IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Time Namespace isolates clock values.
The kernel provides access to several clocks CLOCK_REALTIME,
CLOCK_MONOTONIC, CLOCK_BOOTTIME, etc.
CLOCK_REALTIME
System-wide clock that measures real (i.e., wall-clock) time.
CLOCK_MONOTONIC
Clock that cannot be set and represents monotonic time since
some unspecified starting point.
CLOCK_BOOTTIME
Identical to CLOCK_MONOTONIC, except it also includes any time
that the system is suspended.
For many users, the time namespace means the ability to changes date and
time in a container (CLOCK_REALTIME). Providing per namespace notions of
CLOCK_REALTIME would be complex with a massive overhead, but has a dubious
value.
But in the context of checkpoint/restore functionality, monotonic and
boottime clocks become interesting. Both clocks are monotonic with
unspecified starting points. These clocks are widely used to measure time
slices and set timers. After restoring or migrating processes, it has to be
guaranteed that they never go backward. In an ideal case, the behavior of
these clocks should be the same as for a case when a whole system is
suspended. All this means that it is required to set CLOCK_MONOTONIC and
CLOCK_BOOTTIME clocks, which can be achieved by adding per-namespace
offsets for clocks.
A time namespace is similar to a pid namespace in the way how it is
created: unshare(CLONE_NEWTIME) system call creates a new time namespace,
but doesn't set it to the current process. Then all children of the process
will be born in the new time namespace, or a process can use the setns()
system call to join a namespace.
This scheme allows setting clock offsets for a namespace, before any
processes appear in it.
All available clone flags have been used, so CLONE_NEWTIME uses the highest
bit of CSIGNAL. It means that it can be used only with the unshare() and
the clone3() system calls.
[ tglx: Adjusted paragraph about clone3() to reality and massaged the
changelog a bit. ]
Co-developed-by: Dmitry Safonov <dima@arista.com>
Signed-off-by: Andrei Vagin <avagin@gmail.com>
Signed-off-by: Dmitry Safonov <dima@arista.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://criu.org/Time_namespace
Link: https://lists.openvz.org/pipermail/criu/2018-June/041504.html
Link: https://lore.kernel.org/r/20191112012724.250792-4-dima@arista.com
The new generic VDSO library allows to unify the update_vsyscall[_tz]()
implementations.
Provide a generic implementation based on the x86 code and the bindings
which need to be implemented in architecture specific code.
[ tglx: Moved it into kernel/time where it belongs. Removed the pointless
line breaks in the stub functions. Massaged changelog ]
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Shijith Thotton <sthotton@marvell.com>
Tested-by: Andre Przywara <andre.przywara@arm.com>
Cc: linux-arch@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-mips@vger.kernel.org
Cc: linux-kselftest@vger.kernel.org
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Mark Salyzyn <salyzyn@android.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Dmitry Safonov <0x7f454c46@gmail.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Huw Davies <huw@codeweavers.com>
Link: https://lkml.kernel.org/r/20190621095252.32307-4-vincenzo.frascino@arm.com
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Currently CONFIG_TIMER_STATS exposes process information across namespaces:
kernel/time/timer_list.c print_timer():
SEQ_printf(m, ", %s/%d", tmp, timer->start_pid);
/proc/timer_list:
#11: <0000000000000000>, hrtimer_wakeup, S:01, do_nanosleep, cron/2570
Given that the tracer can give the same information, this patch entirely
removes CONFIG_TIMER_STATS.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: John Stultz <john.stultz@linaro.org>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: linux-doc@vger.kernel.org
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Xing Gao <xgao01@email.wm.edu>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Jessica Frazelle <me@jessfraz.com>
Cc: kernel-hardening@lists.openwall.com
Cc: Nicolas Iooss <nicolas.iooss_linux@m4x.org>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Michal Marek <mmarek@suse.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Olof Johansson <olof@lixom.net>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-api@vger.kernel.org
Cc: Arjan van de Ven <arjan@linux.intel.com>
Link: http://lkml.kernel.org/r/20170208192659.GA32582@beast
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Some embedded systems have no use for them. This removes about
25KB from the kernel binary size when configured out.
Corresponding syscalls are routed to a stub logging the attempt to
use those syscalls which should be enough of a clue if they were
disabled without proper consideration. They are: timer_create,
timer_gettime: timer_getoverrun, timer_settime, timer_delete,
clock_adjtime, setitimer, getitimer, alarm.
The clock_settime, clock_gettime, clock_getres and clock_nanosleep
syscalls are replaced by simple wrappers compatible with CLOCK_REALTIME,
CLOCK_MONOTONIC and CLOCK_BOOTTIME only which should cover the vast
majority of use cases with very little code.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <john.stultz@linaro.org>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Cc: Paul Bolle <pebolle@tiscali.nl>
Cc: linux-kbuild@vger.kernel.org
Cc: netdev@vger.kernel.org
Cc: Michal Marek <mmarek@suse.com>
Cc: Edward Cree <ecree@solarflare.com>
Link: http://lkml.kernel.org/r/1478841010-28605-7-git-send-email-nicolas.pitre@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
time.o gets rebuilt unconditionally due to a leftover Makefile rule
which was placed there for development purposes.
Remove it along with the commented out always rule in the toplevel
Kbuild file.
Fixes: 0a227985d4a9 'time: Move timeconst.h into include/generated'
Reported-by; Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Nicholas Mc Guire <der.herr@hofr.at>
kernel/time/timeconst.h is moved to include/generated/ and generated
by the top level Kbuild. This allows using timeconst.h in an earlier
build stage.
Signed-off-by: Nicholas Mc Guire <hofrat@osadl.org>
Cc: Masahiro Yamada <yamada.m@jp.panasonic.com>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: Joe Perches <joe@perches.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Andrew Hunter <ahh@google.com>
Cc: Paul Turner <pjt@google.com>
Cc: Michal Marek <mmarek@suse.cz>
Link: http://lkml.kernel.org/r/1431951554-5563-1-git-send-email-hofrat@osadl.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This option was for simpler migration to the clock events code.
Most architectures have been converted and the option has been
disfunctional as a standalone option for quite some time. Remove
it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/5021859.jl9OC1medj@vostro.rjw.lan
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The timecounter code has almost nothing to do with the clocksource
code. Let it live in its own file. This will help isolate the
timecounter users from the clocksource users in the source tree.
Signed-off-by: Richard Cochran <richardcochran@gmail.com>
Acked-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Kees requested that this test module be renamed for consistency sake,
so this patch renames the udelay_test.c file (recently added to
tip/timers/core for 3.17) to test_udelay.c
Cc: Kees Cook <keescook@chromium.org>
Cc: Greg KH <greg@kroah.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Linux-Next <linux-next@vger.kernel.org>
Cc: David Riley <davidriley@chromium.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Create a module that allows udelay() to be executed to ensure that
it is delaying at least as long as requested (with a little bit of
error allowed).
There are some configurations which don't have reliably udelay
due to using a loop delay with cpufreq changes which should use
a counter time based delay instead. This test aims to identify
those configurations where timing is unreliable.
Signed-off-by: David Riley <davidriley@chromium.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
The hrtimer mode of broadcast is supported only when
GENERIC_CLOCKEVENTS_BROADCAST and TICK_ONESHOT config options
are enabled. Hence compile in the functions for hrtimer mode
of broadcast only when these options are selected.
Also fix max_delta_ticks value for the pseudo clock device.
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/52F719EE.9010304@linux.vnet.ibm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
On some architectures, in certain CPU deep idle states the local timers stop.
An external clock device is used to wakeup these CPUs. The kernel support for the
wakeup of these CPUs is provided by the tick broadcast framework by using the
external clock device as the wakeup source.
However not all implementations of architectures provide such an external
clock device. This patch includes support in the broadcast framework to handle
the wakeup of the CPUs in deep idle states on such systems by queuing a hrtimer
on one of the CPUs, which is meant to handle the wakeup of CPUs in deep idle states.
This patchset introduces a pseudo clock device which can be registered by the
archs as tick_broadcast_device in the absence of a real external clock
device. Once registered, the broadcast framework will work as is for these
architectures as long as the archs take care of the BROADCAST_ENTER
notification failing for one of the CPUs. This CPU is made the stand by CPU to
handle wakeup of the CPUs in deep idle and it *must not enter deep idle states*.
The CPU with the earliest wakeup is chosen to be this CPU. Hence this way the
stand by CPU dynamically moves around and so does the hrtimer which is queued
to trigger at the next earliest wakeup time. This is consistent with the case where
an external clock device is present. The smp affinity of this clock device is
set to the CPU with the earliest wakeup. This patchset handles the hotplug of
the stand by CPU as well by moving the hrtimer on to the CPU handling the CPU_DEAD
notification.
Originally-from: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: deepthi@linux.vnet.ibm.com
Cc: paulmck@linux.vnet.ibm.com
Cc: fweisbec@gmail.com
Cc: paulus@samba.org
Cc: srivatsa.bhat@linux.vnet.ibm.com
Cc: svaidy@linux.vnet.ibm.com
Cc: peterz@infradead.org
Cc: benh@kernel.crashing.org
Cc: rafael.j.wysocki@intel.com
Cc: linuxppc-dev@lists.ozlabs.org
Link: http://lkml.kernel.org/r/20140207080632.17187.80532.stgit@preeti.in.ibm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Nothing about the sched_clock implementation in the ARM port is
specific to the architecture. Generalize the code so that other
architectures can use it by selecting GENERIC_SCHED_CLOCK.
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
[jstultz: Merge minor collisions with other patches in my tree]
Signed-off-by: John Stultz <john.stultz@linaro.org>
Below is a patch from android kernel that maintains a histogram of
suspend times. Please review and provide feedback.
Statistices on the time spent in suspend are kept in
/sys/kernel/debug/sleep_time.
Cc: Android Kernel Team <kernel-team@android.com>
Cc: Colin Cross <ccross@android.com>
Cc: Todd Poynor <toddpoynor@google.com>
Cc: San Mehat <san@google.com>
Cc: Benoit Goby <benoit@android.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Colin Cross <ccross@android.com>
Signed-off-by: Todd Poynor <toddpoynor@google.com>
[zoran.markovic@linaro.org: Re-formatted suspend time table to better
fit expected values. Moved accounting of suspend time into timekeeping
core. Removed CONFIG_SUSPEND_TIME flag and made the feature conditional
on CONFIG_DEBUG_FS. Changed the file name to sleep_time to better fit
terminology in timekeeping core. Changed seq_printf to seq_puts. Tweaked
commit message]
Signed-off-by: Zoran Markovic <zoran.markovic@linaro.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
This patch removes the timecompare code from the kernel. The top five
reasons to do this are:
1. There are no more users of this code.
2. The original idea was a bit weak.
3. The original author has disappeared.
4. The code was not general purpose but tuned to a particular hardware,
5. There are better ways to accomplish clock synchronization.
Signed-off-by: Richard Cochran <richardcochran@gmail.com>
Acked-by: John Stultz <john.stultz@linaro.org>
Tested-by: Bob Liu <lliubbo@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This provides the in kernel interface and infrastructure for
alarm-timers.
Alarm-timers are a hybrid style timer, similar to hrtimers,
but when the system is suspended, the RTC device is set to
fire and wake the system for when the soonest alarm-timer
expires.
The concept for Alarm-timers was inspired by the Android Alarm
driver (by Arve Hjønnevåg) found in the Android kernel tree.
See: http://android.git.kernel.org/?p=kernel/common.git;a=blob;f=drivers/rtc/alarm.c;h=1250edfbdf3302f5e4ea6194847c6ef4bb7beb1c;hb=android-2.6.36
This in-kernel interface should be fairly compatible with the
Android alarm driver in-kernel interface, but has the advantage
of utilizing the new RTC timerqueue code instead of doing direct
RTC manipulation.
CC: Arve Hjønnevåg <arve@android.com>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Alessandro Zummo <a.zummo@towertech.it>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
This patch adds support for adding and removing posix clocks. The
clock lifetime cycle is patterned after usb devices. Each clock is
represented by a standard character device. In addition, the driver
may optionally implement custom character device operations.
The posix clock and timer system calls listed below now work with
dynamic posix clocks, as well as the traditional static clocks.
The following system calls are affected:
- clock_adjtime (brand new syscall)
- clock_gettime
- clock_getres
- clock_settime
- timer_create
- timer_delete
- timer_gettime
- timer_settime
[ tglx: Adapted to the posix-timer cleanup. Moved clock_posix_dynamic
to posix-clock.c and made all referenced functions static ]
Signed-off-by: Richard Cochran <richard.cochran@omicron.at>
Acked-by: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <20110201134420.164172635@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
There are many similar code in kernel for one object: convert time between
calendar time and broken-down time.
Here is some source I found:
fs/ncpfs/dir.c
fs/smbfs/proc.c
fs/fat/misc.c
fs/udf/udftime.c
fs/cifs/netmisc.c
net/netfilter/xt_time.c
drivers/scsi/ips.c
drivers/input/misc/hp_sdc_rtc.c
drivers/rtc/rtc-lib.c
arch/ia64/hp/sim/boot/fw-emu.c
arch/m68k/mac/misc.c
arch/powerpc/kernel/time.c
arch/parisc/include/asm/rtc.h
...
We can make a common function for this type of conversion, At least we
can get following benefit:
1: Make kernel simple and unify
2: Easy to fix bug in converting code
3: Reduce clone of code in future
For example, I'm trying to make ftrace display walltime,
this patch will make me easy.
This code is based on code from glibc-2.6
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mapping from a struct timecounter to a time returned by functions like
ktime_get_real() is implemented. This is sufficient to use this code
in a network device driver which wants to support hardware time
stamping and transformation of hardware time stamps to system time.
The interface could have been made more versatile by not depending on
a time counter, but this wasn't done to avoid writing glue code
elsewhere.
The method implemented here is the one used and analyzed under the name
"assisted PTP" in the LCI PTP paper:
http://www.linuxclustersinstitute.org/conferences/archive/2008/PDF/Ohly_92221.pdf
Acked-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Patrick Ohly <patrick.ohly@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Migration aid to allow preparatory patches which introduce not yet
used parts of clock events code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Move the timekeeping code out of kernel/timer.c and into
kernel/time/timekeeping.c. I made no cleanups or other changes in transit.
[akpm@linux-foundation.org: build fix]
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With Ingo Molnar <mingo@elte.hu>
Add functions to provide dynamic ticks and high resolution timers. The code
which keeps track of jiffies and handles the long idle periods is shared
between tick based and high resolution timer based dynticks. The dyntick
functionality can be disabled on the kernel commandline. Provide also the
infrastructure to support high resolution timers.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With Ingo Molnar <mingo@elte.hu>
Add broadcast functionality, so per cpu clock event devices can be registered
as dummy devices or switched from/to broadcast on demand. The broadcast
function distributes the events via the broadcast function of the clock event
device. This is primarily designed to replace the switch apic timer to / from
IPI in power states, where the apic stops.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With Ingo Molnar <mingo@elte.hu>
The tick-management code is the first user of the clockevents layer. It takes
clock event devices from the clock events core and uses them to provide the
periodic tick.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Architectures register their clock event devices, in the clock events core.
Users of the clockevents core can get clock event devices for their use. The
clockevents core code provides notification mechanisms for various clock
related management events.
This allows to control the clock event devices without the architectures
having to worry about the details of function assignment. This is also a
preliminary for high resolution timers and dynamic ticks to allow the core
code to control the clock functionality without intrusive changes to the
architecture code.
[Fixes-by: Ingo Molnar <mingo@elte.hu>]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move all the NTP related code to ntp.c
[akpm@osdl.org: cleanups, build fix]
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This introduces the clocksource management infrastructure. A clocksource is a
driver-like architecture generic abstraction of a free-running counter. This
code defines the clocksource structure, and provides management code for
registering, selecting, accessing and scaling clocksources.
Additionally, this includes the trivial jiffies clocksource, a lowest common
denominator clocksource, provided mainly for use as an example.
[hirofumi@mail.parknet.co.jp: Don't enable IRQ too early]
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>