IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Vincent reported that for states with a NULL startup/teardown function
we do not call cpuhp_invoke_callback() (because there is none) and as
such we'll not update the cpu_dying() state.
The stale cpu_dying() can eventually lead to triggering BUG().
Rectify this by updating cpu_dying() in the exact same places the
hotplug machinery tracks its directional state, namely
cpuhp_set_state() and cpuhp_reset_state().
Reported-by: Vincent Donnefort <vincent.donnefort@arm.com>
Suggested-by: Vincent Donnefort <vincent.donnefort@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Donnefort <vincent.donnefort@arm.com>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/YH7r+AoQEReSvxBI@hirez.programming.kicks-ass.net
Introduce a cpumask that indicates (for each CPU) what direction the
CPU hotplug is currently going. Notably, it tracks rollbacks. Eg. when
an up fails and we do a roll-back down, it will accurately reflect the
direction.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210310150109.151441252@infradead.org
Factorizing and unifying cpuhp callback range invocations, especially for
the hotunplug path, where two different ways of decrementing were used. The
first one, decrements before the callback is called:
cpuhp_thread_fun()
state = st->state;
st->state--;
cpuhp_invoke_callback(state);
The second one, after:
take_down_cpu()|cpuhp_down_callbacks()
cpuhp_invoke_callback(st->state);
st->state--;
This is problematic for rolling back the steps in case of error, as
depending on the decrement, the rollback will start from N or N-1. It also
makes tracing inconsistent, between steps run in the cpuhp thread and
the others.
Additionally, avoid useless cpuhp_thread_fun() loops by skipping empty
steps.
Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20210216103506.416286-4-vincent.donnefort@arm.com
The atomic states (between CPUHP_AP_IDLE_DEAD and CPUHP_AP_ONLINE) are
triggered by the CPUHP_BRINGUP_CPU step. If the latter fails, no atomic
state can be rolled back.
DEAD callbacks too can't fail and disallow recovery. As a consequence,
during hotunplug, the fail injection interface should prohibit all states
from CPUHP_BRINGUP_CPU to CPUHP_ONLINE.
Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20210216103506.416286-3-vincent.donnefort@arm.com
Currently, the only way of resetting the fail injection is to trigger a
hotplug, hotunplug or both. This is rather annoying for testing
and, as the default value for this file is -1, it seems pretty natural to
let a user write it.
Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20210216103506.416286-2-vincent.donnefort@arm.com
This commit adds a lockdep_is_cpus_held() function to verify that the
proper locks are held and that various operations are running in the
correct context.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Neeraj Upadhyay <neeraju@codeaurora.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
- migrate_disable/enable() support which originates from the RT tree and
is now a prerequisite for the new preemptible kmap_local() API which aims
to replace kmap_atomic().
- A fair amount of topology and NUMA related improvements
- Improvements for the frequency invariant calculations
- Enhanced robustness for the global CPU priority tracking and decision
making
- The usual small fixes and enhancements all over the place
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl/XwK4THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoX28D/9cVrvziSQGfBfuQWnUiw8iOIq1QBa2
Me+Tvenhfrlt7xU6rbP9ciFu7eTN+fS06m5uQPGI+t22WuJmHzbmw1bJVXfkvYfI
/QoU+Hg7DkDAn1p7ZKXh0dRkV0nI9ixxSHl0E+Zf1ATBxCUMV2SO85flg6z/4qJq
3VWUye0dmR7/bhtkIjv5rwce9v2JB2g1AbgYXYTW9lHVoUdGoMSdiZAF4tGyHLnx
sJ6DMqQ+k+dmPyYO0z5MTzjW/fXit4n9w2e3z9TvRH/uBu58WSW1RBmQYX6aHBAg
dhT9F4lvTs6lJY23x5RSFWDOv6xAvKF5a0xfb8UZcyH5EoLYrPRvm42a0BbjdeRa
u0z7LbwIlKA+RFdZzFZWz8UvvO0ljyMjmiuqZnZ5dY9Cd80LSBuxrWeQYG0qg6lR
Y2povhhCepEG+q8AXIe2YjHKWKKC1s/l/VY3CNnCzcd21JPQjQ4Z5eWGmHif5IED
CntaeFFhZadR3w02tkX35zFmY3w4soKKrbI4EKWrQwd+cIEQlOSY7dEPI/b5BbYj
MWAb3P4EG9N77AWTNmbhK4nN0brEYb+rBbCA+5dtNBVhHTxAC7OTWElJOC2O66FI
e06dREjvwYtOkRUkUguWwErbIai2gJ2MH0VILV3hHoh64oRk7jjM8PZYnjQkdptQ
Gsq0rJW5iiu/OQ==
=Oz1V
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Thomas Gleixner:
- migrate_disable/enable() support which originates from the RT tree
and is now a prerequisite for the new preemptible kmap_local() API
which aims to replace kmap_atomic().
- A fair amount of topology and NUMA related improvements
- Improvements for the frequency invariant calculations
- Enhanced robustness for the global CPU priority tracking and decision
making
- The usual small fixes and enhancements all over the place
* tag 'sched-core-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (61 commits)
sched/fair: Trivial correction of the newidle_balance() comment
sched/fair: Clear SMT siblings after determining the core is not idle
sched: Fix kernel-doc markup
x86: Print ratio freq_max/freq_base used in frequency invariance calculations
x86, sched: Use midpoint of max_boost and max_P for frequency invariance on AMD EPYC
x86, sched: Calculate frequency invariance for AMD systems
irq_work: Optimize irq_work_single()
smp: Cleanup smp_call_function*()
irq_work: Cleanup
sched: Limit the amount of NUMA imbalance that can exist at fork time
sched/numa: Allow a floating imbalance between NUMA nodes
sched: Avoid unnecessary calculation of load imbalance at clone time
sched/numa: Rename nr_running and break out the magic number
sched: Make migrate_disable/enable() independent of RT
sched/topology: Condition EAS enablement on FIE support
arm64: Rebuild sched domains on invariance status changes
sched/topology,schedutil: Wrap sched domains rebuild
sched/uclamp: Allow to reset a task uclamp constraint value
sched/core: Fix typos in comments
Documentation: scheduler: fix information on arch SD flags, sched_domain and sched_debug
...
powerpc/64s keeps a counter in the mm which counts bits set in
mm_cpumask as well as other things. This means it can't use generic code
to clear bits out of the mask and doesn't adjust the arch specific
counter.
Add an arch override that allows powerpc/64s to use
clear_tasks_mm_cpumask().
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201126102530.691335-4-npiggin@gmail.com
With the new mechanism which kicks tasks off the outgoing CPU at the end of
schedule() the situation on an outgoing CPU right before the stopper thread
brings it down completely is:
- All user tasks and all unbound kernel threads have either been migrated
away or are not running and the next wakeup will move them to a online CPU.
- All per CPU kernel threads, except cpu hotplug thread and the stopper
thread have either been unbound or parked by the responsible CPU hotplug
callback.
That means that at the last step before the stopper thread is invoked the
cpu hotplug thread is the last legitimate running task on the outgoing
CPU.
Add a final wait step right before the stopper thread is kicked which
ensures that any still running tasks on the way to park or on the way to
kick themself of the CPU are either sleeping or gone.
This allows to remove the migrate_tasks() crutch in sched_cpu_dying(). If
sched_cpu_dying() detects that there is still another running task aside of
the stopper thread then it will explode with the appropriate fireworks.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Link: https://lkml.kernel.org/r/20201023102346.547163969@infradead.org
- Optimize the task wakeup CPU selection logic, to improve scalability and
reduce wakeup latency spikes
- PELT enhancements
- CFS bandwidth handling fixes
- Optimize the wakeup path by remove rq->wake_list and replacing it with ->ttwu_pending
- Optimize IPI cross-calls by making flush_smp_call_function_queue()
process sync callbacks first.
- Misc fixes and enhancements.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl7WPL0RHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1i0ThAAs0fbvMzNJ5SWFdwOQ4KZIlA+Im4dEBMK
sx/XAZqa/hGxvkm1jS0RDVQl1V1JdOlru5UF4C42ctnAFGtBBHDriO5rn9oCpkSw
DAoLc4eZqzldIXN6sDZ0xMtC14Eu15UAP40OyM4qxBc4GqGlOnnale6Vhn+n+pLQ
jAuZlMJIkmmzeA6cuvtultevrVh+QUqJ/5oNUANlTER4OM48umjr5rNTOb8cIW53
9K3vbS3nmqSvJuIyqfRFoMy5GFM6+Jj2+nYuq8aTuYLEtF4qqWzttS3wBzC9699g
XYRKILkCK8ZP4RB5Ps/DIKj6maZGZoICBxTJEkIgXujJlxlKKTD3mddk+0LBXChW
Ijznanxn67akoAFpqi/Dnkhieg7cUrE9v1OPRS2J0xy550synSPFcSgOK3viizga
iqbjptY4scUWkCwHQNjABerxc7MWzrwbIrRt+uNvCaqJLweUh0GnEcV5va8R+4I8
K20XwOdrzuPLo5KdDWA/BKOEv49guHZDvoykzlwMlR3gFfwHS/UsjzmSQIWK3gZG
9OMn8ibO2f1OzhRcEpDLFzp7IIj6NJmPFVSW+7xHyL9/vTveUx3ZXPLteb2qxJVP
BYPsduVx8YeGRBlLya0PJriB23ajQr0lnHWo15g0uR9o/0Ds1ephcymiF3QJmCaA
To3CyIuQN8M=
=C2OP
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2020-06-02' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
"The changes in this cycle are:
- Optimize the task wakeup CPU selection logic, to improve
scalability and reduce wakeup latency spikes
- PELT enhancements
- CFS bandwidth handling fixes
- Optimize the wakeup path by remove rq->wake_list and replacing it
with ->ttwu_pending
- Optimize IPI cross-calls by making flush_smp_call_function_queue()
process sync callbacks first.
- Misc fixes and enhancements"
* tag 'sched-core-2020-06-02' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
irq_work: Define irq_work_single() on !CONFIG_IRQ_WORK too
sched/headers: Split out open-coded prototypes into kernel/sched/smp.h
sched: Replace rq::wake_list
sched: Add rq::ttwu_pending
irq_work, smp: Allow irq_work on call_single_queue
smp: Optimize send_call_function_single_ipi()
smp: Move irq_work_run() out of flush_smp_call_function_queue()
smp: Optimize flush_smp_call_function_queue()
sched: Fix smp_call_function_single_async() usage for ILB
sched/core: Offload wakee task activation if it the wakee is descheduling
sched/core: Optimize ttwu() spinning on p->on_cpu
sched: Defend cfs and rt bandwidth quota against overflow
sched/cpuacct: Fix charge cpuacct.usage_sys
sched/fair: Replace zero-length array with flexible-array
sched/pelt: Sync util/runnable_sum with PELT window when propagating
sched/cpuacct: Use __this_cpu_add() instead of this_cpu_ptr()
sched/fair: Optimize enqueue_task_fair()
sched: Make scheduler_ipi inline
sched: Clean up scheduler_ipi()
sched/core: Simplify sched_init()
...
The refactored function is no longer required as the codepaths that call
freeze_secondary_cpus() are all suspend/resume related now.
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Link: https://lkml.kernel.org/r/20200430114004.17477-2-qais.yousef@arm.com
The single user could have called freeze_secondary_cpus() directly.
Since this function was a source of confusion, remove it as it's
just a pointless wrapper.
While at it, rename enable_nonboot_cpus() to thaw_secondary_cpus() to
preserve the naming symmetry.
Done automatically via:
git grep -l enable_nonboot_cpus | xargs sed -i 's/enable_nonboot_cpus/thaw_secondary_cpus/g'
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Link: https://lkml.kernel.org/r/20200430114004.17477-1-qais.yousef@arm.com
In the CPU-offline process, it calls mmdrop() after idle entry and the
subsequent call to cpuhp_report_idle_dead(). Once execution passes the
call to rcu_report_dead(), RCU is ignoring the CPU, which results in
lockdep complaining when mmdrop() uses RCU from either memcg or
debugobjects below.
Fix it by cleaning up the active_mm state from BP instead. Every arch
which has CONFIG_HOTPLUG_CPU should have already called idle_task_exit()
from AP. The only exception is parisc because it switches them to
&init_mm unconditionally (see smp_boot_one_cpu() and smp_cpu_init()),
but the patch will still work there because it calls mmgrab(&init_mm) in
smp_cpu_init() and then should call mmdrop(&init_mm) in finish_cpu().
WARNING: suspicious RCU usage
-----------------------------
kernel/workqueue.c:710 RCU or wq_pool_mutex should be held!
other info that might help us debug this:
RCU used illegally from offline CPU!
Call Trace:
dump_stack+0xf4/0x164 (unreliable)
lockdep_rcu_suspicious+0x140/0x164
get_work_pool+0x110/0x150
__queue_work+0x1bc/0xca0
queue_work_on+0x114/0x120
css_release+0x9c/0xc0
percpu_ref_put_many+0x204/0x230
free_pcp_prepare+0x264/0x570
free_unref_page+0x38/0xf0
__mmdrop+0x21c/0x2c0
idle_task_exit+0x170/0x1b0
pnv_smp_cpu_kill_self+0x38/0x2e0
cpu_die+0x48/0x64
arch_cpu_idle_dead+0x30/0x50
do_idle+0x2f4/0x470
cpu_startup_entry+0x38/0x40
start_secondary+0x7a8/0xa80
start_secondary_resume+0x10/0x14
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Link: https://lkml.kernel.org/r/20200401214033.8448-1-cai@lca.pw
- Support for locked CSD objects in smp_call_function_single_async()
which allows to simplify callsites in the scheduler core and MIPS
- Treewide consolidation of CPU hotplug functions which ensures the
consistency between the sysfs interface and kernel state. The low level
functions cpu_up/down() are now confined to the core code and not
longer accessible from random code.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl6B9VQTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYodCyD/0WFYAe7LkOfNjkbLa0IeuyLjF9rnCi
ilcSXMLpaVwwoQvm7MopwkXUDdmEIyeJ0B641j3mC3AKCRap4+O36H2IEg2byrj7
twOvQNCfxpVVmCCD11FTH9aQa74LEB6AikTgjevhrRWj6eHsal7c2Ak26AzCgrt+
0eEkOAOWJbLAlbIiPdHlCZ3TMldcs3gg+lRSYd5QCGQVkZFnwpXzyOvpyJEUGGbb
R/JuvwJoLhRMiYAJDILoQQQg/J07ODuivse/R8PWaH2djkn+2NyRGrD794PhyyOg
QoTU0ZrYD3Z48ACXv+N3jLM7wXMcFzjYtr1vW1E3O/YGA7GVIC6XHGbMQ7tEihY0
ajtwq8DcnpKtuouviYnf7NuKgqdmJXkaZjz3Gms6n8nLXqqSVwuQELWV2CXkxNe6
9kgnnKK+xXMOGI4TUhN8bejvkXqRCmKMeQJcWyf+7RA9UIhAJw5o7WGo8gXfQWUx
tazCqDy/inYjqGxckW615fhi2zHfemlYTbSzIGOuMB1TEPKFcrgYAii/VMsYHQVZ
5amkYUXGQ5brlCOzOn38lzp5OkALBnFzD7xgvOcQgWT3ynVpdqADfBytXiEEHh4J
KSkSgSSRcS58397nIxnDcJgJouHLvAWYyPZ4UC6mfynuQIic31qMHGVqwdbEKMY3
4M5dGgqIfOBgYw==
=jwCg
-----END PGP SIGNATURE-----
Merge tag 'smp-core-2020-03-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull core SMP updates from Thomas Gleixner:
"CPU (hotplug) updates:
- Support for locked CSD objects in smp_call_function_single_async()
which allows to simplify callsites in the scheduler core and MIPS
- Treewide consolidation of CPU hotplug functions which ensures the
consistency between the sysfs interface and kernel state. The low
level functions cpu_up/down() are now confined to the core code and
not longer accessible from random code"
* tag 'smp-core-2020-03-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (22 commits)
cpu/hotplug: Ignore pm_wakeup_pending() for disable_nonboot_cpus()
cpu/hotplug: Hide cpu_up/down()
cpu/hotplug: Move bringup of secondary CPUs out of smp_init()
torture: Replace cpu_up/down() with add/remove_cpu()
firmware: psci: Replace cpu_up/down() with add/remove_cpu()
xen/cpuhotplug: Replace cpu_up/down() with device_online/offline()
parisc: Replace cpu_up/down() with add/remove_cpu()
sparc: Replace cpu_up/down() with add/remove_cpu()
powerpc: Replace cpu_up/down() with add/remove_cpu()
x86/smp: Replace cpu_up/down() with add/remove_cpu()
arm64: hibernate: Use bringup_hibernate_cpu()
cpu/hotplug: Provide bringup_hibernate_cpu()
arm64: Use reboot_cpu instead of hardconding it to 0
arm64: Don't use disable_nonboot_cpus()
ARM: Use reboot_cpu instead of hardcoding it to 0
ARM: Don't use disable_nonboot_cpus()
ia64: Replace cpu_down() with smp_shutdown_nonboot_cpus()
cpu/hotplug: Create a new function to shutdown nonboot cpus
cpu/hotplug: Add new {add,remove}_cpu() functions
sched/core: Remove rq.hrtick_csd_pending
...
A recent change to freeze_secondary_cpus() which added an early abort if a
wakeup is pending missed the fact that the function is also invoked for
shutdown, reboot and kexec via disable_nonboot_cpus().
In case of disable_nonboot_cpus() the wakeup event needs to be ignored as
the purpose is to terminate the currently running kernel.
Add a 'suspend' argument which is only set when the freeze is in context of
a suspend operation. If not set then an eventually pending wakeup event is
ignored.
Fixes: a66d955e91 ("cpu/hotplug: Abort disabling secondary CPUs if wakeup is pending")
Reported-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Pavankumar Kondeti <pkondeti@codeaurora.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/874kuaxdiz.fsf@nanos.tec.linutronix.de
Use separate functions for the device core to bring a CPU up and down.
Users outside the device core must use add/remove_cpu() which will take
care of extra housekeeping work like keeping sysfs in sync.
Make cpu_up/down() static and replace the extra layer of indirection.
[ tglx: Removed the extra wrapper functions and adjusted function names ]
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200323135110.30522-18-qais.yousef@arm.com
This is the last direct user of cpu_up() before it can become an internal
implementation detail of the cpu subsystem.
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200323135110.30522-17-qais.yousef@arm.com
arm64 uses cpu_up() in the resume from hibernation code to ensure that the
CPU on which the system hibernated is online. Provide a core function for
this.
[ tglx: Split out from the combo arm64 patch ]
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lkml.kernel.org/r/20200323135110.30522-9-qais.yousef@arm.com
This function will be used later in machine_shutdown() for some
architectures.
disable_nonboot_cpus() is not safe to use when doing machine_down(),
because it relies on freeze_secondary_cpus() which in turn is a
suspend/resume related freeze and could abort if the logic detects any
pending activities that can prevent finishing the offlining process.
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200323135110.30522-3-qais.yousef@arm.com
The new functions use device_{online,offline}() which are userspace safe.
This is in preparation to move cpu_{up, down} kernel users to use a safer
interface that is not racy with userspace.
Suggested-by: "Paul E. McKenney" <paulmck@kernel.org>
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lkml.kernel.org/r/20200323135110.30522-2-qais.yousef@arm.com
As preparation for replacing the embedded rwsem, give percpu-rwsem its
own lockdep_map.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Davidlohr Bueso <dbueso@suse.de>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Waiman Long <longman@redhat.com>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/20200131151539.927625541@infradead.org
Pull scheduler updates from Ingo Molnar:
"These were the main changes in this cycle:
- More -rt motivated separation of CONFIG_PREEMPT and
CONFIG_PREEMPTION.
- Add more low level scheduling topology sanity checks and warnings
to filter out nonsensical topologies that break scheduling.
- Extend uclamp constraints to influence wakeup CPU placement
- Make the RT scheduler more aware of asymmetric topologies and CPU
capacities, via uclamp metrics, if CONFIG_UCLAMP_TASK=y
- Make idle CPU selection more consistent
- Various fixes, smaller cleanups, updates and enhancements - please
see the git log for details"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (58 commits)
sched/fair: Define sched_idle_cpu() only for SMP configurations
sched/topology: Assert non-NUMA topology masks don't (partially) overlap
idle: fix spelling mistake "iterrupts" -> "interrupts"
sched/fair: Remove redundant call to cpufreq_update_util()
sched/psi: create /proc/pressure and /proc/pressure/{io|memory|cpu} only when psi enabled
sched/fair: Fix sgc->{min,max}_capacity calculation for SD_OVERLAP
sched/fair: calculate delta runnable load only when it's needed
sched/cputime: move rq parameter in irqtime_account_process_tick
stop_machine: Make stop_cpus() static
sched/debug: Reset watchdog on all CPUs while processing sysrq-t
sched/core: Fix size of rq::uclamp initialization
sched/uclamp: Fix a bug in propagating uclamp value in new cgroups
sched/fair: Load balance aggressively for SCHED_IDLE CPUs
sched/fair : Improve update_sd_pick_busiest for spare capacity case
watchdog: Remove soft_lockup_hrtimer_cnt and related code
sched/rt: Make RT capacity-aware
sched/fair: Make EAS wakeup placement consider uclamp restrictions
sched/fair: Make task_fits_capacity() consider uclamp restrictions
sched/uclamp: Rename uclamp_util_with() into uclamp_rq_util_with()
sched/uclamp: Make uclamp util helpers use and return UL values
...
When CONFIG_SYSFS is disabled, but CONFIG_HOTPLUG_SMT is enabled,
the kernel fails to link:
arch/x86/power/cpu.o: In function `hibernate_resume_nonboot_cpu_disable':
(.text+0x38d): undefined reference to `cpuhp_smt_enable'
arch/x86/power/hibernate.o: In function `arch_resume_nosmt':
hibernate.c:(.text+0x291): undefined reference to `cpuhp_smt_enable'
hibernate.c:(.text+0x29c): undefined reference to `cpuhp_smt_disable'
Move the exported functions out of the #ifdef section into its
own with the correct conditions.
The patch that caused this is marked for stable backports, so
this one may need to be backported as well.
Fixes: ec527c3180 ("x86/power: Fix 'nosmt' vs hibernation triple fault during resume")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Jiri Kosina <jkosina@suse.cz>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20191210195614.786555-1-arnd@arndb.de
Paul reported a very sporadic, rcutorture induced, workqueue failure.
When the planets align, the workqueue rescuer's self-migrate fails and
then triggers a WARN for running a work on the wrong CPU.
Tejun then figured that set_cpus_allowed_ptr()'s stop_one_cpu() call
could be ignored! When stopper->enabled is false, stop_machine will
insta complete the work, without actually doing the work. Worse, it
will not WARN about this (we really should fix this).
It turns out there is a small window where a freshly online'ed CPU is
marked 'online' but doesn't yet have the stopper task running:
BP AP
bringup_cpu()
__cpu_up(cpu, idle) --> start_secondary()
...
cpu_startup_entry()
bringup_wait_for_ap()
wait_for_ap_thread() <-- cpuhp_online_idle()
while (1)
do_idle()
... available to run kthreads ...
stop_machine_unpark()
stopper->enable = true;
Close this by moving the stop_machine_unpark() into
cpuhp_online_idle(), such that the stopper thread is ready before we
start the idle loop and schedule.
Reported-by: "Paul E. McKenney" <paulmck@kernel.org>
Debugged-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: "Paul E. McKenney" <paulmck@kernel.org>
Pull locking updates from Ingo Molnar:
"The main changes in this cycle were:
- A comprehensive rewrite of the robust/PI futex code's exit handling
to fix various exit races. (Thomas Gleixner et al)
- Rework the generic REFCOUNT_FULL implementation using
atomic_fetch_* operations so that the performance impact of the
cmpxchg() loops is mitigated for common refcount operations.
With these performance improvements the generic implementation of
refcount_t should be good enough for everybody - and this got
confirmed by performance testing, so remove ARCH_HAS_REFCOUNT and
REFCOUNT_FULL entirely, leaving the generic implementation enabled
unconditionally. (Will Deacon)
- Other misc changes, fixes, cleanups"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits)
lkdtm: Remove references to CONFIG_REFCOUNT_FULL
locking/refcount: Remove unused 'refcount_error_report()' function
locking/refcount: Consolidate implementations of refcount_t
locking/refcount: Consolidate REFCOUNT_{MAX,SATURATED} definitions
locking/refcount: Move saturation warnings out of line
locking/refcount: Improve performance of generic REFCOUNT_FULL code
locking/refcount: Move the bulk of the REFCOUNT_FULL implementation into the <linux/refcount.h> header
locking/refcount: Remove unused refcount_*_checked() variants
locking/refcount: Ensure integer operands are treated as signed
locking/refcount: Define constants for saturation and max refcount values
futex: Prevent exit livelock
futex: Provide distinct return value when owner is exiting
futex: Add mutex around futex exit
futex: Provide state handling for exec() as well
futex: Sanitize exit state handling
futex: Mark the begin of futex exit explicitly
futex: Set task::futex_state to DEAD right after handling futex exit
futex: Split futex_mm_release() for exit/exec
exit/exec: Seperate mm_release()
futex: Replace PF_EXITPIDONE with a state
...
A kernel module may need to check the value of the "mitigations=" kernel
command line parameter as part of its setup when the module needs
to perform software mitigations for a CPU flaw.
Uninline and export the helper functions surrounding the cpu_mitigations
enum to allow for their usage from a module.
Lastly, privatize the enum and cpu_mitigations variable since the value of
cpu_mitigations can be checked with the exported helper functions.
Signed-off-by: Tyler Hicks <tyhicks@canonical.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
KVM needs to know if SMT is theoretically possible, this means it is
supported and not forcefully disabled ('nosmt=force'). Create and
export cpu_smt_possible() answering this question.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Re-evaluating the bitmap wheight of the online cpus bitmap in every
invocation of num_online_cpus() over and over is a pretty useless
exercise. Especially when num_online_cpus() is used in code paths
like the IPI delivery of x86 or the membarrier code.
Cache the number of online CPUs in the core and just return the cached
variable. The accessor function provides only a snapshot when used without
protection against concurrent CPU hotplug.
The storage needs to use an atomic_t because the kexec and reboot code
(ab)use set_cpu_online() in their 'shutdown' handlers without any form of
serialization as pointed out by Mathieu. Regular CPU hotplug usage is
properly serialized.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1907091622590.1634@nanos.tec.linutronix.de
The booted once information which is required to deal with the MCE
broadcast issue on X86 correctly is stored in the per cpu hotplug state,
which is perfectly fine for the intended purpose.
X86 needs that information for supporting NMI broadcasting via shortcuts,
but retrieving it from per cpu data is cumbersome.
Move it to a cpumask so the information can be checked against the
cpu_present_mask quickly.
No functional change intended.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105219.818822855@linutronix.de
Pull SMP/hotplug updates from Thomas Gleixner:
"A small set of updates for SMP and CPU hotplug:
- Abort disabling secondary CPUs in the freezer when a wakeup is
pending instead of evaluating it only after all CPUs have been
offlined.
- Remove the shared annotation for the strict per CPU cfd_data in the
smp function call core code.
- Remove the return values of smp_call_function() and on_each_cpu()
as they are unconditionally 0. Fixup the few callers which actually
bothered to check the return value"
* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
smp: Remove smp_call_function() and on_each_cpu() return values
smp: Do not mark call_function_data as shared
cpu/hotplug: Abort disabling secondary CPUs if wakeup is pending
cpu/hotplug: Fix notify_cpu_starting() reference in bringup_wait_for_ap()
Setting invalid value to /sys/devices/system/cpu/cpuX/hotplug/fail
can control `struct cpuhp_step *sp` address, results in the following
global-out-of-bounds read.
Reproducer:
# echo -2 > /sys/devices/system/cpu/cpu0/hotplug/fail
KASAN report:
BUG: KASAN: global-out-of-bounds in write_cpuhp_fail+0x2cd/0x2e0
Read of size 8 at addr ffffffff89734438 by task bash/1941
CPU: 0 PID: 1941 Comm: bash Not tainted 5.2.0-rc6+ #31
Call Trace:
write_cpuhp_fail+0x2cd/0x2e0
dev_attr_store+0x58/0x80
sysfs_kf_write+0x13d/0x1a0
kernfs_fop_write+0x2bc/0x460
vfs_write+0x1e1/0x560
ksys_write+0x126/0x250
do_syscall_64+0xc1/0x390
entry_SYSCALL_64_after_hwframe+0x49/0xbe
RIP: 0033:0x7f05e4f4c970
The buggy address belongs to the variable:
cpu_hotplug_lock+0x98/0xa0
Memory state around the buggy address:
ffffffff89734300: fa fa fa fa 00 00 00 00 00 00 00 00 00 00 00 00
ffffffff89734380: fa fa fa fa 00 00 00 00 00 00 00 00 00 00 00 00
>ffffffff89734400: 00 00 00 00 fa fa fa fa 00 00 00 00 fa fa fa fa
^
ffffffff89734480: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ffffffff89734500: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Add a sanity check for the value written from user space.
Fixes: 1db49484f2 ("smp/hotplug: Hotplug state fail injection")
Signed-off-by: Eiichi Tsukata <devel@etsukata.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: peterz@infradead.org
Link: https://lkml.kernel.org/r/20190627024732.31672-1-devel@etsukata.com
Currently, if the user specifies an unsupported mitigation strategy on the
kernel command line, it will be ignored silently. The code will fall back
to the default strategy, possibly leaving the system more vulnerable than
expected.
This may happen due to e.g. a simple typo, or, for a stable kernel release,
because not all mitigation strategies have been backported.
Inform the user by printing a message.
Fixes: 98af845294 ("cpu/speculation: Add 'mitigations=' cmdline option")
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ben Hutchings <ben@decadent.org.uk>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20190516070935.22546-1-geert@linux-m68k.org
When "deep" suspend is enabled, all CPUs except the primary CPU are frozen
via CPU hotplug one by one. After all secondary CPUs are unplugged the
wakeup pending condition is evaluated and if pending the suspend operation
is aborted and the secondary CPUs are brought up again.
CPU hotplug is a slow operation, so it makes sense to check for wakeup
pending in the freezer loop before bringing down the next CPU. This
improves the system suspend abort latency significantly.
[ tglx: Massaged changelog and improved printk message ]
Signed-off-by: Pavankumar Kondeti <pkondeti@codeaurora.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Len Brown <len.brown@intel.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: iri Kosina <jkosina@suse.cz>
Cc: Mukesh Ojha <mojha@codeaurora.org>
Cc: linux-pm@vger.kernel.org
Link: https://lkml.kernel.org/r/1559536263-16472-1-git-send-email-pkondeti@codeaurora.org
As explained in
0cc3cd2165 ("cpu/hotplug: Boot HT siblings at least once")
we always, no matter what, have to bring up x86 HT siblings during boot at
least once in order to avoid first MCE bringing the system to its knees.
That means that whenever 'nosmt' is supplied on the kernel command-line,
all the HT siblings are as a result sitting in mwait or cpudile after
going through the online-offline cycle at least once.
This causes a serious issue though when a kernel, which saw 'nosmt' on its
commandline, is going to perform resume from hibernation: if the resume
from the hibernated image is successful, cr3 is flipped in order to point
to the address space of the kernel that is being resumed, which in turn
means that all the HT siblings are all of a sudden mwaiting on address
which is no longer valid.
That results in triple fault shortly after cr3 is switched, and machine
reboots.
Fix this by always waking up all the SMT siblings before initiating the
'restore from hibernation' process; this guarantees that all the HT
siblings will be properly carried over to the resumed kernel waiting in
resume_play_dead(), and acted upon accordingly afterwards, based on the
target kernel configuration.
Symmetricaly, the resumed kernel has to push the SMT siblings to mwait
again in case it has SMT disabled; this means it has to online all
the siblings when resuming (so that they come out of hlt) and offline
them again to let them reach mwait.
Cc: 4.19+ <stable@vger.kernel.org> # v4.19+
Debugged-by: Thomas Gleixner <tglx@linutronix.de>
Fixes: 0cc3cd2165 ("cpu/hotplug: Boot HT siblings at least once")
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Acked-by: Pavel Machek <pavel@ucw.cz>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
bringup_wait_for_ap() comment references cpu_notify_starting(), but the
function is actually called notify_cpu_starting(). Fix that.
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/nycvar.YFH.7.76.1905282128100.1962@cbobk.fhfr.pm
Pull timer updates from Ingo Molnar:
"This cycle had the following changes:
- Timer tracing improvements (Anna-Maria Gleixner)
- Continued tasklet reduction work: remove the hrtimer_tasklet
(Thomas Gleixner)
- Fix CPU hotplug remove race in the tick-broadcast mask handling
code (Thomas Gleixner)
- Force upper bound for setting CLOCK_REALTIME, to fix ABI
inconsistencies with handling values that are close to the maximum
supported and the vagueness of when uptime related wraparound might
occur. Make the consistent maximum the year 2232 across all
relevant ABIs and APIs. (Thomas Gleixner)
- various cleanups and smaller fixes"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
tick: Fix typos in comments
tick/broadcast: Fix warning about undefined tick_broadcast_oneshot_offline()
timekeeping: Force upper bound for setting CLOCK_REALTIME
timer/trace: Improve timer tracing
timer/trace: Replace deprecated vsprintf pointer extension %pf by %ps
timer: Move trace point to get proper index
tick/sched: Update tick_sched struct documentation
tick: Remove outgoing CPU from broadcast masks
timekeeping: Consistently use unsigned int for seqcount snapshot
softirq: Remove tasklet_hrtimer
xfrm: Replace hrtimer tasklet with softirq hrtimer
mac80211_hwsim: Replace hrtimer tasklet with softirq hrtimer
Pull CPU hotplug updates from Ingo Molnar:
"Two changes in this cycle:
- Make the /sys/devices/system/cpu/smt/* files available on all
arches, so user space has a consistent way to detect whether SMT is
enabled.
- Sparse annotation fix"
* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
smpboot: Place the __percpu annotation correctly
cpu/hotplug: Create SMT sysfs interface for all arches
Pull scheduler updates from Ingo Molnar:
"The main changes in this cycle were:
- Make nohz housekeeping processing more permissive and less
intrusive to isolated CPUs
- Decouple CPU-bound workqueue acconting from the scheduler and move
it into the workqueue code.
- Optimize topology building
- Better handle quota and period overflows
- Add more RCU annotations
- Comment updates, misc cleanups"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (25 commits)
nohz_full: Allow the boot CPU to be nohz_full
sched/isolation: Require a present CPU in housekeeping mask
kernel/cpu: Allow non-zero CPU to be primary for suspend / kexec freeze
power/suspend: Add function to disable secondaries for suspend
sched/core: Allow the remote scheduler tick to be started on CPU0
sched/nohz: Run NOHZ idle load balancer on HK_FLAG_MISC CPUs
sched/debug: Fix spelling mistake "logaritmic" -> "logarithmic"
sched/topology: Update init_sched_domains() comment
cgroup/cpuset: Update stale generate_sched_domains() comments
sched/core: Check quota and period overflow at usec to nsec conversion
sched/core: Handle overflow in cpu_shares_write_u64
sched/rt: Check integer overflow at usec to nsec conversion
sched/core: Fix typo in comment
sched/core: Make some functions static
sched/core: Unify p->on_rq updates
sched/core: Remove ttwu_activate()
sched/core, workqueues: Distangle worker accounting from rq lock
sched/fair: Remove unneeded prototype of capacity_of()
sched/topology: Skip duplicate group rewrites in build_sched_groups()
sched/topology: Fix build_sched_groups() comment
...
Pull speculation mitigation update from Ingo Molnar:
"This adds the "mitigations=" bootline option, which offers a
cross-arch set of options that will work on x86, PowerPC and s390 that
will map to the arch specific option internally"
* 'core-speculation-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
s390/speculation: Support 'mitigations=' cmdline option
powerpc/speculation: Support 'mitigations=' cmdline option
x86/speculation: Support 'mitigations=' cmdline option
cpu/speculation: Add 'mitigations=' cmdline option
This patch provides an arch option, ARCH_SUSPEND_NONZERO_CPU, to
opt-in to allowing suspend to occur on one of the housekeeping CPUs
rather than hardcoded CPU0.
This will allow CPU0 to be a nohz_full CPU with a later change.
It may be possible for platforms with hardware/firmware restrictions
on suspend/wake effectively support this by handing off the final
stage to CPU0 when kernel housekeeping is no longer required. Another
option is to make housekeeping / nohz_full mask dynamic at runtime,
but the complexity could not be justified at this time.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linuxppc-dev@lists.ozlabs.org
Link: https://lkml.kernel.org/r/20190411033448.20842-4-npiggin@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Keeping track of the number of mitigations for all the CPU speculation
bugs has become overwhelming for many users. It's getting more and more
complicated to decide which mitigations are needed for a given
architecture. Complicating matters is the fact that each arch tends to
have its own custom way to mitigate the same vulnerability.
Most users fall into a few basic categories:
a) they want all mitigations off;
b) they want all reasonable mitigations on, with SMT enabled even if
it's vulnerable; or
c) they want all reasonable mitigations on, with SMT disabled if
vulnerable.
Define a set of curated, arch-independent options, each of which is an
aggregation of existing options:
- mitigations=off: Disable all mitigations.
- mitigations=auto: [default] Enable all the default mitigations, but
leave SMT enabled, even if it's vulnerable.
- mitigations=auto,nosmt: Enable all the default mitigations, disabling
SMT if needed by a mitigation.
Currently, these options are placeholders which don't actually do
anything. They will be fleshed out in upcoming patches.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jiri Kosina <jkosina@suse.cz> (on x86)
Reviewed-by: Jiri Kosina <jkosina@suse.cz>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Waiman Long <longman@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Jon Masters <jcm@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: linux-s390@vger.kernel.org
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-arch@vger.kernel.org
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Tyler Hicks <tyhicks@canonical.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Steven Price <steven.price@arm.com>
Cc: Phil Auld <pauld@redhat.com>
Link: https://lkml.kernel.org/r/b07a8ef9b7c5055c3a4637c87d07c296d5016fe0.1555085500.git.jpoimboe@redhat.com
Make the /sys/devices/system/cpu/smt/* files available on all arches, so
user space has a consistent way to detect whether SMT is enabled.
The 'control' file now shows 'notimplemented' for architectures which
don't yet have CONFIG_HOTPLUG_SMT.
[ tglx: Make notimplemented a real state ]
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Waiman Long <longman@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jiri Kosina <jikos@kernel.org>
Link: https://lkml.kernel.org/r/469c2b98055f2c41e75748e06447d592a64080c9.1553635520.git.jpoimboe@redhat.com
Tianyu reported a crash in a CPU hotplug teardown callback when booting a
kernel which has CONFIG_HOTPLUG_CPU disabled with the 'nosmt' boot
parameter.
It turns out that the SMP=y CONFIG_HOTPLUG_CPU=n case has been broken
forever in case that a bringup callback fails. Unfortunately this issue was
not recognized when the CPU hotplug code was reworked, so the shortcoming
just stayed in place.
When a bringup callback fails, the CPU hotplug code rolls back the
operation and takes the CPU offline.
The 'nosmt' command line argument uses a bringup failure to abort the
bringup of SMT sibling CPUs. This partial bringup is required due to the
MCE misdesign on Intel CPUs.
With CONFIG_HOTPLUG_CPU=y the rollback works perfectly fine, but
CONFIG_HOTPLUG_CPU=n lacks essential mechanisms to exercise the low level
teardown of a CPU including the synchronizations in various facilities like
RCU, NOHZ and others.
As a consequence the teardown callbacks which must be executed on the
outgoing CPU within stop machine with interrupts disabled are executed on
the control CPU in interrupt enabled and preemptible context causing the
kernel to crash and burn. The pre state machine code has a different
failure mode which is more subtle and resulting in a less obvious use after
free crash because the control side frees resources which are still in use
by the undead CPU.
But this is not a x86 only problem. Any architecture which supports the
SMP=y HOTPLUG_CPU=n combination suffers from the same issue. It's just less
likely to be triggered because in 99.99999% of the cases all bringup
callbacks succeed.
The easy solution of making HOTPLUG_CPU mandatory for SMP is not working on
all architectures as the following architectures have either no hotplug
support at all or not all subarchitectures support it:
alpha, arc, hexagon, openrisc, riscv, sparc (32bit), mips (partial).
Crashing the kernel in such a situation is not an acceptable state
either.
Implement a minimal rollback variant by limiting the teardown to the point
where all regular teardown callbacks have been invoked and leave the CPU in
the 'dead' idle state. This has the following consequences:
- the CPU is brought down to the point where the stop_machine takedown
would happen.
- the CPU stays there forever and is idle
- The CPU is cleared in the CPU active mask, but not in the CPU online
mask which is a legit state.
- Interrupts are not forced away from the CPU
- All facilities which only look at online mask would still see it, but
that is the case during normal hotplug/unplug operations as well. It's
just a (way) longer time frame.
This will expose issues, which haven't been exposed before or only seldom,
because now the normally transient state of being non active but online is
a permanent state. In testing this exposed already an issue vs. work queues
where the vmstat code schedules work on the almost dead CPU which ends up
in an unbound workqueue and triggers 'preemtible context' warnings. This is
not a problem of this change, it merily exposes an already existing issue.
Still this is better than crashing fully without a chance to debug it.
This is mainly thought as workaround for those architectures which do not
support HOTPLUG_CPU. All others should enforce HOTPLUG_CPU for SMP.
Fixes: 2e1a3483ce ("cpu/hotplug: Split out the state walk into functions")
Reported-by: Tianyu Lan <Tianyu.Lan@microsoft.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Tianyu Lan <Tianyu.Lan@microsoft.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Konrad Wilk <konrad.wilk@oracle.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Mukesh Ojha <mojha@codeaurora.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Rik van Riel <riel@surriel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Micheal Kelley <michael.h.kelley@microsoft.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: K. Y. Srinivasan <kys@microsoft.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20190326163811.503390616@linutronix.de
Valentin reported that unplugging a CPU occasionally results in a warning
in the tick broadcast code which is triggered when an offline CPU is in the
broadcast mask.
This happens because the outgoing CPU is not removing itself from the
broadcast masks, especially not from the broadcast_force_mask. The removal
happens on the control CPU after the outgoing CPU is dead. It's a long
standing issue, but the warning is harmless.
Rework the hotplug mechanism so that the outgoing CPU removes itself from
the broadcast masks after disabling interrupts and removing itself from the
online mask.
Reported-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1903211540180.1784@nanos.tec.linutronix.de
With the following commit:
73d5e2b472 ("cpu/hotplug: detect SMT disabled by BIOS")
... the hotplug code attempted to detect when SMT was disabled by BIOS,
in which case it reported SMT as permanently disabled. However, that
code broke a virt hotplug scenario, where the guest is booted with only
primary CPU threads, and a sibling is brought online later.
The problem is that there doesn't seem to be a way to reliably
distinguish between the HW "SMT disabled by BIOS" case and the virt
"sibling not yet brought online" case. So the above-mentioned commit
was a bit misguided, as it permanently disabled SMT for both cases,
preventing future virt sibling hotplugs.
Going back and reviewing the original problems which were attempted to
be solved by that commit, when SMT was disabled in BIOS:
1) /sys/devices/system/cpu/smt/control showed "on" instead of
"notsupported"; and
2) vmx_vm_init() was incorrectly showing the L1TF_MSG_SMT warning.
I'd propose that we instead consider #1 above to not actually be a
problem. Because, at least in the virt case, it's possible that SMT
wasn't disabled by BIOS and a sibling thread could be brought online
later. So it makes sense to just always default the smt control to "on"
to allow for that possibility (assuming cpuid indicates that the CPU
supports SMT).
The real problem is #2, which has a simple fix: change vmx_vm_init() to
query the actual current SMT state -- i.e., whether any siblings are
currently online -- instead of looking at the SMT "control" sysfs value.
So fix it by:
a) reverting the original "fix" and its followup fix:
73d5e2b472 ("cpu/hotplug: detect SMT disabled by BIOS")
bc2d8d262c ("cpu/hotplug: Fix SMT supported evaluation")
and
b) changing vmx_vm_init() to query the actual current SMT state --
instead of the sysfs control value -- to determine whether the L1TF
warning is needed. This also requires the 'sched_smt_present'
variable to exported, instead of 'cpu_smt_control'.
Fixes: 73d5e2b472 ("cpu/hotplug: detect SMT disabled by BIOS")
Reported-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Joe Mario <jmario@redhat.com>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: kvm@vger.kernel.org
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/e3a85d585da28cc333ecbc1e78ee9216e6da9396.1548794349.git.jpoimboe@redhat.com
With commit a74cfffb03 ("x86/speculation: Rework SMT state change"),
arch_smt_update() is invoked from each individual CPU hotplug function.
Therefore the extra arch_smt_update() call in the sysfs SMT control is
redundant.
Fixes: a74cfffb03 ("x86/speculation: Rework SMT state change")
Signed-off-by: Zhenzhong Duan <zhenzhong.duan@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: <konrad.wilk@oracle.com>
Cc: <dwmw@amazon.co.uk>
Cc: <bp@suse.de>
Cc: <srinivas.eeda@oracle.com>
Cc: <peterz@infradead.org>
Cc: <hpa@zytor.com>
Link: https://lkml.kernel.org/r/e2e064f2-e8ef-42ca-bf4f-76b612964752@default