Commit Graph

1314 Commits

Author SHA1 Message Date
Matthew Wilcox (Oracle)
a373baed5a mm: delay the check for a NULL anon_vma
Instead of checking the anon_vma early in the fault path where all page
faults pay the cost, delay it until we know we're going to need the
anon_vma to be filled in.  This will have a slight negative effect on the
first fault in an anonymous VMA, but it shortens every other page fault. 
It also makes the code slightly cleaner as the anon and file backed fault
handling look more similar.

The Intel kernel test bot reports a 3x improvement in vm-scalability
throughput with the small-allocs-mt test.  This is clearly an extreme
situation that won't be replicated in any real-world workload, but it's a
nice win.

https://lore.kernel.org/all/202404261055.c5e24608-oliver.sang@intel.com/

Link: https://lkml.kernel.org/r/20240426144506.1290619-3-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jann Horn <jannh@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-05-05 17:53:53 -07:00
Matthew Wilcox
e0ffb29bc5 mm: simplify thp_vma_allowable_order
Combine the three boolean arguments into one flags argument for
readability.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-05-05 17:53:53 -07:00
Kefeng Wang
6ed31ba392 mm: memory: check userfaultfd_wp() in vmf_orig_pte_uffd_wp()
Add userfaultfd_wp() check in vmf_orig_pte_uffd_wp() to avoid the
unnecessary FAULT_FLAG_ORIG_PTE_VALID check/pte_marker_entry_uffd_wp() in
most pagefault, note, the function vmf_orig_pte_uffd_wp() is not inlined
in the two kernel versions, the difference is shown below,

perf date,

  perf report -i perf.data.before | grep vmf
     0.17%     0.13%  lat_pagefault  [kernel.kallsyms]      [k] vmf_orig_pte_uffd_wp.part.0.isra.0
  perf report -i perf.data.after  | grep vmf

lat_pagefault -W 5 -N 5 /tmp/XXX
  latency              before        after        diff
  average(8 tests)     0.262675      0.2600375   -0.0026375

Although it's a small, but the uffd_wp is a new feature than previous
kernel, when the vma is not registered with UFFD_WP, let's avoid to
execute the new logical, also adding __always_inline attribute to
vmf_orig_pte_uffd_wp(), which make set_pte_range() only check VM_UFFD_WP
flags without the function call.  In addition, directly call the
vmf_orig_pte_uffd_wp() in do_anonymous_page() and set_pte_range() to save
an uffd_wp variable.

Link: https://lkml.kernel.org/r/20240422030039.3293568-1-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-05-05 17:53:43 -07:00
Lance Yang
96ebdb0320 mm/memory: add any_dirty optional pointer to folio_pte_batch()
This commit adds the any_dirty pointer as an optional parameter to
folio_pte_batch() function.  By using both the any_young and any_dirty
pointers, madvise_free can make smarter decisions about whether to clear
the PTEs when marking large folios as lazyfree.

Link: https://lkml.kernel.org/r/20240418134435.6092-4-ioworker0@gmail.com
Signed-off-by: Lance Yang <ioworker0@gmail.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Jeff Xie <xiehuan09@gmail.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Cc: Zach O'Keefe <zokeefe@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-05-05 17:53:43 -07:00
Kefeng Wang
1f2d8b4421 mm: move mm counter updating out of set_pte_range()
Patch series "mm: batch mm counter updating in filemap_map_pages()", v3.

Let's batch mm counter updating to accelerate filemap_map_pages().


This patch (of 2):

In order to support batch mm counter updating in filemap_map_pages(), move
mm counter updating out of set_pte_range(), the folios are file from
filemap, and distinguish folios by vmf->flags and vma->vm_flags from
another caller finish_fault().

Link: https://lkml.kernel.org/r/20240412064751.119015-1-wangkefeng.wang@huawei.com
Link: https://lkml.kernel.org/r/20240412064751.119015-2-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-05-05 17:53:36 -07:00
Barry Song
ec33687c67 mm: add per-order mTHP anon_fault_alloc and anon_fault_fallback counters
Patch series "mm: add per-order mTHP alloc and swpout counters", v6.

The patchset introduces a framework to facilitate mTHP counters, starting
with the allocation and swap-out counters.  Currently, only four new nodes
are appended to the stats directory for each mTHP size.

/sys/kernel/mm/transparent_hugepage/hugepages-<size>/stats
	anon_fault_alloc
	anon_fault_fallback
	anon_fault_fallback_charge
	anon_swpout
	anon_swpout_fallback

These nodes are crucial for us to monitor the fragmentation levels of both
the buddy system and the swap partitions.  In the future, we may consider
adding additional nodes for further insights.


This patch (of 4):

Profiling a system blindly with mTHP has become challenging due to the
lack of visibility into its operations.  Presenting the success rate of
mTHP allocations appears to be pressing need.

Recently, I've been experiencing significant difficulty debugging
performance improvements and regressions without these figures.  It's
crucial for us to understand the true effectiveness of mTHP in real-world
scenarios, especially in systems with fragmented memory.

This patch establishes the framework for per-order mTHP counters.  It
begins by introducing the anon_fault_alloc and anon_fault_fallback
counters.  Additionally, to maintain consistency with
thp_fault_fallback_charge in /proc/vmstat, this patch also tracks
anon_fault_fallback_charge when mem_cgroup_charge fails for mTHP. 
Incorporating additional counters should now be straightforward as well.

Link: https://lkml.kernel.org/r/20240412114858.407208-1-21cnbao@gmail.com
Link: https://lkml.kernel.org/r/20240412114858.407208-2-21cnbao@gmail.com
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Cc: Kairui Song <kasong@tencent.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-05-05 17:53:35 -07:00
David Hildenbrand
3aeea4fc83 mm/memory: use folio_mapcount() in zap_present_folio_ptes()
We want to limit the use of page_mapcount() to the places where it is
absolutely necessary.  In zap_present_folio_ptes(), let's simply check the
folio mapcount().  If there is some issue, it will underflow at some point
either way when unmapping.

As indicated already in commit 10ebac4f95 ("mm/memory: optimize
unmap/zap with PTE-mapped THP"), we already documented "If we ever have a
cheap folio_mapcount(), we might just want to check for underflows
there.".

There is no change for small folios.  For large folios, we'll now catch
more underflows when batch-unmapping, because instead of only testing the
mapcount of the first subpage, we'll test if the folio mapcount
underflows.

Link: https://lkml.kernel.org/r/20240409192301.907377-8-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Richard Chang <richardycc@google.com>
Cc: Rich Felker <dalias@libc.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-05-05 17:53:29 -07:00
David Hildenbrand
c5541ba378 mm: follow_pte() improvements
follow_pte() is now our main function to lookup PTEs in VM_PFNMAP/VM_IO
VMAs.  Let's perform some more sanity checks to make this exported
function harder to abuse.

Further, extend the doc a bit, it still focuses on the KVM use case with
MMU notifiers.  Drop the KVM+follow_pfn() comment, follow_pfn() is no
more, and we have other users nowadays.

Also extend the doc regarding refcounted pages and the interaction with
MMU notifiers.

KVM is one example that uses MMU notifiers and can deal with refcounted
pages properly.  VFIO is one example that doesn't use MMU notifiers, and
to prevent use-after-free, rejects refcounted pages: pfn_valid(pfn) &&
!PageReserved(pfn_to_page(pfn)).  Protection changes are less of a concern
for users like VFIO: the behavior is similar to longterm-pinning a page,
and getting the PTE protection changed afterwards.

The primary concern with refcounted pages is use-after-free, which callers
should be aware of.

Link: https://lkml.kernel.org/r/20240410155527.474777-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Fei Li <fei1.li@intel.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Yonghua Huang <yonghua.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-05-05 17:53:27 -07:00
David Hildenbrand
29ae7d96d1 mm: pass VMA instead of MM to follow_pte()
... and centralize the VM_IO/VM_PFNMAP sanity check in there. We'll
now also perform these sanity checks for direct follow_pte()
invocations.

For generic_access_phys(), we might now check multiple times: nothing to
worry about, really.

Link: https://lkml.kernel.org/r/20240410155527.474777-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Sean Christopherson <seanjc@google.com>	[KVM]
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Fei Li <fei1.li@intel.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Yonghua Huang <yonghua.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-05-05 17:53:27 -07:00
Ryan Roberts
3931b871c4 mm: madvise: avoid split during MADV_PAGEOUT and MADV_COLD
Rework madvise_cold_or_pageout_pte_range() to avoid splitting any large
folio that is fully and contiguously mapped in the pageout/cold vm range. 
This change means that large folios will be maintained all the way to swap
storage.  This both improves performance during swap-out, by eliding the
cost of splitting the folio, and sets us up nicely for maintaining the
large folio when it is swapped back in (to be covered in a separate
series).

Folios that are not fully mapped in the target range are still split, but
note that behavior is changed so that if the split fails for any reason
(folio locked, shared, etc) we now leave it as is and move to the next pte
in the range and continue work on the proceeding folios.  Previously any
failure of this sort would cause the entire operation to give up and no
folios mapped at higher addresses were paged out or made cold.  Given
large folios are becoming more common, this old behavior would have likely
lead to wasted opportunities.

While we are at it, change the code that clears young from the ptes to use
ptep_test_and_clear_young(), via the new mkold_ptes() batch helper
function.  This is more efficent than get_and_clear/modify/set, especially
for contpte mappings on arm64, where the old approach would require
unfolding/refolding and the new approach can be done in place.

Link: https://lkml.kernel.org/r/20240408183946.2991168-8-ryan.roberts@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: Barry Song <v-songbaohua@oppo.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Gao Xiang <xiang@kernel.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25 20:56:38 -07:00
Ryan Roberts
a62fb92ac1 mm: swap: free_swap_and_cache_nr() as batched free_swap_and_cache()
Now that we no longer have a convenient flag in the cluster to determine
if a folio is large, free_swap_and_cache() will take a reference and lock
a large folio much more often, which could lead to contention and (e.g.)
failure to split large folios, etc.

Let's solve that problem by batch freeing swap and cache with a new
function, free_swap_and_cache_nr(), to free a contiguous range of swap
entries together.  This allows us to first drop a reference to each swap
slot before we try to release the cache folio.  This means we only try to
release the folio once, only taking the reference and lock once - much
better than the previous 512 times for the 2M THP case.

Contiguous swap entries are gathered in zap_pte_range() and
madvise_free_pte_range() in a similar way to how present ptes are already
gathered in zap_pte_range().

While we are at it, let's simplify by converting the return type of both
functions to void.  The return value was used only by zap_pte_range() to
print a bad pte, and was ignored by everyone else, so the extra reporting
wasn't exactly guaranteed.  We will still get the warning with most of the
information from get_swap_device().  With the batch version, we wouldn't
know which pte was bad anyway so could print the wrong one.

[ryan.roberts@arm.com: fix a build warning on parisc]
  Link: https://lkml.kernel.org/r/20240409111840.3173122-1-ryan.roberts@arm.com
Link: https://lkml.kernel.org/r/20240408183946.2991168-3-ryan.roberts@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Gao Xiang <xiang@kernel.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25 20:56:37 -07:00
Baolin Wang
d2136d749d mm: support multi-size THP numa balancing
Now the anonymous page allocation already supports multi-size THP (mTHP),
but the numa balancing still prohibits mTHP migration even though it is an
exclusive mapping, which is unreasonable.

Allow scanning mTHP:
Commit 859d4adc34 ("mm: numa: do not trap faults on shared data section
pages") skips shared CoW pages' NUMA page migration to avoid shared data
segment migration. In addition, commit 80d47f5de5 ("mm: don't try to
NUMA-migrate COW pages that have other uses") change to use page_count()
to avoid GUP pages migration, that will also skip the mTHP numa scanning.
Theoretically, we can use folio_maybe_dma_pinned() to detect the GUP
issue, although there is still a GUP race, the issue seems to have been
resolved by commit 80d47f5de5. Meanwhile, use the folio_likely_mapped_shared()
to skip shared CoW pages though this is not a precise sharers count. To
check if the folio is shared, ideally we want to make sure every page is
mapped to the same process, but doing that seems expensive and using
the estimated mapcount seems can work when running autonuma benchmark.

Allow migrating mTHP:
As mentioned in the previous thread[1], large folios (including THP) are
more susceptible to false sharing issues among threads than 4K base page,
leading to pages ping-pong back and forth during numa balancing, which is
currently not easy to resolve. Therefore, as a start to support mTHP numa
balancing, we can follow the PMD mapped THP's strategy, that means we can
reuse the 2-stage filter in should_numa_migrate_memory() to check if the
mTHP is being heavily contended among threads (through checking the CPU id
and pid of the last access) to avoid false sharing at some degree. Thus,
we can restore all PTE maps upon the first hint page fault of a large folio
to follow the PMD mapped THP's strategy. In the future, we can continue to
optimize the NUMA balancing algorithm to avoid the false sharing issue with
large folios as much as possible.

Performance data:
Machine environment: 2 nodes, 128 cores Intel(R) Xeon(R) Platinum
Base: 2024-03-25 mm-unstable branch
Enable mTHP to run autonuma-benchmark

mTHP:16K
Base				Patched
numa01				numa01
224.70				143.48
numa01_THREAD_ALLOC		numa01_THREAD_ALLOC
118.05				47.43
numa02				numa02
13.45				9.29
numa02_SMT			numa02_SMT
14.80				7.50

mTHP:64K
Base				Patched
numa01				numa01
216.15				114.40
numa01_THREAD_ALLOC		numa01_THREAD_ALLOC
115.35				47.41
numa02				numa02
13.24				9.25
numa02_SMT			numa02_SMT
14.67				7.34

mTHP:128K
Base				Patched
numa01				numa01
205.13				144.45
numa01_THREAD_ALLOC		numa01_THREAD_ALLOC
112.93				41.88
numa02				numa02
13.16				9.18
numa02_SMT			numa02_SMT
14.81				7.49

[1] https://lore.kernel.org/all/20231117100745.fnpijbk4xgmals3k@techsingularity.net/

[baolin.wang@linux.alibaba.com: v3]
  Link: https://lkml.kernel.org/r/c33a5c0b0a0323b1f8ed53772f50501f4b196e25.1712132950.git.baolin.wang@linux.alibaba.com
Link: https://lkml.kernel.org/r/d28d276d599c26df7f38c9de8446f60e22dd1950.1711683069.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25 20:56:30 -07:00
Baolin Wang
6b0ed7b3c7 mm: factor out the numa mapping rebuilding into a new helper
Patch series "support multi-size THP numa balancing", v2.

This patchset tries to support mTHP numa balancing, as a simple solution
to start, the NUMA balancing algorithm for mTHP will follow the THP
strategy as the basic support.  Please find details in each patch.


This patch (of 2):

To support large folio's numa balancing, factor out the numa mapping
rebuilding into a new helper as a preparation.

Link: https://lkml.kernel.org/r/cover.1712132950.git.baolin.wang@linux.alibaba.com
Link: https://lkml.kernel.org/r/cover.1711683069.git.baolin.wang@linux.alibaba.com
Link: https://lkml.kernel.org/r/8bc2586bdd8dbbe6d83c09b77b360ec8fcac3736.1711683069.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25 20:56:30 -07:00
Barry Song
68dbcf4899 mm: alloc_anon_folio: avoid doing vma_thp_gfp_mask in fallback cases
Fallback rates surpassing 90% have been observed on phones utilizing 64KiB
CONT-PTE mTHP.  In these scenarios, when one out of every 16 PTEs fails to
allocate large folios, the remaining 15 PTEs fallback.  Consequently,
invoking vma_thp_gfp_mask seems redundant in such cases.  Furthermore,
abstaining from its use can also contribute to improved code readability.

Link: https://lkml.kernel.org/r/20240329073750.20012-1-21cnbao@gmail.com
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Acked-by: Yu Zhao <yuzhao@google.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Itaru Kitayama <itaru.kitayama@gmail.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25 20:56:30 -07:00
York Jasper Niebuhr
ba42b524a0 mm: init_mlocked_on_free_v3
Implements the "init_mlocked_on_free" boot option. When this boot option
is enabled, any mlock'ed pages are zeroed on free. If
the pages are munlock'ed beforehand, no initialization takes place.
This boot option is meant to combat the performance hit of
"init_on_free" as reported in commit 6471384af2 ("mm: security:
introduce init_on_alloc=1 and init_on_free=1 boot options"). With
"init_mlocked_on_free=1" only relevant data is freed while everything
else is left untouched by the kernel. Correspondingly, this patch
introduces no performance hit for unmapping non-mlock'ed memory. The
unmapping overhead for purely mlocked memory was measured to be
approximately 13%. Realistically, most systems mlock only a fraction of
the total memory so the real-world system overhead should be close to
zero.

Optimally, userspace programs clear any key material or other
confidential memory before exit and munlock the according memory
regions. If a program crashes, userspace key managers fail to do this
job. Accordingly, no munlock operations are performed so the data is
caught and zeroed by the kernel. Should the program not crash, all
memory will ideally be munlocked so no overhead is caused.

CONFIG_INIT_MLOCKED_ON_FREE_DEFAULT_ON can be set to enable
"init_mlocked_on_free" by default.

Link: https://lkml.kernel.org/r/20240329145605.149917-1-yjnworkstation@gmail.com
Signed-off-by: York Jasper Niebuhr <yjnworkstation@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: York Jasper Niebuhr <yjnworkstation@gmail.com>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25 20:56:29 -07:00
Peter Xu
239e9a90c8 mm: introduce vma_pgtable_walk_{begin|end}()
Introduce per-vma begin()/end() helpers for pgtable walks.  This is a
preparation work to merge hugetlb pgtable walkers with generic mm.

The helpers need to be called before and after a pgtable walk, will start
to be needed if the pgtable walker code supports hugetlb pages.  It's a
hook point for any type of VMA, but for now only hugetlb uses it to
stablize the pgtable pages from getting away (due to possible pmd
unsharing).

Link: https://lkml.kernel.org/r/20240327152332.950956-5-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Christoph Hellwig <hch@infradead.org>
Reviewed-by: Muchun Song <muchun.song@linux.dev>
Tested-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrew Jones <andrew.jones@linux.dev>
Cc: Aneesh Kumar K.V (IBM) <aneesh.kumar@kernel.org>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: David Hildenbrand <david@redhat.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Mike Rapoport (IBM)" <rppt@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25 20:56:21 -07:00
Christoph Hellwig
5b34b76cb0 mm: move follow_phys to arch/x86/mm/pat/memtype.c
follow_phys is only used by two callers in arch/x86/mm/pat/memtype.c. 
Move it there and hardcode the two arguments that get the same values
passed by both callers.

[david@redhat.com: conflict resolutions]
Link: https://lkml.kernel.org/r/20240403212131.929421-4-david@redhat.com
Link: https://lkml.kernel.org/r/20240324234542.2038726-4-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fei Li <fei1.li@intel.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25 20:56:12 -07:00
Christoph Hellwig
cb10c28ac8 mm: remove follow_pfn
Remove follow_pfn now that the last user is gone.

Link: https://lkml.kernel.org/r/20240324234542.2038726-3-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fei Li <fei1.li@intel.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25 20:56:12 -07:00
David Hildenbrand
ebb34f78d7 mm: convert folio_estimated_sharers() to folio_likely_mapped_shared()
Callers of folio_estimated_sharers() only care about "mapped shared vs. 
mapped exclusively", not the exact estimate of sharers.  Let's consolidate
and unify the condition users are checking.  While at it clarify the
semantics and extend the discussion on the fuzziness.

Use the "likely mapped shared" terminology to better express what the
(adjusted) function actually checks.

Whether a partially-mappable folio is more likely to not be partially
mapped than partially mapped is debatable.  In the future, we might be
able to improve our estimate for partially-mappable folios, though.

Note that we will now consistently detect "mapped shared" only if the
first subpage is actually mapped multiple times.  When the first subpage
is not mapped, we will consistently detect it as "mapped exclusively". 
This change should currently only affect the usage in
madvise_free_pte_range() and queue_folios_pte_range() for large folios: if
the first page was already unmapped, we would have skipped the folio.

[david@redhat.com: folio_likely_mapped_shared() kerneldoc fixup]
  Link: https://lkml.kernel.org/r/dd0ad9f2-2d7a-45f3-9ba3-979488c7dd27@redhat.com
Link: https://lkml.kernel.org/r/20240227201548.857831-1-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com>
Acked-by: Barry Song <v-songbaohua@oppo.com>
Reviewed-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25 20:56:08 -07:00
Barry Song
f238b8c33c arm64: mm: swap: support THP_SWAP on hardware with MTE
Commit d0637c505f ("arm64: enable THP_SWAP for arm64") brings up
THP_SWAP on ARM64, but it doesn't enable THP_SWP on hardware with MTE as
the MTE code works with the assumption tags save/restore is always
handling a folio with only one page.

The limitation should be removed as more and more ARM64 SoCs have this
feature.  Co-existence of MTE and THP_SWAP becomes more and more
important.

This patch makes MTE tags saving support large folios, then we don't need
to split large folios into base pages for swapping out on ARM64 SoCs with
MTE any more.

arch_prepare_to_swap() should take folio rather than page as parameter
because we support THP swap-out as a whole.  It saves tags for all pages
in a large folio.

As now we are restoring tags based-on folio, in arch_swap_restore(), we
may increase some extra loops and early-exitings while refaulting a large
folio which is still in swapcache in do_swap_page().  In case a large
folio has nr pages, do_swap_page() will only set the PTE of the particular
page which is causing the page fault.  Thus do_swap_page() runs nr times,
and each time, arch_swap_restore() will loop nr times for those subpages
in the folio.  So right now the algorithmic complexity becomes O(nr^2).

Once we support mapping large folios in do_swap_page(), extra loops and
early-exitings will decrease while not being completely removed as a large
folio might get partially tagged in corner cases such as, 1.  a large
folio in swapcache can be partially unmapped, thus, MTE tags for the
unmapped pages will be invalidated; 2.  users might use mprotect() to set
MTEs on a part of a large folio.

arch_thp_swp_supported() is dropped since ARM64 MTE was the only one who
needed it.

Link: https://lkml.kernel.org/r/20240322114136.61386-2-21cnbao@gmail.com
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Acked-by: Chris Li <chrisl@kernel.org>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: "Mike Rapoport (IBM)" <rppt@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25 20:56:07 -07:00
Donet Tom
f8fd525ba3 mm/mempolicy: use numa_node_id() instead of cpu_to_node()
Patch series "Allow migrate on protnone reference with MPOL_PREFERRED_MANY
policy:, v4.

This patchset is to optimize the cross-socket memory access with
MPOL_PREFERRED_MANY policy.

To test this patch we ran the following test on a 3 node system.
 Node 0 - 2GB   - Tier 1
 Node 1 - 11GB  - Tier 1
 Node 6 - 10GB  - Tier 2

Below changes are made to memcached to set the memory policy,
It select Node0 and Node1 as preferred nodes.

   #include <numaif.h>
   #include <numa.h>

    unsigned long nodemask;
    int ret;

    nodemask = 0x03;
    ret = set_mempolicy(MPOL_PREFERRED_MANY | MPOL_F_NUMA_BALANCING,
                                               &nodemask, 10);
    /* If MPOL_F_NUMA_BALANCING isn't supported,
     * fall back to MPOL_PREFERRED_MANY */
    if (ret < 0 && errno == EINVAL){
       printf("set mem policy normal\n");
        ret = set_mempolicy(MPOL_PREFERRED_MANY, &nodemask, 10);
    }
    if (ret < 0) {
       perror("Failed to call set_mempolicy");
       exit(-1);
    }

Test Procedure:
===============
1. Make sure memory tiring and demotion are enabled.
2. Start memcached.

   # ./memcached -b 100000 -m 204800 -u root -c 1000000 -t 7
       -d -s "/tmp/memcached.sock"

3. Run memtier_benchmark to store 3200000 keys.

  #./memtier_benchmark -S "/tmp/memcached.sock" --protocol=memcache_binary
    --threads=1 --pipeline=1 --ratio=1:0 --key-pattern=S:S --key-minimum=1
    --key-maximum=3200000 -n allkeys -c 1 -R -x 1 -d 1024

4. Start a memory eater on node 0 and 1. This will demote all memcached
   pages to node 6.
5. Make sure all the memcached pages got demoted to lower tier by reading
   /proc/<memcaced PID>/numa_maps.

    # cat /proc/2771/numa_maps
     ---
    default anon=1009 dirty=1009 active=0 N6=1009 kernelpagesize_kB=64
    default anon=1009 dirty=1009 active=0 N6=1009 kernelpagesize_kB=64
     ---

6. Kill memory eater.
7. Read the pgpromote_success counter.
8. Start reading the keys by running memtier_benchmark.

  #./memtier_benchmark -S "/tmp/memcached.sock" --protocol=memcache_binary
   --pipeline=1 --distinct-client-seed --ratio=0:3 --key-pattern=R:R
   --key-minimum=1 --key-maximum=3200000 -n allkeys
   --threads=64 -c 1 -R -x 6

9. Read the pgpromote_success counter.

Test Results:
=============
Without Patch
------------------
1. pgpromote_success  before test
Node 0:  pgpromote_success 11
Node 1:  pgpromote_success 140974

pgpromote_success  after test
Node 0:  pgpromote_success 11
Node 1:  pgpromote_success 140974

2. Memtier-benchmark result.
AGGREGATED AVERAGE RESULTS (6 runs)
==================================================================
Type    Ops/sec   Hits/sec   Misses/sec  Avg. Latency  p50 Latency
------------------------------------------------------------------
Sets     0.00       ---         ---        ---          ---
Gets    305792.03  305791.93   0.10       0.18949       0.16700
Waits    0.00       ---         ---        ---          ---
Totals  305792.03  305791.93   0.10       0.18949       0.16700

======================================
p99 Latency  p99.9 Latency  KB/sec
-------------------------------------
---          ---            0.00
0.44700     1.71100        11542.69
---           ---            ---
0.44700     1.71100        11542.69

With Patch
---------------
1. pgpromote_success  before test
Node 0:  pgpromote_success 5
Node 1:  pgpromote_success 89386

pgpromote_success  after test
Node 0:  pgpromote_success 57895
Node 1:  pgpromote_success 141463

2. Memtier-benchmark result.
AGGREGATED AVERAGE RESULTS (6 runs)
====================================================================
Type    Ops/sec    Hits/sec  Misses/sec  Avg. Latency  p50 Latency
--------------------------------------------------------------------
Sets     0.00        ---       ---        ---           ---
Gets    521942.24  521942.07  0.17       0.11459        0.10300
Waits    0.00        ---       ---         ---          ---
Totals  521942.24  521942.07  0.17       0.11459        0.10300

=======================================
p99 Latency  p99.9 Latency  KB/sec
---------------------------------------
 ---          ---            0.00
0.23100      0.31900        19701.68
---          ---             ---
0.23100      0.31900        19701.68


Test Result Analysis:
=====================
1. With patch we could observe pages are getting promoted.
2. Memtier-benchmark results shows that, with the patch,
   performance has increased more than 50%.

 Ops/sec without fix -  305792.03
 Ops/sec with fix    -  521942.24


This patch (of 2):

Instead of using 'cpu_to_node()', we use 'numa_node_id()', which is
quicker.  smp_processor_id is guaranteed to be stable in the
'mpol_misplaced()' function because it is called with ptl held. 
lockdep_assert_held was added to ensure that.

No functional change in this patch.

[donettom@linux.ibm.com: add "* @vmf: structure describing the fault" comment]
  Link: https://lkml.kernel.org/r/d8b993ea9dccfac0bc3ed61d3a81f4ac5f376e46.1711002865.git.donettom@linux.ibm.com
Link: https://lkml.kernel.org/r/cover.1711373653.git.donettom@linux.ibm.com
Link: https://lkml.kernel.org/r/6059f034f436734b472d066db69676fb3a459864.1711373653.git.donettom@linux.ibm.com
Link: https://lkml.kernel.org/r/cover.1709909210.git.donettom@linux.ibm.com
Link: https://lkml.kernel.org/r/744646531af02cc687cde8ae788fb1779e99d02c.1709909210.git.donettom@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V (IBM) <aneesh.kumar@kernel.org>
Signed-off-by: Donet Tom <donettom@linux.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Huang, Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25 20:55:48 -07:00
Peter Xu
1965e933dd mm/treewide: replace pXd_huge() with pXd_leaf()
Now after we're sure all pXd_huge() definitions are the same as pXd_leaf(),
reuse it.  Luckily, pXd_huge() isn't widely used.

Link: https://lkml.kernel.org/r/20240318200404.448346-12-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Bjorn Andersson <andersson@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Fabio Estevam <festevam@denx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Konrad Dybcio <konrad.dybcio@linaro.org>
Cc: Krzysztof Kozlowski <krzysztof.kozlowski@linaro.org>
Cc: Lucas Stach <l.stach@pengutronix.de>
Cc: Mark Salter <msalter@redhat.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Shawn Guo <shawnguo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25 20:55:46 -07:00
David Hildenbrand
04c35ab3bd x86/mm/pat: fix VM_PAT handling in COW mappings
PAT handling won't do the right thing in COW mappings: the first PTE (or,
in fact, all PTEs) can be replaced during write faults to point at anon
folios.  Reliably recovering the correct PFN and cachemode using
follow_phys() from PTEs will not work in COW mappings.

Using follow_phys(), we might just get the address+protection of the anon
folio (which is very wrong), or fail on swap/nonswap entries, failing
follow_phys() and triggering a WARN_ON_ONCE() in untrack_pfn() and
track_pfn_copy(), not properly calling free_pfn_range().

In free_pfn_range(), we either wouldn't call memtype_free() or would call
it with the wrong range, possibly leaking memory.

To fix that, let's update follow_phys() to refuse returning anon folios,
and fallback to using the stored PFN inside vma->vm_pgoff for COW mappings
if we run into that.

We will now properly handle untrack_pfn() with COW mappings, where we
don't need the cachemode.  We'll have to fail fork()->track_pfn_copy() if
the first page was replaced by an anon folio, though: we'd have to store
the cachemode in the VMA to make this work, likely growing the VMA size.

For now, lets keep it simple and let track_pfn_copy() just fail in that
case: it would have failed in the past with swap/nonswap entries already,
and it would have done the wrong thing with anon folios.

Simple reproducer to trigger the WARN_ON_ONCE() in untrack_pfn():

<--- C reproducer --->
 #include <stdio.h>
 #include <sys/mman.h>
 #include <unistd.h>
 #include <liburing.h>

 int main(void)
 {
         struct io_uring_params p = {};
         int ring_fd;
         size_t size;
         char *map;

         ring_fd = io_uring_setup(1, &p);
         if (ring_fd < 0) {
                 perror("io_uring_setup");
                 return 1;
         }
         size = p.sq_off.array + p.sq_entries * sizeof(unsigned);

         /* Map the submission queue ring MAP_PRIVATE */
         map = mmap(0, size, PROT_READ | PROT_WRITE, MAP_PRIVATE,
                    ring_fd, IORING_OFF_SQ_RING);
         if (map == MAP_FAILED) {
                 perror("mmap");
                 return 1;
         }

         /* We have at least one page. Let's COW it. */
         *map = 0;
         pause();
         return 0;
 }
<--- C reproducer --->

On a system with 16 GiB RAM and swap configured:
 # ./iouring &
 # memhog 16G
 # killall iouring
[  301.552930] ------------[ cut here ]------------
[  301.553285] WARNING: CPU: 7 PID: 1402 at arch/x86/mm/pat/memtype.c:1060 untrack_pfn+0xf4/0x100
[  301.553989] Modules linked in: binfmt_misc nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_g
[  301.558232] CPU: 7 PID: 1402 Comm: iouring Not tainted 6.7.5-100.fc38.x86_64 #1
[  301.558772] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebu4
[  301.559569] RIP: 0010:untrack_pfn+0xf4/0x100
[  301.559893] Code: 75 c4 eb cf 48 8b 43 10 8b a8 e8 00 00 00 3b 6b 28 74 b8 48 8b 7b 30 e8 ea 1a f7 000
[  301.561189] RSP: 0018:ffffba2c0377fab8 EFLAGS: 00010282
[  301.561590] RAX: 00000000ffffffea RBX: ffff9208c8ce9cc0 RCX: 000000010455e047
[  301.562105] RDX: 07fffffff0eb1e0a RSI: 0000000000000000 RDI: ffff9208c391d200
[  301.562628] RBP: 0000000000000000 R08: ffffba2c0377fab8 R09: 0000000000000000
[  301.563145] R10: ffff9208d2292d50 R11: 0000000000000002 R12: 00007fea890e0000
[  301.563669] R13: 0000000000000000 R14: ffffba2c0377fc08 R15: 0000000000000000
[  301.564186] FS:  0000000000000000(0000) GS:ffff920c2fbc0000(0000) knlGS:0000000000000000
[  301.564773] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  301.565197] CR2: 00007fea88ee8a20 CR3: 00000001033a8000 CR4: 0000000000750ef0
[  301.565725] PKRU: 55555554
[  301.565944] Call Trace:
[  301.566148]  <TASK>
[  301.566325]  ? untrack_pfn+0xf4/0x100
[  301.566618]  ? __warn+0x81/0x130
[  301.566876]  ? untrack_pfn+0xf4/0x100
[  301.567163]  ? report_bug+0x171/0x1a0
[  301.567466]  ? handle_bug+0x3c/0x80
[  301.567743]  ? exc_invalid_op+0x17/0x70
[  301.568038]  ? asm_exc_invalid_op+0x1a/0x20
[  301.568363]  ? untrack_pfn+0xf4/0x100
[  301.568660]  ? untrack_pfn+0x65/0x100
[  301.568947]  unmap_single_vma+0xa6/0xe0
[  301.569247]  unmap_vmas+0xb5/0x190
[  301.569532]  exit_mmap+0xec/0x340
[  301.569801]  __mmput+0x3e/0x130
[  301.570051]  do_exit+0x305/0xaf0
...

Link: https://lkml.kernel.org/r/20240403212131.929421-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reported-by: Wupeng Ma <mawupeng1@huawei.com>
Closes: https://lkml.kernel.org/r/20240227122814.3781907-1-mawupeng1@huawei.com
Fixes: b1a86e15dc ("x86, pat: remove the dependency on 'vm_pgoff' in track/untrack pfn vma routines")
Fixes: 5899329b19 ("x86: PAT: implement track/untrack of pfnmap regions for x86 - v3")
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-05 11:21:31 -07:00
Peter Xu
f8572367ea mm/memory: fix missing pte marker for !page on pte zaps
Commit 0cf18e839f of large folio zap work broke uffd-wp.  Now mm's uffd
unit test "wp-unpopulated" will trigger this WARN_ON_ONCE().

The WARN_ON_ONCE() asserts that an VMA cannot be registered with
userfaultfd-wp if it contains a !normal page, but it's actually possible. 
One example is an anonymous vma, register with uffd-wp, read anything will
install a zero page.  Then when zap on it, this should trigger.

What's more, removing that WARN_ON_ONCE may not be enough either, because
we should also not rely on "whether it's a normal page" to decide whether
pte marker is needed.  For example, one can register wr-protect over some
DAX regions to track writes when UFFD_FEATURE_WP_ASYNC enabled, in which
case it can have page==NULL for a devmap but we may want to keep the
marker around.

Link: https://lkml.kernel.org/r/20240313213107.235067-1-peterx@redhat.com
Fixes: 0cf18e839f ("mm/memory: handle !page case in zap_present_pte() separately")
Signed-off-by: Peter Xu <peterx@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Muhammad Usama Anjum <usama.anjum@collabora.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-03-26 11:07:19 -07:00
Barry Song
cd197c3a20 mm: prohibit the last subpage from reusing the entire large folio
In a Copy-on-Write (CoW) scenario, the last subpage will reuse the entire
large folio, resulting in the waste of (nr_pages - 1) pages.  This wasted
memory remains allocated until it is either unmapped or memory reclamation
occurs.

The following small program can serve as evidence of this behavior

 main()
 {
 #define SIZE 1024 * 1024 * 1024UL
         void *p = malloc(SIZE);
         memset(p, 0x11, SIZE);
         if (fork() == 0)
                 _exit(0);
         memset(p, 0x12, SIZE);
         printf("done\n");
         while(1);
 }

For example, using a 1024KiB mTHP by:
 echo always > /sys/kernel/mm/transparent_hugepage/hugepages-1024kB/enabled

(1) w/o the patch, it takes 2GiB,

Before running the test program,
 / # free -m
                total        used        free      shared  buff/cache   available
 Mem:            5754          84        5692           0          17        5669
 Swap:              0           0           0

 / # /a.out &
 / # done

After running the test program,
 / # free -m
                 total        used        free      shared  buff/cache   available
 Mem:            5754        2149        3627           0          19        3605
 Swap:              0           0           0

(2) w/ the patch, it takes 1GiB only,

Before running the test program,
 / # free -m
                 total        used        free      shared  buff/cache   available
 Mem:            5754          89        5687           0          17        5664
 Swap:              0           0           0

 / # /a.out &
 / # done

After running the test program,
 / # free -m
                total        used        free      shared  buff/cache   available
 Mem:            5754        1122        4655           0          17        4632
 Swap:              0           0           0

This patch migrates the last subpage to a small folio and immediately
returns the large folio to the system. It benefits both memory availability
and anti-fragmentation.

Link: https://lkml.kernel.org/r/20240308092721.144735-1-21cnbao@gmail.com
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Lance Yang <ioworker0@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-03-13 12:12:21 -07:00
Kefeng Wang
5aa598a72e mm: memory: fix shift-out-of-bounds in fault_around_bytes_set
The rounddown_pow_of_two(0) is undefined, so val = 0 is not allowed in the
fault_around_bytes_set(), and leads to shift-out-of-bounds,

UBSAN: shift-out-of-bounds in include/linux/log2.h:67:13
shift exponent 4294967295 is too large for 64-bit type 'long unsigned int'
CPU: 7 PID: 107 Comm: sh Not tainted 6.8.0-rc6-next-20240301 #294
Hardware name: QEMU QEMU Virtual Machine, BIOS 0.0.0 02/06/2015
Call trace:
 dump_backtrace+0x94/0xec
 show_stack+0x18/0x24
 dump_stack_lvl+0x78/0x90
 dump_stack+0x18/0x24
 ubsan_epilogue+0x10/0x44
 __ubsan_handle_shift_out_of_bounds+0x98/0x134
 fault_around_bytes_set+0xa4/0xb0
 simple_attr_write_xsigned.isra.0+0xe4/0x1ac
 simple_attr_write+0x18/0x24
 debugfs_attr_write+0x4c/0x98
 vfs_write+0xd0/0x4b0
 ksys_write+0x6c/0xfc
 __arm64_sys_write+0x1c/0x28
 invoke_syscall+0x44/0x104
 el0_svc_common.constprop.0+0x40/0xe0
 do_el0_svc+0x1c/0x28
 el0_svc+0x34/0xdc
 el0t_64_sync_handler+0xc0/0xc4
 el0t_64_sync+0x190/0x194
---[ end trace ]---

Fix it by setting the minimum val to PAGE_SIZE.

Link: https://lkml.kernel.org/r/20240302064312.2358924-1-wangkefeng.wang@huawei.com
Fixes: 53d36a56d8 ("mm: prefer fault_around_pages to fault_around_bytes")
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reported-by: Yue Sun <samsun1006219@gmail.com>
Closes: https://lore.kernel.org/all/CAEkJfYPim6DQqW1GqCiHLdh2-eweqk1fGyXqs3JM+8e1qGge8w@mail.gmail.com/
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-03-06 13:04:18 -08:00
Barry Song
ac96cc4d1c mm: make folio_pte_batch available outside of mm/memory.c
madvise, mprotect and some others might need folio_pte_batch to check if a
range of PTEs are completely mapped to a large folio with contiguous
physical addresses.  Let's make it available in mm/internal.h.

While at it, add proper kernel doc and sanity-check more input parameters
using two additional VM_WARN_ON_FOLIO().

[21cnbao@gmail.com: build fix]
  Link: https://lkml.kernel.org/r/CAGsJ_4wWzG-37D82vqP_zt+Fcbz+URVe5oXLBc4M5wbN8A_gpQ@mail.gmail.com
[david@redhat.com: improve the doc for the exported func]
Link: https://lkml.kernel.org/r/20240227104201.337988-1-21cnbao@gmail.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-03-06 13:04:18 -08:00
John Hubbard
6c1b748ebf mm/memory.c: do_numa_page(): remove a redundant page table read
do_numa_page() is reading from the same page table entry, twice, while
holding the page table lock: once while checking that the pte hasn't
changed, and again in order to modify the pte.

Instead, just read the pte once, and save it in the same old_pte variable
that already exists.  This has no effect on behavior, other than to
provide a tiny potential improvement to performance, by avoiding the
redundant memory read (which the compiler cannot elide, due to
READ_ONCE()).

Also improve the associated comments nearby.

Link: https://lkml.kernel.org/r/20240228034151.459370-1-jhubbard@nvidia.com
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-03-04 17:01:27 -08:00
Matthew Wilcox (Oracle)
63b774993d mm: convert free_swap_cache() to take a folio
All but one caller already has a folio, so convert
free_page_and_swap_cache() to have a folio and remove the call to
page_folio().

Link: https://lkml.kernel.org/r/20240227174254.710559-19-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-03-04 17:01:26 -08:00
Vishal Moola (Oracle)
997f0ecb11 mm/memory: change vmf_anon_prepare() to be non-static
Patch series "Handle hugetlb faults under the VMA lock", v2.

It is generally safe to handle hugetlb faults under the VMA lock.  The
only time this is unsafe is when no anon_vma has been allocated to this
vma yet, so we can use vmf_anon_prepare() instead of anon_vma_prepare() to
bailout if necessary.  This should only happen for the first hugetlb page
in the vma.

Additionally, this patchset begins to use struct vm_fault within
hugetlb_fault().  This works towards cleaning up hugetlb code, and should
significantly reduce the number of arguments passed to functions.

The last patch in this series may cause ltp hugemmap10 to "fail".  This is
because vmf_anon_prepare() may bailout with no anon_vma under the VMA lock
after allocating a folio for the hugepage.  In free_huge_folio(), this
folio is completely freed on bailout iff there is a surplus of hugetlb
pages.  This will remove a folio off the freelist and decrement the number
of hugepages while ltp expects these counters to remain unchanged on
failure.  The rest of the ltp testcases pass.


This patch (of 2):

In order to handle hugetlb faults under the VMA lock, hugetlb can use
vmf_anon_prepare() to ensure we can safely prepare an anon_vma.  Change it
to be a non-static function so it can be used within hugetlb as well.

Link: https://lkml.kernel.org/r/20240221234732.187629-6-vishal.moola@gmail.com
Link: https://lkml.kernel.org/r/20240221234732.187629-2-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-03-04 17:01:15 -08:00
Ryan Roberts
c6ec76a2eb mm: add pte_batch_hint() to reduce scanning in folio_pte_batch()
Some architectures (e.g.  arm64) can tell from looking at a pte, if some
follow-on ptes also map contiguous physical memory with the same pgprot. 
(for arm64, these are contpte mappings).

Take advantage of this knowledge to optimize folio_pte_batch() so that it
can skip these ptes when scanning to create a batch.  By default, if an
arch does not opt-in, folio_pte_batch() returns a compile-time 1, so the
changes are optimized out and the behaviour is as before.

arm64 will opt-in to providing this hint in the next patch, which will
greatly reduce the cost of ptep_get() when scanning a range of contptes.

Link: https://lkml.kernel.org/r/20240215103205.2607016-16-ryan.roberts@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Tested-by: John Hubbard <jhubbard@nvidia.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Morse <james.morse@arm.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 15:27:18 -08:00
David Hildenbrand
10ebac4f95 mm/memory: optimize unmap/zap with PTE-mapped THP
Similar to how we optimized fork(), let's implement PTE batching when
consecutive (present) PTEs map consecutive pages of the same large folio.

Most infrastructure we need for batching (mmu gather, rmap) is already
there.  We only have to add get_and_clear_full_ptes() and
clear_full_ptes().  Similarly, extend zap_install_uffd_wp_if_needed() to
process a PTE range.

We won't bother sanity-checking the mapcount of all subpages, but only
check the mapcount of the first subpage we process.  If there is a real
problem hiding somewhere, we can trigger it simply by using small folios,
or when we zap single pages of a large folio.  Ideally, we had that check
in rmap code (including for delayed rmap), but then we cannot print the
PTE.  Let's keep it simple for now.  If we ever have a cheap
folio_mapcount(), we might just want to check for underflows there.

To keep small folios as fast as possible force inlining of a specialized
variant using __always_inline with nr=1.

Link: https://lkml.kernel.org/r/20240214204435.167852-11-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 15:27:17 -08:00
David Hildenbrand
2b42a7e531 mm/memory: factor out zapping folio pte into zap_present_folio_pte()
Let's prepare for further changes by factoring it out into a separate
function.

Link: https://lkml.kernel.org/r/20240214204435.167852-5-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 15:27:17 -08:00
David Hildenbrand
d11838ed63 mm/memory: further separate anon and pagecache folio handling in zap_present_pte()
We don't need up-to-date accessed-dirty information for anon folios and
can simply work with the ptent we already have.  Also, we know the RSS
counter we want to update.

We can safely move arch_check_zapped_pte() + tlb_remove_tlb_entry() +
zap_install_uffd_wp_if_needed() after updating the folio and RSS.

While at it, only call zap_install_uffd_wp_if_needed() if there is even
any chance that pte_install_uffd_wp_if_needed() would do *something*. 
That is, just don't bother if uffd-wp does not apply.

Link: https://lkml.kernel.org/r/20240214204435.167852-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 15:27:17 -08:00
David Hildenbrand
0cf18e839f mm/memory: handle !page case in zap_present_pte() separately
We don't need uptodate accessed/dirty bits, so in theory we could replace
ptep_get_and_clear_full() by an optimized ptep_clear_full() function. 
Let's rely on the provided pte.

Further, there is no scenario where we would have to insert uffd-wp
markers when zapping something that is not a normal page (i.e., zeropage).
Add a sanity check to make sure this remains true.

should_zap_folio() no longer has to handle NULL pointers.  This change
replaces 2/3 "!page/!folio" checks by a single "!page" one.

Note that arch_check_zapped_pte() on x86-64 checks the HW-dirty bit to
detect shadow stack entries.  But for shadow stack entries, the HW dirty
bit (in combination with non-writable PTEs) is set by software.  So for
the arch_check_zapped_pte() check, we don't have to sync against HW
setting the HW dirty bit concurrently, it is always set.

Link: https://lkml.kernel.org/r/20240214204435.167852-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 15:27:17 -08:00
David Hildenbrand
789753e17c mm/memory: factor out zapping of present pte into zap_present_pte()
Patch series "mm/memory: optimize unmap/zap with PTE-mapped THP", v3.

This series is based on [1].  Similar to what we did with fork(), let's
implement PTE batching during unmap/zap when processing PTE-mapped THPs.

We collect consecutive PTEs that map consecutive pages of the same large
folio, making sure that the other PTE bits are compatible, and (a) adjust
the refcount only once per batch, (b) call rmap handling functions only
once per batch, (c) perform batch PTE setting/updates and (d) perform TLB
entry removal once per batch.

Ryan was previously working on this in the context of cont-pte for arm64,
int latest iteration [2] with a focus on arm6 with cont-pte only.  This
series implements the optimization for all architectures, independent of
such PTE bits, teaches MMU gather/TLB code to be fully aware of such
large-folio-pages batches as well, and amkes use of our new rmap batching
function when removing the rmap.

To achieve that, we have to enlighten MMU gather / page freeing code
(i.e., everything that consumes encoded_page) to process unmapping of
consecutive pages that all belong to the same large folio.  I'm being very
careful to not degrade order-0 performance, and it looks like I managed to
achieve that.

While this series should -- similar to [1] -- be beneficial for adding
cont-pte support on arm64[2], it's one of the requirements for maintaining
a total mapcount[3] for large folios with minimal added overhead and
further changes[4] that build up on top of the total mapcount.

Independent of all that, this series results in a speedup during munmap()
and similar unmapping (process teardown, MADV_DONTNEED on larger ranges)
with PTE-mapped THP, which is the default with THPs that are smaller than
a PMD (for example, 16KiB to 1024KiB mTHPs for anonymous memory[5]).

On an Intel Xeon Silver 4210R CPU, munmap'ing a 1GiB VMA backed by
PTE-mapped folios of the same size (stddev < 1%) results in the following
runtimes for munmap() in seconds (shorter is better):

Folio Size | mm-unstable |      New | Change
---------------------------------------------
      4KiB |    0.058110 | 0.057715 |   - 1%
     16KiB |    0.044198 | 0.035469 |   -20%
     32KiB |    0.034216 | 0.023522 |   -31%
     64KiB |    0.029207 | 0.018434 |   -37%
    128KiB |    0.026579 | 0.014026 |   -47%
    256KiB |    0.025130 | 0.011756 |   -53%
    512KiB |    0.024292 | 0.010703 |   -56%
   1024KiB |    0.023812 | 0.010294 |   -57%
   2048KiB |    0.023785 | 0.009910 |   -58%

[1] https://lkml.kernel.org/r/20240129124649.189745-1-david@redhat.com
[2] https://lkml.kernel.org/r/20231218105100.172635-1-ryan.roberts@arm.com
[3] https://lkml.kernel.org/r/20230809083256.699513-1-david@redhat.com
[4] https://lkml.kernel.org/r/20231124132626.235350-1-david@redhat.com
[5] https://lkml.kernel.org/r/20231207161211.2374093-1-ryan.roberts@arm.com


This patch (of 10):

Let's prepare for further changes by factoring out processing of present
PTEs.

Link: https://lkml.kernel.org/r/20240214204435.167852-1-david@redhat.com
Link: https://lkml.kernel.org/r/20240214204435.167852-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 15:27:17 -08:00
David Hildenbrand
d7c0e5f722 mm/memory: ignore writable bit in folio_pte_batch()
...  and conditionally return to the caller if any PTE except the first
one is writable.  fork() has to make sure to properly write-protect in
case any PTE is writable.  Other users (e.g., page unmaping) are expected
to not care.

Link: https://lkml.kernel.org/r/20240129124649.189745-16-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Alexandre Ghiti <alexghiti@rivosinc.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: David S. Miller <davem@davemloft.net>
Cc: Dinh Nguyen <dinguyen@kernel.org>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Naveen N. Rao <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Russell King (Oracle) <linux@armlinux.org.uk>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:52 -08:00
David Hildenbrand
25365e1069 mm/memory: ignore dirty/accessed/soft-dirty bits in folio_pte_batch()
Let's always ignore the accessed/young bit: we'll always mark the PTE as
old in our child process during fork, and upcoming users will similarly
not care.

Ignore the dirty bit only if we don't want to duplicate the dirty bit into
the child process during fork.  Maybe, we could just set all PTEs in the
child dirty if any PTE is dirty.  For now, let's keep the behavior
unchanged, this can be optimized later if required.

Ignore the soft-dirty bit only if the bit doesn't have any meaning in the
src vma, and similarly won't have any in the copied dst vma.

For now, we won't bother with the uffd-wp bit.

Link: https://lkml.kernel.org/r/20240129124649.189745-15-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Alexandre Ghiti <alexghiti@rivosinc.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: David S. Miller <davem@davemloft.net>
Cc: Dinh Nguyen <dinguyen@kernel.org>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Naveen N. Rao <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Russell King (Oracle) <linux@armlinux.org.uk>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:52 -08:00
David Hildenbrand
f8d937761d mm/memory: optimize fork() with PTE-mapped THP
Let's implement PTE batching when consecutive (present) PTEs map
consecutive pages of the same large folio, and all other PTE bits besides
the PFNs are equal.

We will optimize folio_pte_batch() separately, to ignore selected PTE
bits.  This patch is based on work by Ryan Roberts.

Use __always_inline for __copy_present_ptes() and keep the handling for
single PTEs completely separate from the multi-PTE case: we really want
the compiler to optimize for the single-PTE case with small folios, to not
degrade performance.

Note that PTE batching will never exceed a single page table and will
always stay within VMA boundaries.

Further, processing PTE-mapped THP that maybe pinned and have
PageAnonExclusive set on at least one subpage should work as expected, but
there is room for improvement: We will repeatedly (1) detect a PTE batch
(2) detect that we have to copy a page (3) fall back and allocate a single
page to copy a single page.  For now we won't care as pinned pages are a
corner case, and we should rather look into maintaining only a single
PageAnonExclusive bit for large folios.

Link: https://lkml.kernel.org/r/20240129124649.189745-14-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Alexandre Ghiti <alexghiti@rivosinc.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: David S. Miller <davem@davemloft.net>
Cc: Dinh Nguyen <dinguyen@kernel.org>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Naveen N. Rao <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Russell King (Oracle) <linux@armlinux.org.uk>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:52 -08:00
David Hildenbrand
53723298ba mm/memory: pass PTE to copy_present_pte()
We already read it, let's just forward it.

This patch is based on work by Ryan Roberts.

[david@redhat.com: fix the hmm "exclusive_cow" selftest]
  Link: https://lkml.kernel.org/r/13f296b8-e882-47fd-b939-c2141dc28717@redhat.com
Link: https://lkml.kernel.org/r/20240129124649.189745-13-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Alexandre Ghiti <alexghiti@rivosinc.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: David S. Miller <davem@davemloft.net>
Cc: Dinh Nguyen <dinguyen@kernel.org>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Naveen N. Rao <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Russell King (Oracle) <linux@armlinux.org.uk>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:51 -08:00
David Hildenbrand
23ed190868 mm/memory: factor out copying the actual PTE in copy_present_pte()
Let's prepare for further changes.

Link: https://lkml.kernel.org/r/20240129124649.189745-12-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Alexandre Ghiti <alexghiti@rivosinc.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: David S. Miller <davem@davemloft.net>
Cc: Dinh Nguyen <dinguyen@kernel.org>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Naveen N. Rao <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Russell King (Oracle) <linux@armlinux.org.uk>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:51 -08:00
Kefeng Wang
085ff35e76 mm: memory: move mem_cgroup_charge() into alloc_anon_folio()
The GFP flags from vma_thp_gfp_mask() according to user configuration only
used for large folio allocation but not for memory cgroup charge, and
GFP_KERNEL is used for both order-0 and large order folio when memory
cgroup charge at present.  However, mem_cgroup_charge() uses the GFP flags
in a fairly sophisticated way.  In addition to checking
gfpflags_allow_blocking(), it pays attention to __GFP_NORETRY and
__GFP_RETRY_MAYFAIL to ensure that processes within this memcg do not
exceed their quotas.

So we'd better to move mem_cgroup_charge() into alloc_anon_folio(),

1) it will make us to allocate as much as possible large order folio,
   because we could try the next order if mem_cgroup_charge() fails,
   although the memcg's memory usage is close to its limits.

2) using same GFP flags for allocation and charge is to be consistent
   with PMD THP firstly, in addition, according to GFP flag returned from
   vma_thp_gfp_mask(), GFP_TRANSHUGE_LIGHT could make us skip direct
   reclaim, _GFP_NORETRY will make us skip mem_cgroup_oom() and won't
   trigger memory cgroup oom from large order(order <= COSTLY_ORDER) folio
   charging.

Link: https://lkml.kernel.org/r/20240122011612.501029-1-wangkefeng.wang@huawei.com
Link: https://lkml.kernel.org/r/20240117103954.2756050-1-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22 10:24:38 -08:00
Kefeng Wang
6b27cc6c66 mm: convert mm_counter_file() to take a folio
Now all callers of mm_counter_file() have a folio, convert
mm_counter_file() to take a folio.  Saves a call to compound_head() hidden
inside PageSwapBacked().

Link: https://lkml.kernel.org/r/20240111152429.3374566-11-willy@infradead.org
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-21 16:00:04 -08:00
Kefeng Wang
a23f517b0e mm: convert mm_counter() to take a folio
Now all callers of mm_counter() have a folio, convert mm_counter() to take
a folio.  Saves a call to compound_head() hidden inside PageAnon().

Link: https://lkml.kernel.org/r/20240111152429.3374566-10-willy@infradead.org
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-21 16:00:03 -08:00
Kefeng Wang
eabafaaa95 mm: convert to should_zap_page() to should_zap_folio()
Make should_zap_page() take a folio and rename it to should_zap_folio() as
preparation for converting mm counter functions to take a folio.  Saves a
call to compound_head() hidden inside PageAnon().

[wangkefeng.wang@huawei.com: fix used-uninitialized warning]
  Link: https://lkml.kernel.org/r/962a7993-fce9-4de8-85cd-25e290f25736@huawei.com
Link: https://lkml.kernel.org/r/20240111152429.3374566-9-willy@infradead.org
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-21 16:00:03 -08:00
Kefeng Wang
530c2a0da0 mm: use pfn_swap_entry_folio() in copy_nonpresent_pte()
Call pfn_swap_entry_folio() as preparation for converting mm counter
functions to take a folio.

Link: https://lkml.kernel.org/r/20240111152429.3374566-8-willy@infradead.org
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-21 16:00:03 -08:00
Kefeng Wang
21fff064a2 mm: memory: use nth_page() in clear/copy_subpage()
The clear and copy of huge gigantic page has converted to use nth_page()
to handle the possible discontinuous struct page(SPARSEMEM without
VMEMMAP), but not change for the non-gigantic part, fix it too.

Link: https://lkml.kernel.org/r/20231229082207.60235-1-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Zi Yan <ziy@nvidia.com>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-21 16:00:02 -08:00
Kairui Song
13ddaf26be mm/swap: fix race when skipping swapcache
When skipping swapcache for SWP_SYNCHRONOUS_IO, if two or more threads
swapin the same entry at the same time, they get different pages (A, B). 
Before one thread (T0) finishes the swapin and installs page (A) to the
PTE, another thread (T1) could finish swapin of page (B), swap_free the
entry, then swap out the possibly modified page reusing the same entry. 
It breaks the pte_same check in (T0) because PTE value is unchanged,
causing ABA problem.  Thread (T0) will install a stalled page (A) into the
PTE and cause data corruption.

One possible callstack is like this:

CPU0                                 CPU1
----                                 ----
do_swap_page()                       do_swap_page() with same entry
<direct swapin path>                 <direct swapin path>
<alloc page A>                       <alloc page B>
swap_read_folio() <- read to page A  swap_read_folio() <- read to page B
<slow on later locks or interrupt>   <finished swapin first>
...                                  set_pte_at()
                                     swap_free() <- entry is free
                                     <write to page B, now page A stalled>
                                     <swap out page B to same swap entry>
pte_same() <- Check pass, PTE seems
              unchanged, but page A
              is stalled!
swap_free() <- page B content lost!
set_pte_at() <- staled page A installed!

And besides, for ZRAM, swap_free() allows the swap device to discard the
entry content, so even if page (B) is not modified, if swap_read_folio()
on CPU0 happens later than swap_free() on CPU1, it may also cause data
loss.

To fix this, reuse swapcache_prepare which will pin the swap entry using
the cache flag, and allow only one thread to swap it in, also prevent any
parallel code from putting the entry in the cache.  Release the pin after
PT unlocked.

Racers just loop and wait since it's a rare and very short event.  A
schedule_timeout_uninterruptible(1) call is added to avoid repeated page
faults wasting too much CPU, causing livelock or adding too much noise to
perf statistics.  A similar livelock issue was described in commit
029c4628b2 ("mm: swap: get rid of livelock in swapin readahead")

Reproducer:

This race issue can be triggered easily using a well constructed
reproducer and patched brd (with a delay in read path) [1]:

With latest 6.8 mainline, race caused data loss can be observed easily:
$ gcc -g -lpthread test-thread-swap-race.c && ./a.out
  Polulating 32MB of memory region...
  Keep swapping out...
  Starting round 0...
  Spawning 65536 workers...
  32746 workers spawned, wait for done...
  Round 0: Error on 0x5aa00, expected 32746, got 32743, 3 data loss!
  Round 0: Error on 0x395200, expected 32746, got 32743, 3 data loss!
  Round 0: Error on 0x3fd000, expected 32746, got 32737, 9 data loss!
  Round 0 Failed, 15 data loss!

This reproducer spawns multiple threads sharing the same memory region
using a small swap device.  Every two threads updates mapped pages one by
one in opposite direction trying to create a race, with one dedicated
thread keep swapping out the data out using madvise.

The reproducer created a reproduce rate of about once every 5 minutes, so
the race should be totally possible in production.

After this patch, I ran the reproducer for over a few hundred rounds and
no data loss observed.

Performance overhead is minimal, microbenchmark swapin 10G from 32G
zram:

Before:     10934698 us
After:      11157121 us
Cached:     13155355 us (Dropping SWP_SYNCHRONOUS_IO flag)

[kasong@tencent.com: v4]
  Link: https://lkml.kernel.org/r/20240219082040.7495-1-ryncsn@gmail.com
Link: https://lkml.kernel.org/r/20240206182559.32264-1-ryncsn@gmail.com
Fixes: 0bcac06f27 ("mm, swap: skip swapcache for swapin of synchronous device")
Reported-by: "Huang, Ying" <ying.huang@intel.com>
Closes: https://lore.kernel.org/lkml/87bk92gqpx.fsf_-_@yhuang6-desk2.ccr.corp.intel.com/
Link: https://github.com/ryncsn/emm-test-project/tree/master/swap-stress-race [1]
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Yu Zhao <yuzhao@google.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Chris Li <chrisl@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-20 14:20:48 -08:00
Jiaxun Yang
8fa5070833 mm/memory: Use exception ip to search exception tables
On architectures with delay slot, instruction_pointer() may differ
from where exception was triggered.

Use exception_ip we just introduced to search exception tables to
get rid of the problem.

Fixes: 4bce37a68f ("mips/mm: Convert to using lock_mm_and_find_vma()")
Reported-by: Xi Ruoyao <xry111@xry111.site>
Link: https://lore.kernel.org/r/75e9fd7b08562ad9b456a5bdaacb7cc220311cc9.camel@xry111.site/
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Jiaxun Yang <jiaxun.yang@flygoat.com>
Signed-off-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
2024-02-12 23:04:42 +01:00
David Hildenbrand
e4e3df290f mm/memory: fix folio_set_dirty() vs. folio_mark_dirty() in zap_pte_range()
The correct folio replacement for "set_page_dirty()" is
"folio_mark_dirty()", not "folio_set_dirty()".  Using the latter won't
properly inform the FS using the dirty_folio() callback.

This has been found by code inspection, but likely this can result in some
real trouble when zapping dirty PTEs that point at clean pagecache folios.

Yuezhang Mo said: "Without this fix, testing the latest exfat with
xfstests, test cases generic/029 and generic/030 will fail."

Link: https://lkml.kernel.org/r/20240122171751.272074-1-david@redhat.com
Fixes: c46265030b ("mm/memory: page_remove_rmap() -> folio_remove_rmap_pte()")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reported-by: Ryan Roberts <ryan.roberts@arm.com>
Closes: https://lkml.kernel.org/r/2445cedb-61fb-422c-8bfb-caf0a2beed62@arm.com
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Yuezhang Mo <Yuezhang.Mo@sony.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-01-25 23:52:21 -08:00