IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
* 'x86-idle-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, hotplug: In the MWAIT case of play_dead, CLFLUSH the cache line
x86, hotplug: Move WBINVD back outside the play_dead loop
x86, hotplug: Use mwait to offline a processor, fix the legacy case
x86, mwait: Move mwait constants to a common header file
The mW data in this field is a total fabrication
and serves no purpose other than to mislead
those who might see it in sysfs. Delete it.
Signed-off-by: Len Brown <len.brown@intel.com>
A run-time test to invoke leave_mm() for the deepest
supported C-state is redundant, since the appropriate
C-states already have flags with CPUIDLE_FLAG_TLB_FLUSHED set.
Signed-off-by: Len Brown <len.brown@intel.com>
All file_operations should get a .llseek operation so we can make
nonseekable_open the default for future file operations without a
.llseek pointer.
The three cases that we can automatically detect are no_llseek, seq_lseek
and default_llseek. For cases where we can we can automatically prove that
the file offset is always ignored, we use noop_llseek, which maintains
the current behavior of not returning an error from a seek.
New drivers should normally not use noop_llseek but instead use no_llseek
and call nonseekable_open at open time. Existing drivers can be converted
to do the same when the maintainer knows for certain that no user code
relies on calling seek on the device file.
The generated code is often incorrectly indented and right now contains
comments that clarify for each added line why a specific variant was
chosen. In the version that gets submitted upstream, the comments will
be gone and I will manually fix the indentation, because there does not
seem to be a way to do that using coccinelle.
Some amount of new code is currently sitting in linux-next that should get
the same modifications, which I will do at the end of the merge window.
Many thanks to Julia Lawall for helping me learn to write a semantic
patch that does all this.
===== begin semantic patch =====
// This adds an llseek= method to all file operations,
// as a preparation for making no_llseek the default.
//
// The rules are
// - use no_llseek explicitly if we do nonseekable_open
// - use seq_lseek for sequential files
// - use default_llseek if we know we access f_pos
// - use noop_llseek if we know we don't access f_pos,
// but we still want to allow users to call lseek
//
@ open1 exists @
identifier nested_open;
@@
nested_open(...)
{
<+...
nonseekable_open(...)
...+>
}
@ open exists@
identifier open_f;
identifier i, f;
identifier open1.nested_open;
@@
int open_f(struct inode *i, struct file *f)
{
<+...
(
nonseekable_open(...)
|
nested_open(...)
)
...+>
}
@ read disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ read_no_fpos disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
... when != off
}
@ write @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ write_no_fpos @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
... when != off
}
@ fops0 @
identifier fops;
@@
struct file_operations fops = {
...
};
@ has_llseek depends on fops0 @
identifier fops0.fops;
identifier llseek_f;
@@
struct file_operations fops = {
...
.llseek = llseek_f,
...
};
@ has_read depends on fops0 @
identifier fops0.fops;
identifier read_f;
@@
struct file_operations fops = {
...
.read = read_f,
...
};
@ has_write depends on fops0 @
identifier fops0.fops;
identifier write_f;
@@
struct file_operations fops = {
...
.write = write_f,
...
};
@ has_open depends on fops0 @
identifier fops0.fops;
identifier open_f;
@@
struct file_operations fops = {
...
.open = open_f,
...
};
// use no_llseek if we call nonseekable_open
////////////////////////////////////////////
@ nonseekable1 depends on !has_llseek && has_open @
identifier fops0.fops;
identifier nso ~= "nonseekable_open";
@@
struct file_operations fops = {
... .open = nso, ...
+.llseek = no_llseek, /* nonseekable */
};
@ nonseekable2 depends on !has_llseek @
identifier fops0.fops;
identifier open.open_f;
@@
struct file_operations fops = {
... .open = open_f, ...
+.llseek = no_llseek, /* open uses nonseekable */
};
// use seq_lseek for sequential files
/////////////////////////////////////
@ seq depends on !has_llseek @
identifier fops0.fops;
identifier sr ~= "seq_read";
@@
struct file_operations fops = {
... .read = sr, ...
+.llseek = seq_lseek, /* we have seq_read */
};
// use default_llseek if there is a readdir
///////////////////////////////////////////
@ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier readdir_e;
@@
// any other fop is used that changes pos
struct file_operations fops = {
... .readdir = readdir_e, ...
+.llseek = default_llseek, /* readdir is present */
};
// use default_llseek if at least one of read/write touches f_pos
/////////////////////////////////////////////////////////////////
@ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read.read_f;
@@
// read fops use offset
struct file_operations fops = {
... .read = read_f, ...
+.llseek = default_llseek, /* read accesses f_pos */
};
@ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write.write_f;
@@
// write fops use offset
struct file_operations fops = {
... .write = write_f, ...
+ .llseek = default_llseek, /* write accesses f_pos */
};
// Use noop_llseek if neither read nor write accesses f_pos
///////////////////////////////////////////////////////////
@ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
identifier write_no_fpos.write_f;
@@
// write fops use offset
struct file_operations fops = {
...
.write = write_f,
.read = read_f,
...
+.llseek = noop_llseek, /* read and write both use no f_pos */
};
@ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write_no_fpos.write_f;
@@
struct file_operations fops = {
... .write = write_f, ...
+.llseek = noop_llseek, /* write uses no f_pos */
};
@ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
@@
struct file_operations fops = {
... .read = read_f, ...
+.llseek = noop_llseek, /* read uses no f_pos */
};
@ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
@@
struct file_operations fops = {
...
+.llseek = noop_llseek, /* no read or write fn */
};
===== End semantic patch =====
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Julia Lawall <julia@diku.dk>
Cc: Christoph Hellwig <hch@infradead.org>
ATM-C6 was commented out, pending public documentation.
https://bugzilla.kernel.org/show_bug.cgi?id=19762
Tested-by: Dennis Jansen <Dennis.Jansen@...>
Signed-off-by: Len Brown <len.brown@intel.com>
Avoid TLB flush IPIs for the cores in deeper c-states by voluntary leave_mm()
before entering into that state. CPUs tend to flush TLB in those c-states
anyways.
acpi_idle does this with C3-type states, but it was not caried over
when intel_idle was introduced. intel_idle can apply it
to C-states in addition to those that ACPI might export as C3...
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
intel_idle_cpuidle_devices is a percpu pointer
but was missing __percpu markup.
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Len Brown <len.brown@intel.com>
We have MWAIT constants spread across three different .c files, for no
good reason. Move them all into a common header file.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Cc: Len Brown <lenb@kernel.org>
LKML-Reference: <tip-*@git.kernel.org>
* 'idle-release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux-idle-2.6:
intel_idle: recognize Lincroft Atom Processor
intel_idle: no longer EXPERIMENTAL
intel_idle: disable module support
intel_idle: add support for Westmere-EX
intel_idle: delete power_policy modparam, and choose substate functions
intel_idle: delete substates DEBUG modparam
Right now the module capability is cauing more trouble
than it is worth. At least one distro built intel_idle as a module
where it lost the init race with ACPI, making it useless.
Make intel_idle bool so that if you select it, you will use it.
We can restore module capability after cpuidle is enhanced
to handle run-time changing of idle drivers.
Signed-off-by: Len Brown <len.brown@intel.com>
The idea behind power policy was that it would start off as a modparam,
and then hook into the new "global" in-kernel power vs energy tunable.
But that tunable isn't happening, so delete the hook here.
With the policy hook gone, the sub-state choice functions
do not do anything useful, so delete them from the critical path.
To handle sub-states in the future, we will advertise them
with dedicated cpuidle_state entries. That is necessary
because some of the sub-states will have substantially different
properties than their peer sub-states.
Signed-off-by: Len Brown <len.brown@intel.com>
This EXPERIMENTAL driver supersedes acpi_idle on
Intel Atom Processors, Intel Core i3/i5/i7 Processors
and associated Intel Xeon processors.
It does not support the Intel Core2 processor or earlier.
For kernels configured with ACPI, CONFIG_INTEL_IDLE=y
allows intel_idle to probe before the ACPI processor driver.
Booting with "intel_idle.max_cstate=0" disables intel_idle
and the system will fall back on ACPI's "acpi_idle".
Typical Linux distributions load ACPI processor module early,
making CONFIG_INTEL_IDLE=m not easily useful on ACPI platforms.
intel_idle probes all processors at module_init time.
Processors that are hot-added later will be limited
to using C1 in idle.
Signed-off-by: Len Brown <len.brown@intel.com>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
In order to support dynamic resizing of the descriptor ring or polling
for a descriptor in the presence of a hung channel the reset handler
needs to make progress while in a non-preemptible context. The current
workqueue implementation precludes polling channel reset completion
under spin_lock().
This conversion also allows us to return to opportunistic cleanup in the
ioat2 case as the timer implementation guarantees at least one cleanup
after every descriptor is submitted. This means the worst case
completion latency becomes the timer frequency (for exceptional
circumstances), but with the benefit of avoiding busy waiting when the
lock is contended.
Signed-off-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
When first created the ioat driver was the only inhabitant of
drivers/dma/. Now, it is the only multi-file (more than a .c and a .h)
driver in the directory. Moving it to an ioat/ subdirectory allows the
naming convention to be cleaned up, and allows for future splitting of
the source files by hardware version (v1, v2, and v3).
Signed-off-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Testing the i7300_idle driver on i5000-series hardware required
an edit to i7300_idle.h to "#define SUPPORT_I5000 1" and a re-build
of both i7300_idle and ioat_dma.
Replace that build-time scheme with a load-time module parameter:
"7300_idle.forceload=1" to make it easier to test the driver
on hardware that while not officially validated, works fine
and is much more commonly available.
By default (no modparam) the driver will continue to load
only on the i7300.
Note that ioat_dma runs a copy of i7300_idle's probe routine
to know to reserve an IOAT channel for i7300_idle.
This change makes ioat_dma do that always on the i5000,
just like it does on the i7300.
Signed-off-by: Len Brown <len.brown@intel.com>
Acked-by: Andrew Henroid <andrew.d.henroid@intel.com>
Replace all DMA_64BIT_MASK macro with DMA_BIT_MASK(64)
Signed-off-by: Yang Hongyang<yanghy@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
...since today it contains only a single driver
which is visible to just x86_64
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Cleanup of i7300 idle driver based on review comments from Randy Dunlap,
Andi Kleen and Len Brown.
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Based on input from Andi Kleen:
share the platform detection code with ioat_dma and disable the channel in
dma engine only for specific platforms.
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
The Intel 7300 Memory Controller supports dynamic throttling of memory which can
be used to save power when system is idle. This driver does the memory
throttling when all CPUs are idle on such a system.
Refer to "Intel 7300 Memory Controller Hub (MCH)" datasheet
for the config space description.
Signed-off-by: Andy Henroid <andrew.d.henroid@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>