcall to hook in self tests
arm: use subsys_initcall in non-modular pl320 IPC code
powerpc: don't use module_init for non-modular core hugetlb code
powerpc: use subsys_initcall for Freescale Local Bus
x86: don't use module_init for non-modular core bootflag code
netfilter: don't use module_init/exit in core IPV4 code
fs/notify: don't use module_init for non-modular inotify_user code
mm: replace module_init usages with subsys_initcall in nommu.c
Switch ext4 to using sb_getblk_gfp with GFP_NOFS added to fix possible
deadlocks in the page writeback path.
Signed-off-by: Nikolay Borisov <kernel@kyup.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@vger.kernel.org
Commit 8f4d8558391: "ext4: fix lazytime optimization" was not a
complete fix. In the case where the inode number is a multiple of 16,
and we could still end up updating an inode with dirty timestamps
written to the wrong inode on disk. Oops.
This can be easily reproduced by using generic/005 with a file system
with metadata_csum and lazytime enabled.
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@vger.kernel.org
Merge third patchbomb from Andrew Morton:
- the rest of MM
- scripts/gdb updates
- ipc/ updates
- lib/ updates
- MAINTAINERS updates
- various other misc things
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (67 commits)
genalloc: rename of_get_named_gen_pool() to of_gen_pool_get()
genalloc: rename dev_get_gen_pool() to gen_pool_get()
x86: opt into HAVE_COPY_THREAD_TLS, for both 32-bit and 64-bit
MAINTAINERS: add zpool
MAINTAINERS: BCACHE: Kent Overstreet has changed email address
MAINTAINERS: move Jens Osterkamp to CREDITS
MAINTAINERS: remove unused nbd.h pattern
MAINTAINERS: update brcm gpio filename pattern
MAINTAINERS: update brcm dts pattern
MAINTAINERS: update sound soc intel patterns
MAINTAINERS: remove website for paride
MAINTAINERS: update Emulex ocrdma email addresses
bcache: use kvfree() in various places
libcxgbi: use kvfree() in cxgbi_free_big_mem()
target: use kvfree() in session alloc and free
IB/ehca: use kvfree() in ipz_queue_{cd}tor()
drm/nouveau/gem: use kvfree() in u_free()
drm: use kvfree() in drm_free_large()
cxgb4: use kvfree() in t4_free_mem()
cxgb3: use kvfree() in cxgb_free_mem()
...
btrfs_force_chunk_alloc() return 1 for allocation chunk successfully.
This problem exists since commit c87f08ca4.
With this patch, we might fix some enospc problems for balances.
Signed-off-by: Wang Shilong <wangshilong1991@gmail.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Tested-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
While running generic/019, dmesg got several warnings from
btrfs_free_reserved_data_space().
Test generic/019 produces some disk failures so sumbit dio will get errors,
in which case, btrfs_direct_IO() goes to the error handling and free
bytes_may_use, but the problem is that bytes_may_use has been free'd
during get_block().
This adds a runtime flag to show if we've gone through get_block(), if so,
don't do the cleanup work.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Tested-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
The hang is uncoverd by generic/019.
btrfs_endio_direct_write() skips the "finish_ordered_fn" part when it hits
an error, thus those added ordered extents will never get processed, which
block processes that waiting for them via btrfs_start_ordered_extent().
This fixes the above, and meanwhile finish_ordered_fn will do the space
accounting work.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Tested-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
The comment was not correct about the part where it says the endio
callback of the bio might have not yet been called - update it
to mention that by that time the endio callback execution might
still be in progress only.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we fail to submit a bio for a direct IO request, we were grabbing the
corresponding ordered extent and decrementing its reference count twice,
once for our lookup reference and once for the ordered tree reference.
This was a problem because it caused the ordered extent to be freed
without removing it from the ordered tree and any lists it might be
attached to, leaving dangling pointers to the ordered extent around.
Example trace with CONFIG_DEBUG_PAGEALLOC=y:
[161779.858707] BUG: unable to handle kernel paging request at 0000000087654330
[161779.859983] IP: [<ffffffff8124ca68>] rb_prev+0x22/0x3b
[161779.860636] PGD 34d818067 PUD 0
[161779.860636] Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
(...)
[161779.860636] Call Trace:
[161779.860636] [<ffffffffa06b36a6>] __tree_search+0xd9/0xf9 [btrfs]
[161779.860636] [<ffffffffa06b3708>] tree_search+0x42/0x63 [btrfs]
[161779.860636] [<ffffffffa06b4868>] ? btrfs_lookup_ordered_range+0x2d/0xa5 [btrfs]
[161779.860636] [<ffffffffa06b4873>] btrfs_lookup_ordered_range+0x38/0xa5 [btrfs]
[161779.860636] [<ffffffffa06aab8e>] btrfs_get_blocks_direct+0x11b/0x615 [btrfs]
[161779.860636] [<ffffffff8119727f>] do_blockdev_direct_IO+0x5ff/0xb43
[161779.860636] [<ffffffffa06aaa73>] ? btrfs_page_exists_in_range+0x1ad/0x1ad [btrfs]
[161779.860636] [<ffffffffa06a2c9a>] ? btrfs_get_extent_fiemap+0x1bc/0x1bc [btrfs]
[161779.860636] [<ffffffff811977f5>] __blockdev_direct_IO+0x32/0x34
[161779.860636] [<ffffffffa06a2c9a>] ? btrfs_get_extent_fiemap+0x1bc/0x1bc [btrfs]
[161779.860636] [<ffffffffa06a10ae>] btrfs_direct_IO+0x198/0x21f [btrfs]
[161779.860636] [<ffffffffa06a2c9a>] ? btrfs_get_extent_fiemap+0x1bc/0x1bc [btrfs]
[161779.860636] [<ffffffff81112ca1>] generic_file_direct_write+0xb3/0x128
[161779.860636] [<ffffffffa06affaa>] ? btrfs_file_write_iter+0x15f/0x3e0 [btrfs]
[161779.860636] [<ffffffffa06b004c>] btrfs_file_write_iter+0x201/0x3e0 [btrfs]
(...)
We were also not freeing the btrfs_dio_private we allocated previously,
which kmemleak reported with the following trace in its sysfs file:
unreferenced object 0xffff8803f553bf80 (size 96):
comm "xfs_io", pid 4501, jiffies 4295039588 (age 173.936s)
hex dump (first 32 bytes):
88 6c 9b f5 02 88 ff ff 00 00 00 00 00 00 00 00 .l..............
00 00 00 00 00 00 00 00 00 00 c4 00 00 00 00 00 ................
backtrace:
[<ffffffff81161ffe>] create_object+0x172/0x29a
[<ffffffff8145870f>] kmemleak_alloc+0x25/0x41
[<ffffffff81154e64>] kmemleak_alloc_recursive.constprop.40+0x16/0x18
[<ffffffff811579ed>] kmem_cache_alloc_trace+0xfb/0x148
[<ffffffffa03d8cff>] btrfs_submit_direct+0x65/0x16a [btrfs]
[<ffffffff811968dc>] dio_bio_submit+0x62/0x8f
[<ffffffff811975fe>] do_blockdev_direct_IO+0x97e/0xb43
[<ffffffff811977f5>] __blockdev_direct_IO+0x32/0x34
[<ffffffffa03d70ae>] btrfs_direct_IO+0x198/0x21f [btrfs]
[<ffffffff81112ca1>] generic_file_direct_write+0xb3/0x128
[<ffffffffa03e604d>] btrfs_file_write_iter+0x201/0x3e0 [btrfs]
[<ffffffff8116586a>] __vfs_write+0x7c/0xa5
[<ffffffff81165da9>] vfs_write+0xa0/0xe4
[<ffffffff81166675>] SyS_pwrite64+0x64/0x82
[<ffffffff81464fd7>] system_call_fastpath+0x12/0x6f
[<ffffffffffffffff>] 0xffffffffffffffff
For read requests we weren't doing any cleanup either (none of the work
done by btrfs_endio_direct_read()), so a failure submitting a bio for a
read request would leave a range in the inode's io_tree locked forever,
blocking any future operations (both reads and writes) against that range.
So fix this by making sure we do the same cleanup that we do for the case
where the bio submission succeeds.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>