IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Merge yet more updates and hotfixes from Andrew Morton:
"Post-linux-next material, based upon latest upstream to catch the
now-merged dependencies:
- 10 patches.
Subsystems affected by this patch series: mm (vmstat and migration)
and compat.
And bunch of hotfixes, mostly cc:stable:
- 8 patches.
Subsystems affected by this patch series: mm (hmm, hugetlb, vmscan,
pagealloc, pagemap, kmemleak, mempolicy, and memblock)"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
arch: remove compat_alloc_user_space
compat: remove some compat entry points
mm: simplify compat numa syscalls
mm: simplify compat_sys_move_pages
kexec: avoid compat_alloc_user_space
kexec: move locking into do_kexec_load
mm: migrate: change to use bool type for 'page_was_mapped'
mm: migrate: fix the incorrect function name in comments
mm: migrate: introduce a local variable to get the number of pages
mm/vmstat: protect per cpu variables with preempt disable on RT
* emailed hotfixes from Andrew Morton <akpm@linux-foundation.org>:
nds32/setup: remove unused memblock_region variable in setup_memory()
mm/mempolicy: fix a race between offset_il_node and mpol_rebind_task
mm/kmemleak: allow __GFP_NOLOCKDEP passed to kmemleak's gfp
mmap_lock: change trace and locking order
mm/page_alloc.c: avoid accessing uninitialized pcp page migratetype
mm,vmscan: fix divide by zero in get_scan_count
mm/hugetlb: initialize hugetlb_usage in mm_init
mm/hmm: bypass devmap pte when all pfn requested flags are fulfilled
Servers happened below panic:
Kernel version:5.4.56
BUG: unable to handle page fault for address: 0000000000002c48
RIP: 0010:__next_zones_zonelist+0x1d/0x40
Call Trace:
__alloc_pages_nodemask+0x277/0x310
alloc_page_interleave+0x13/0x70
handle_mm_fault+0xf99/0x1390
__do_page_fault+0x288/0x500
do_page_fault+0x30/0x110
page_fault+0x3e/0x50
The reason for the panic is that MAX_NUMNODES is passed in the third
parameter in __alloc_pages_nodemask(preferred_nid). So access to
zonelist->zoneref->zone_idx in __next_zones_zonelist will cause a panic.
In offset_il_node(), first_node() returns nid from pol->v.nodes, after
this other threads may chang pol->v.nodes before next_node(). This race
condition will let next_node return MAX_NUMNODES. So put pol->nodes in
a local variable.
The race condition is between offset_il_node and cpuset_change_task_nodemask:
CPU0: CPU1:
alloc_pages_vma()
interleave_nid(pol,)
offset_il_node(pol,)
first_node(pol->v.nodes) cpuset_change_task_nodemask
//nodes==0xc mpol_rebind_task
mpol_rebind_policy
mpol_rebind_nodemask(pol,nodes)
//nodes==0x3
next_node(nid, pol->v.nodes)//return MAX_NUMNODES
Link: https://lkml.kernel.org/r/20210906034658.48721-1-yanghui.def@bytedance.com
Signed-off-by: yanghui <yanghui.def@bytedance.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Introduce multi-preference mempolicy", v7.
This patch series introduces the concept of the MPOL_PREFERRED_MANY
mempolicy. This mempolicy mode can be used with either the
set_mempolicy(2) or mbind(2) interfaces. Like the MPOL_PREFERRED
interface, it allows an application to set a preference for nodes which
will fulfil memory allocation requests. Unlike the MPOL_PREFERRED mode,
it takes a set of nodes. Like the MPOL_BIND interface, it works over a
set of nodes. Unlike MPOL_BIND, it will not cause a SIGSEGV or invoke the
OOM killer if those preferred nodes are not available.
Along with these patches are patches for libnuma, numactl, numademo, and
memhog. They still need some polish, but can be found here:
https://gitlab.com/bwidawsk/numactl/-/tree/prefer-many It allows new
usage: `numactl -P 0,3,4`
The goal of the new mode is to enable some use-cases when using tiered memory
usage models which I've lovingly named.
1a. The Hare - The interconnect is fast enough to meet bandwidth and
latency requirements allowing preference to be given to all nodes with
"fast" memory.
1b. The Indiscriminate Hare - An application knows it wants fast
memory (or perhaps slow memory), but doesn't care which node it runs
on. The application can prefer a set of nodes and then xpu bind to
the local node (cpu, accelerator, etc). This reverses the nodes are
chosen today where the kernel attempts to use local memory to the CPU
whenever possible. This will attempt to use the local accelerator to
the memory.
2. The Tortoise - The administrator (or the application itself) is
aware it only needs slow memory, and so can prefer that.
Much of this is almost achievable with the bind interface, but the bind
interface suffers from an inability to fallback to another set of nodes if
binding fails to all nodes in the nodemask.
Like MPOL_BIND a nodemask is given. Inherently this removes ordering from the
preference.
> /* Set first two nodes as preferred in an 8 node system. */
> const unsigned long nodes = 0x3
> set_mempolicy(MPOL_PREFER_MANY, &nodes, 8);
> /* Mimic interleave policy, but have fallback *.
> const unsigned long nodes = 0xaa
> set_mempolicy(MPOL_PREFER_MANY, &nodes, 8);
Some internal discussion took place around the interface. There are two
alternatives which we have discussed, plus one I stuck in:
1. Ordered list of nodes. Currently it's believed that the added
complexity is nod needed for expected usecases.
2. A flag for bind to allow falling back to other nodes. This
confuses the notion of binding and is less flexible than the current
solution.
3. Create flags or new modes that helps with some ordering. This
offers both a friendlier API as well as a solution for more customized
usage. It's unknown if it's worth the complexity to support this.
Here is sample code for how this might work:
> // Prefer specific nodes for some something wacky
> set_mempolicy(MPOL_PREFER_MANY, 0x17c, 1024);
>
> // Default
> set_mempolicy(MPOL_PREFER_MANY | MPOL_F_PREFER_ORDER_SOCKET, NULL, 0);
> // which is the same as
> set_mempolicy(MPOL_DEFAULT, NULL, 0);
>
> // The Hare
> set_mempolicy(MPOL_PREFER_MANY | MPOL_F_PREFER_ORDER_TYPE, NULL, 0);
>
> // The Tortoise
> set_mempolicy(MPOL_PREFER_MANY | MPOL_F_PREFER_ORDER_TYPE_REV, NULL, 0);
>
> // Prefer the fast memory of the first two sockets
> set_mempolicy(MPOL_PREFER_MANY | MPOL_F_PREFER_ORDER_TYPE, -1, 2);
>
This patch (of 5):
The NUMA APIs currently allow passing in a "preferred node" as a single
bit set in a nodemask. If more than one bit it set, bits after the first
are ignored.
This single node is generally OK for location-based NUMA where memory
being allocated will eventually be operated on by a single CPU. However,
in systems with multiple memory types, folks want to target a *type* of
memory instead of a location. For instance, someone might want some
high-bandwidth memory but do not care about the CPU next to which it is
allocated. Or, they want a cheap, high capacity allocation and want to
target all NUMA nodes which have persistent memory in volatile mode. In
both of these cases, the application wants to target a *set* of nodes, but
does not want strict MPOL_BIND behavior as that could lead to OOM killer
or SIGSEGV.
So add MPOL_PREFERRED_MANY policy to support the multiple preferred nodes
requirement. This is not a pie-in-the-sky dream for an API. This was a
response to a specific ask of more than one group at Intel. Specifically:
1. There are existing libraries that target memory types such as
https://github.com/memkind/memkind. These are known to suffer from
SIGSEGV's when memory is low on targeted memory "kinds" that span more
than one node. The MCDRAM on a Xeon Phi in "Cluster on Die" mode is an
example of this.
2. Volatile-use persistent memory users want to have a memory policy
which is targeted at either "cheap and slow" (PMEM) or "expensive and
fast" (DRAM). However, they do not want to experience allocation
failures when the targeted type is unavailable.
3. Allocate-then-run. Generally, we let the process scheduler decide
on which physical CPU to run a task. That location provides a default
allocation policy, and memory availability is not generally considered
when placing tasks. For situations where memory is valuable and
constrained, some users want to allocate memory first, *then* allocate
close compute resources to the allocation. This is the reverse of the
normal (CPU) model. Accelerators such as GPUs that operate on
core-mm-managed memory are interested in this model.
A check is added in sanitize_mpol_flags() to not permit 'prefer_many'
policy to be used for now, and will be removed in later patch after all
implementations for 'prefer_many' are ready, as suggested by Michal Hocko.
[mhocko@kernel.org: suggest to refine policy_node/policy_nodemask handling]
Link: https://lkml.kernel.org/r/1627970362-61305-1-git-send-email-feng.tang@intel.com
Link: https://lore.kernel.org/r/20200630212517.308045-4-ben.widawsky@intel.com
Link: https://lkml.kernel.org/r/1627970362-61305-2-git-send-email-feng.tang@intel.com
Co-developed-by: Ben Widawsky <ben.widawsky@intel.com>
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Feng Tang <feng.tang@intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Huang Ying <ying.huang@intel.com>b
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some method is obviously needed to enable reclaim-based migration.
Just like traditional autonuma, there will be some workloads that will
benefit like workloads with more "static" configurations where hot pages
stay hot and cold pages stay cold. If pages come and go from the hot and
cold sets, the benefits of this approach will be more limited.
The benefits are truly workload-based and *not* hardware-based. We do not
believe that there is a viable threshold where certain hardware
configurations should have this mechanism enabled while others do not.
To be conservative, earlier work defaulted to disable reclaim- based
migration and did not include a mechanism to enable it. This proposes add
a new sysfs file
/sys/kernel/mm/numa/demotion_enabled
as a method to enable it.
We are open to any alternative that allows end users to enable this
mechanism or disable it if workload harm is detected (just like
traditional autonuma).
Once this is enabled page demotion may move data to a NUMA node that does
not fall into the cpuset of the allocating process. This could be
construed to violate the guarantees of cpusets. However, since this is an
opt-in mechanism, the assumption is that anyone enabling it is content to
relax the guarantees.
Link: https://lkml.kernel.org/r/20210721063926.3024591-9-ying.huang@intel.com
Link: https://lkml.kernel.org/r/20210715055145.195411-10-ying.huang@intel.com
Signed-off-by: Huang Ying <ying.huang@intel.com>
Originally-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Wei Xu <weixugc@google.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Keith Busch <kbusch@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
MPOL_LOCAL policy has been setup as a real policy, but it is still handled
like a faked POL_PREFERRED policy with one internal MPOL_F_LOCAL flag bit
set, and there are many places having to judge the real 'prefer' or the
'local' policy, which are quite confusing.
In current code, there are 4 cases that MPOL_LOCAL are used:
1. user specifies 'local' policy
2. user specifies 'prefer' policy, but with empty nodemask
3. system 'default' policy is used
4. 'prefer' policy + valid 'preferred' node with MPOL_F_STATIC_NODES
flag set, and when it is 'rebind' to a nodemask which doesn't contains
the 'preferred' node, it will perform as 'local' policy
So make 'local' a real policy instead of a fake 'prefer' one, and kill
MPOL_F_LOCAL bit, which can greatly reduce the confusion for code reading.
For case 4, the logic of mpol_rebind_preferred() is confusing, as Michal
Hocko pointed out:
: I do believe that rebinding preferred policy is just bogus and it should
: be dropped altogether on the ground that a preference is a mere hint from
: userspace where to start the allocation. Unless I am missing something
: cpusets will be always authoritative for the final placement. The
: preferred node just acts as a starting point and it should be really
: preserved when cpusets changes. Otherwise we have a very subtle behavior
: corner cases.
So dump all the tricky transformation between 'prefer' and 'local', and
just record the new nodemask of rebinding.
[feng.tang@intel.com: fix a problem in mpol_set_nodemask(), per Michal Hocko]
Link: https://lkml.kernel.org/r/1622560492-1294-3-git-send-email-feng.tang@intel.com
[feng.tang@intel.com: refine code and comments of mpol_set_nodemask(), per Michal]
Link: https://lkml.kernel.org/r/20210603081807.GE56979@shbuild999.sh.intel.com
Link: https://lkml.kernel.org/r/1622469956-82897-3-git-send-email-feng.tang@intel.com
Signed-off-by: Feng Tang <feng.tang@intel.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Ben Widawsky <ben.widawsky@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
NUMA statistics are maintained on the zone level for hits, misses, foreign
etc but nothing relies on them being perfectly accurate for functional
correctness. The counters are used by userspace to get a general overview
of a workloads NUMA behaviour but the page allocator incurs a high cost to
maintain perfect accuracy similar to what is required for a vmstat like
NR_FREE_PAGES. There even is a sysctl vm.numa_stat to allow userspace to
turn off the collection of NUMA statistics like NUMA_HIT.
This patch converts NUMA_HIT and friends to be NUMA events with similar
accuracy to VM events. There is a possibility that slight errors will be
introduced but the overall trend as seen by userspace will be similar.
The counters are no longer updated from vmstat_refresh context as it is
unnecessary overhead for counters that may never be read by userspace.
Note that counters could be maintained at the node level to save space but
it would have a user-visible impact due to /proc/zoneinfo.
[lkp@intel.com: Fix misplaced closing brace for !CONFIG_NUMA]
Link: https://lkml.kernel.org/r/20210512095458.30632-4-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
LRU pagevec holds refcount of pages until the pagevec are drained. It
could prevent migration since the refcount of the page is greater than
the expection in migration logic. To mitigate the issue, callers of
migrate_pages drains LRU pagevec via migrate_prep or lru_add_drain_all
before migrate_pages call.
However, it's not enough because pages coming into pagevec after the
draining call still could stay at the pagevec so it could keep
preventing page migration. Since some callers of migrate_pages have
retrial logic with LRU draining, the page would migrate at next trail
but it is still fragile in that it doesn't close the fundamental race
between upcoming LRU pages into pagvec and migration so the migration
failure could cause contiguous memory allocation failure in the end.
To close the race, this patch disables lru caches(i.e, pagevec) during
ongoing migration until migrate is done.
Since it's really hard to reproduce, I measured how many times
migrate_pages retried with force mode(it is about a fallback to a sync
migration) with below debug code.
int migrate_pages(struct list_head *from, new_page_t get_new_page,
..
..
if (rc && reason == MR_CONTIG_RANGE && pass > 2) {
printk(KERN_ERR, "pfn 0x%lx reason %d", page_to_pfn(page), rc);
dump_page(page, "fail to migrate");
}
The test was repeating android apps launching with cma allocation in
background every five seconds. Total cma allocation count was about 500
during the testing. With this patch, the dump_page count was reduced
from 400 to 30.
The new interface is also useful for memory hotplug which currently
drains lru pcp caches after each migration failure. This is rather
suboptimal as it has to disrupt others running during the operation.
With the new interface the operation happens only once. This is also in
line with pcp allocator cache which are disabled for the offlining as
well.
Link: https://lkml.kernel.org/r/20210319175127.886124-1-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Chris Goldsworthy <cgoldswo@codeaurora.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: John Dias <joaodias@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Oliver Sang <oliver.sang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now, NUMA balancing can only optimize the page placement among the NUMA
nodes if the default memory policy is used. Because the memory policy
specified explicitly should take precedence. But this seems too strict in
some situations. For example, on a system with 4 NUMA nodes, if the
memory of an application is bound to the node 0 and 1, NUMA balancing can
potentially migrate the pages between the node 0 and 1 to reduce
cross-node accessing without breaking the explicit memory binding policy.
So in this patch, we add MPOL_F_NUMA_BALANCING mode flag to
set_mempolicy() when mode is MPOL_BIND. With the flag specified, NUMA
balancing will be enabled within the thread to optimize the page placement
within the constrains of the specified memory binding policy. With the
newly added flag, the NUMA balancing control mechanism becomes,
- sysctl knob numa_balancing can enable/disable the NUMA balancing
globally.
- even if sysctl numa_balancing is enabled, the NUMA balancing will be
disabled for the memory areas or applications with the explicit
memory policy by default.
- MPOL_F_NUMA_BALANCING can be used to enable the NUMA balancing for
the applications when specifying the explicit memory policy
(MPOL_BIND).
Various page placement optimization based on the NUMA balancing can be
done with these flags. As the first step, in this patch, if the memory of
the application is bound to multiple nodes (MPOL_BIND), and in the hint
page fault handler the accessing node are in the policy nodemask, the page
will be tried to be migrated to the accessing node to reduce the
cross-node accessing.
If the newly added MPOL_F_NUMA_BALANCING flag is specified by an
application on an old kernel version without its support, set_mempolicy()
will return -1 and errno will be set to EINVAL. The application can use
this behavior to run on both old and new kernel versions.
And if the MPOL_F_NUMA_BALANCING flag is specified for the mode other than
MPOL_BIND, set_mempolicy() will return -1 and errno will be set to EINVAL
as before. Because we don't support optimization based on the NUMA
balancing for these modes.
In the previous version of the patch, we tried to reuse MPOL_MF_LAZY for
mbind(). But that flag is tied to MPOL_MF_MOVE.*, so it seems not a good
API/ABI for the purpose of the patch.
And because it's not clear whether it's necessary to enable NUMA balancing
for a specific memory area inside an application, so we only add the flag
at the thread level (set_mempolicy()) instead of the memory area level
(mbind()). We can do that when it become necessary.
To test the patch, we run a test case as follows on a 4-node machine with
192 GB memory (48 GB per node).
1. Change pmbench memory accessing benchmark to call set_mempolicy()
to bind its memory to node 1 and 3 and enable NUMA balancing. Some
related code snippets are as follows,
#include <numaif.h>
#include <numa.h>
struct bitmask *bmp;
int ret;
bmp = numa_parse_nodestring("1,3");
ret = set_mempolicy(MPOL_BIND | MPOL_F_NUMA_BALANCING,
bmp->maskp, bmp->size + 1);
/* If MPOL_F_NUMA_BALANCING isn't supported, fall back to MPOL_BIND */
if (ret < 0 && errno == EINVAL)
ret = set_mempolicy(MPOL_BIND, bmp->maskp, bmp->size + 1);
if (ret < 0) {
perror("Failed to call set_mempolicy");
exit(-1);
}
2. Run a memory eater on node 3 to use 40 GB memory before running pmbench.
3. Run pmbench with 64 processes, the working-set size of each process
is 640 MB, so the total working-set size is 64 * 640 MB = 40 GB. The
CPU and the memory (as in step 1.) of all pmbench processes is bound
to node 1 and 3. So, after CPU usage is balanced, some pmbench
processes run on the CPUs of the node 3 will access the memory of
the node 1.
4. After the pmbench processes run for 100 seconds, kill the memory
eater. Now it's possible for some pmbench processes to migrate
their pages from node 1 to node 3 to reduce cross-node accessing.
Test results show that, with the patch, the pages can be migrated from
node 1 to node 3 after killing the memory eater, and the pmbench score
can increase about 17.5%.
Link: https://lkml.kernel.org/r/20210120061235.148637-2-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When flags in queue_pages_pte_range don't have MPOL_MF_MOVE or
MPOL_MF_MOVE_ALL bits, code breaks and passing origin pte - 1 to
pte_unmap_unlock seems like not a good idea.
queue_pages_pte_range can run in MPOL_MF_MOVE_ALL mode which doesn't
migrate misplaced pages but returns with EIO when encountering such a
page. Since commit a7f40cfe3b ("mm: mempolicy: make mbind() return
-EIO when MPOL_MF_STRICT is specified") and early break on the first pte
in the range results in pte_unmap_unlock on an underflow pte. This can
lead to lockups later on when somebody tries to lock the pte resp.
page_table_lock again..
Fixes: a7f40cfe3b ("mm: mempolicy: make mbind() return -EIO when MPOL_MF_STRICT is specified")
Signed-off-by: Shijie Luo <luoshijie1@huawei.com>
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Feilong Lin <linfeilong@huawei.com>
Cc: Shijie Luo <luoshijie1@huawei.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20201019074853.50856-1-luoshijie1@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The thp prefix is more frequently used than hpage and we should be
consistent between the various functions.
[akpm@linux-foundation.org: fix mm/migrate.c]
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Link: http://lkml.kernel.org/r/20200629151959.15779-6-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no difference between two migration callback functions,
alloc_huge_page_node() and alloc_huge_page_nodemask(), except
__GFP_THISNODE handling. It's redundant to have two almost similar
functions in order to handle this flag. So, this patch tries to remove
one by introducing a new argument, gfp_mask, to
alloc_huge_page_nodemask().
After introducing gfp_mask argument, it's caller's job to provide correct
gfp_mask. So, every callsites for alloc_huge_page_nodemask() are changed
to provide gfp_mask.
Note that it's safe to remove a node id check in alloc_huge_page_node()
since there is no caller passing NUMA_NO_NODE as a node id.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Roman Gushchin <guro@fb.com>
Link: http://lkml.kernel.org/r/1594622517-20681-4-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In the reservation routine, we only check whether the cpuset meets the
memory allocation requirements. But we ignore the mempolicy of MPOL_BIND
case. If someone mmap hugetlb succeeds, but the subsequent memory
allocation may fail due to mempolicy restrictions and receives the SIGBUS
signal. This can be reproduced by the follow steps.
1) Compile the test case.
cd tools/testing/selftests/vm/
gcc map_hugetlb.c -o map_hugetlb
2) Pre-allocate huge pages. Suppose there are 2 numa nodes in the
system. Each node will pre-allocate one huge page.
echo 2 > /proc/sys/vm/nr_hugepages
3) Run test case(mmap 4MB). We receive the SIGBUS signal.
numactl --membind=3D0 ./map_hugetlb 4
With this patch applied, the mmap will fail in the step 3) and throw
"mmap: Cannot allocate memory".
[akpm@linux-foundation.org: include sched.h for `current']
Reported-by: Jianchao Guo <guojianchao@bytedance.com>
Suggested-by: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michel Lespinasse <walken@google.com>
Cc: Baoquan He <bhe@redhat.com>
Link: http://lkml.kernel.org/r/20200728034938.14993-1-songmuchun@bytedance.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ba841078cd ("mm/mempolicy: Allow lookup_node() to handle fatal signal")
has added a special casing for 0 return value because that was a possible
gup return value when interrupted by fatal signal. This has been fixed by
ae46d2aa6a ("mm/gup: Let __get_user_pages_locked() return -EINTR for
fatal signal") in the mean time so ba841078cd can be reverted.
This patch however doesn't go all the way to revert it because the check
for 0 is wrong and confusing here. Firstly it is inherently unsafe to
access the page when get_user_pages_locked returns 0 (aka no page
returned).
Fortunatelly this will not happen because get_user_pages_locked will not
return 0 when nr_pages > 0 unless FOLL_NOWAIT is specified which is not
the case here. Document this potential error code in gup code while we
are at it.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Xu <peterx@redhat.com>
Link: http://lkml.kernel.org/r/20200421071026.18394-1-mhocko@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull libnvdimm and dax updates from Dan Williams:
"There were multiple touches outside of drivers/nvdimm/ this round to
add cross arch compatibility to the devm_memremap_pages() interface,
enhance numa information for persistent memory ranges, and add a
zero_page_range() dax operation.
This cycle I switched from the patchwork api to Konstantin's b4 script
for collecting tags (from x86, PowerPC, filesystem, and device-mapper
folks), and everything looks to have gone ok there. This has all
appeared in -next with no reported issues.
Summary:
- Add support for region alignment configuration and enforcement to
fix compatibility across architectures and PowerPC page size
configurations.
- Introduce 'zero_page_range' as a dax operation. This facilitates
filesystem-dax operation without a block-device.
- Introduce phys_to_target_node() to facilitate drivers that want to
know resulting numa node if a given reserved address range was
onlined.
- Advertise a persistence-domain for of_pmem and papr_scm. The
persistence domain indicates where cpu-store cycles need to reach
in the platform-memory subsystem before the platform will consider
them power-fail protected.
- Promote numa_map_to_online_node() to a cross-kernel generic
facility.
- Save x86 numa information to allow for node-id lookups for reserved
memory ranges, deploy that capability for the e820-pmem driver.
- Pick up some miscellaneous minor fixes, that missed v5.6-final,
including a some smatch reports in the ioctl path and some unit
test compilation fixups.
- Fixup some flexible-array declarations"
* tag 'libnvdimm-for-5.7' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (29 commits)
dax: Move mandatory ->zero_page_range() check in alloc_dax()
dax,iomap: Add helper dax_iomap_zero() to zero a range
dax: Use new dax zero page method for zeroing a page
dm,dax: Add dax zero_page_range operation
s390,dcssblk,dax: Add dax zero_page_range operation to dcssblk driver
dax, pmem: Add a dax operation zero_page_range
pmem: Add functions for reading/writing page to/from pmem
libnvdimm: Update persistence domain value for of_pmem and papr_scm device
tools/test/nvdimm: Fix out of tree build
libnvdimm/region: Fix build error
libnvdimm/region: Replace zero-length array with flexible-array member
libnvdimm/label: Replace zero-length array with flexible-array member
ACPI: NFIT: Replace zero-length array with flexible-array member
libnvdimm/region: Introduce an 'align' attribute
libnvdimm/region: Introduce NDD_LABELING
libnvdimm/namespace: Enforce memremap_compat_align()
libnvdimm/pfn: Prevent raw mode fallback if pfn-infoblock valid
libnvdimm: Out of bounds read in __nd_ioctl()
acpi/nfit: improve bounds checking for 'func'
mm/memremap_pages: Introduce memremap_compat_align()
...
lookup_node() uses gup to pin the page and get node information. It
checks against ret>=0 assuming the page will be filled in. However it's
also possible that gup will return zero, for example, when the thread is
quickly killed with a fatal signal. Teach lookup_node() to gracefully
return an error -EFAULT if it happens.
Meanwhile, initialize "page" to NULL to avoid potential risk of
exploiting the pointer.
Fixes: 4426e945df ("mm/gup: allow VM_FAULT_RETRY for multiple times")
Reported-by: syzbot+693dc11fcb53120b5559@syzkaller.appspotmail.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>