11 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Miroslav Benes
|
d0807da78e |
livepatch: Remove immediate feature
Immediate flag has been used to disable per-task consistency and patch all tasks immediately. It could be useful if the patch doesn't change any function or data semantics. However, it causes problems on its own. The consistency problem is currently broken with respect to immediate patches. func a patches 1i 2i 3 When the patch 3 is applied, only 2i function is checked (by stack checking facility). There might be a task sleeping in 1i though. Such task is migrated to 3, because we do not check 1i in klp_check_stack_func() at all. Coming atomic replace feature would be easier to implement and more reliable without immediate. Thus, remove immediate feature completely and save us from the problems. Note that force feature has the similar problem. However it is considered as a last resort. If used, administrator should not apply any new live patches and should plan for reboot into an updated kernel. The architectures would now need to provide HAVE_RELIABLE_STACKTRACE to fully support livepatch. Signed-off-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz> |
||
Miroslav Benes
|
c99a2be790 |
livepatch: force transition to finish
If a task sleeps in a set of patched functions uninterruptedly, it could block the whole transition indefinitely. Thus it may be useful to clear its TIF_PATCH_PENDING to allow the process to finish. Admin can do that now by writing to force sysfs attribute in livepatch sysfs directory. TIF_PATCH_PENDING is then cleared for all tasks and the transition can finish successfully. Important note! Administrator should not use this feature without a clearance from a patch distributor. It must be checked that by doing so the consistency model guarantees are not violated. Removal (rmmod) of patch modules is permanently disabled when the feature is used. It cannot be guaranteed there is no task sleeping in such module. Signed-off-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Reviewed-by: Petr Mladek <pmladek@suse.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz> |
||
Miroslav Benes
|
43347d56c8 |
livepatch: send a fake signal to all blocking tasks
Live patching consistency model is of LEAVE_PATCHED_SET and SWITCH_THREAD. This means that all tasks in the system have to be marked one by one as safe to call a new patched function. Safe means when a task is not (sleeping) in a set of patched functions. That is, no patched function is on the task's stack. Another clearly safe place is the boundary between kernel and userspace. The patching waits for all tasks to get outside of the patched set or to cross the boundary. The transition is completed afterwards. The problem is that a task can block the transition for quite a long time, if not forever. It could sleep in a set of patched functions, for example. Luckily we can force the task to leave the set by sending it a fake signal, that is a signal with no data in signal pending structures (no handler, no sign of proper signal delivered). Suspend/freezer use this to freeze the tasks as well. The task gets TIF_SIGPENDING set and is woken up (if it has been sleeping in the kernel before) or kicked by rescheduling IPI (if it was running on other CPU). This causes the task to go to kernel/userspace boundary where the signal would be handled and the task would be marked as safe in terms of live patching. There are tasks which are not affected by this technique though. The fake signal is not sent to kthreads. They should be handled differently. They can be woken up so they leave the patched set and their TIF_PATCH_PENDING can be cleared thanks to stack checking. For the sake of completeness, if the task is in TASK_RUNNING state but not currently running on some CPU it doesn't get the IPI, but it would eventually handle the signal anyway. Second, if the task runs in the kernel (in TASK_RUNNING state) it gets the IPI, but the signal is not handled on return from the interrupt. It would be handled on return to the userspace in the future when the fake signal is sent again. Stack checking deals with these cases in a better way. If the task was sleeping in a syscall it would be woken by our fake signal, it would check if TIF_SIGPENDING is set (by calling signal_pending() predicate) and return ERESTART* or EINTR. Syscalls with ERESTART* return values are restarted in case of the fake signal (see do_signal()). EINTR is propagated back to the userspace program. This could disturb the program, but... * each process dealing with signals should react accordingly to EINTR return values. * syscalls returning EINTR happen to be quite common situation in the system even if no fake signal is sent. * freezer sends the fake signal and does not deal with EINTR anyhow. Thus EINTR values are returned when the system is resumed. The very safe marking is done in architectures' "entry" on syscall and interrupt/exception exit paths, and in a stack checking functions of livepatch. TIF_PATCH_PENDING is cleared and the next recalc_sigpending() drops TIF_SIGPENDING. In connection with this, also call klp_update_patch_state() before do_signal(), so that recalc_sigpending() in dequeue_signal() can clear TIF_PATCH_PENDING immediately and thus prevent a double call of do_signal(). Note that the fake signal is not sent to stopped/traced tasks. Such task prevents the patching to finish till it continues again (is not traced anymore). Last, sending the fake signal is not automatic. It is done only when admin requests it by writing 1 to signal sysfs attribute in livepatch sysfs directory. Signed-off-by: Miroslav Benes <mbenes@suse.cz> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: linuxppc-dev@lists.ozlabs.org Cc: x86@kernel.org Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Signed-off-by: Jiri Kosina <jkosina@suse.cz> |
||
Joe Lawrence
|
af02679605 |
livepatch: add transition notices
Log a few kernel debug messages at the beginning of the following livepatch transition functions: klp_complete_transition() klp_cancel_transition() klp_init_transition() klp_reverse_transition() Also update the log notice message in klp_start_transition() for similar verbiage as the above messages. Suggested-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Joe Lawrence <joe.lawrence@redhat.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz> |
||
Joe Lawrence
|
6116c3033a |
livepatch: move transition "complete" notice into klp_complete_transition()
klp_complete_transition() performs a bit of housework before a transition to KLP_PATCHED or KLP_UNPATCHED is actually completed (including post-(un)patch callbacks). To be consistent, move the transition "complete" kernel log notice out of klp_try_complete_transition() and into klp_complete_transition(). Suggested-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Joe Lawrence <joe.lawrence@redhat.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Reviewed-by: Petr Mladek <pmladek@suse.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz> |
||
Joe Lawrence
|
93862e385d |
livepatch: add (un)patch callbacks
Provide livepatch modules a klp_object (un)patching notification mechanism. Pre and post-(un)patch callbacks allow livepatch modules to setup or synchronize changes that would be difficult to support in only patched-or-unpatched code contexts. Callbacks can be registered for target module or vmlinux klp_objects, but each implementation is klp_object specific. - Pre-(un)patch callbacks run before any (un)patching transition starts. - Post-(un)patch callbacks run once an object has been (un)patched and the klp_patch fully transitioned to its target state. Example use cases include modification of global data and registration of newly available services/handlers. See Documentation/livepatch/callbacks.txt for details and samples/livepatch/ for examples. Signed-off-by: Joe Lawrence <joe.lawrence@redhat.com> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Signed-off-by: Jiri Kosina <jkosina@suse.cz> |
||
Petr Mladek
|
842c088464 |
livepatch: Fix stacking of patches with respect to RCU
rcu_read_(un)lock(), list_*_rcu(), and synchronize_rcu() are used for a secure access and manipulation of the list of patches that modify the same function. In particular, it is the variable func_stack that is accessible from the ftrace handler via struct ftrace_ops and klp_ops. Of course, it synchronizes also some states of the patch on the top of the stack, e.g. func->transition in klp_ftrace_handler. At the same time, this mechanism guards also the manipulation of task->patch_state. It is modified according to the state of the transition and the state of the process. Now, all this works well as long as RCU works well. Sadly livepatching might get into some corner cases when this is not true. For example, RCU is not watching when rcu_read_lock() is taken in idle threads. It is because they might sleep and prevent reaching the grace period for too long. There are ways how to make RCU watching even in idle threads, see rcu_irq_enter(). But there is a small location inside RCU infrastructure when even this does not work. This small problematic location can be detected either before calling rcu_irq_enter() by rcu_irq_enter_disabled() or later by rcu_is_watching(). Sadly, there is no safe way how to handle it. Once we detect that RCU was not watching, we might see inconsistent state of the function stack and the related variables in klp_ftrace_handler(). Then we could do a wrong decision, use an incompatible implementation of the function and break the consistency of the system. We could warn but we could not avoid the damage. Fortunately, ftrace has similar problems and they seem to be solved well there. It uses a heavy weight implementation of some RCU operations. In particular, it replaces: + rcu_read_lock() with preempt_disable_notrace() + rcu_read_unlock() with preempt_enable_notrace() + synchronize_rcu() with schedule_on_each_cpu(sync_work) My understanding is that this is RCU implementation from a stone age. It meets the core RCU requirements but it is rather ineffective. Especially, it does not allow to batch or speed up the synchronize calls. On the other hand, it is very trivial. It allows to safely trace and/or livepatch even the RCU core infrastructure. And the effectiveness is a not a big issue because using ftrace or livepatches on productive systems is a rare operation. The safety is much more important than a negligible extra load. Note that the alternative implementation follows the RCU principles. Therefore, we could and actually must use list_*_rcu() variants when manipulating the func_stack. These functions allow to access the pointers in the right order and with the right barriers. But they do not use any other information that would be set only by rcu_read_lock(). Also note that there are actually two problems solved in ftrace: First, it cares about the consistency of RCU read sections. It is being solved the way as described and used in this patch. Second, ftrace needs to make sure that nobody is inside the dynamic trampoline when it is being freed. For this, it also calls synchronize_rcu_tasks() in preemptive kernel in ftrace_shutdown(). Livepatch has similar problem but it is solved by ftrace for free. klp_ftrace_handler() is a good guy and never sleeps. In addition, it is registered with FTRACE_OPS_FL_DYNAMIC. It causes that unregister_ftrace_function() calls: * schedule_on_each_cpu(ftrace_sync) - always * synchronize_rcu_tasks() - in preemptive kernel The effect is that nobody is neither inside the dynamic trampoline nor inside the ftrace handler after unregister_ftrace_function() returns. [jkosina@suse.cz: reformat changelog, fix comment] Signed-off-by: Petr Mladek <pmladek@suse.com> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Signed-off-by: Jiri Kosina <jkosina@suse.cz> |
||
Petr Mladek
|
e679af627f |
livepatch: Cancel transition a safe way for immediate patches
klp_init_transition() does not set func->transition for immediate patches. Then klp_ftrace_handler() could use the new code immediately. As a result, it is not safe to put the livepatch module in klp_cancel_transition(). This patch reverts most of the last minute changes klp_cancel_transition(). It keeps the warning about a misuse because it still makes sense. Fixes: 3ec24776bfd0 ("livepatch: allow removal of a disabled patch") Signed-off-by: Petr Mladek <pmladek@suse.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz> |
||
Jiri Kosina
|
10517429b5 |
livepatch: make klp_mutex proper part of API
klp_mutex is shared between core.c and transition.c, and as such would rather be properly located in a header so that we don't have to play 'extern' games from .c sources. This also silences sparse warning (wrongly) suggesting that klp_mutex should be defined static. Acked-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz> |
||
Josh Poimboeuf
|
3ec24776bf |
livepatch: allow removal of a disabled patch
Currently we do not allow patch module to unload since there is no method to determine if a task is still running in the patched code. The consistency model gives us the way because when the unpatching finishes we know that all tasks were marked as safe to call an original function. Thus every new call to the function calls the original code and at the same time no task can be somewhere in the patched code, because it had to leave that code to be marked as safe. We can safely let the patch module go after that. Completion is used for synchronization between module removal and sysfs infrastructure in a similar way to commit 942e443127e9 ("module: Fix mod->mkobj.kobj potentially freed too early"). Note that we still do not allow the removal for immediate model, that is no consistency model. The module refcount may increase in this case if somebody disables and enables the patch several times. This should not cause any harm. With this change a call to try_module_get() is moved to __klp_enable_patch from klp_register_patch to make module reference counting symmetric (module_put() is in a patch disable path) and to allow to take a new reference to a disabled module when being enabled. Finally, we need to be very careful about possible races between klp_unregister_patch(), kobject_put() functions and operations on the related sysfs files. kobject_put(&patch->kobj) must be called without klp_mutex. Otherwise, it might be blocked by enabled_store() that needs the mutex as well. In addition, enabled_store() must check if the patch was not unregisted in the meantime. There is no need to do the same for other kobject_put() callsites at the moment. Their sysfs operations neither take the lock nor they access any data that might be freed in the meantime. There was an attempt to use kobjects the right way and prevent these races by design. But it made the patch definition more complicated and opened another can of worms. See https://lkml.kernel.org/r/1464018848-4303-1-git-send-email-pmladek@suse.com [Thanks to Petr Mladek for improving the commit message.] Signed-off-by: Miroslav Benes <mbenes@suse.cz> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Reviewed-by: Petr Mladek <pmladek@suse.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Signed-off-by: Jiri Kosina <jkosina@suse.cz> |
||
Josh Poimboeuf
|
d83a7cb375 |
livepatch: change to a per-task consistency model
Change livepatch to use a basic per-task consistency model. This is the foundation which will eventually enable us to patch those ~10% of security patches which change function or data semantics. This is the biggest remaining piece needed to make livepatch more generally useful. This code stems from the design proposal made by Vojtech [1] in November 2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task consistency and syscall barrier switching combined with kpatch's stack trace switching. There are also a number of fallback options which make it quite flexible. Patches are applied on a per-task basis, when the task is deemed safe to switch over. When a patch is enabled, livepatch enters into a transition state where tasks are converging to the patched state. Usually this transition state can complete in a few seconds. The same sequence occurs when a patch is disabled, except the tasks converge from the patched state to the unpatched state. An interrupt handler inherits the patched state of the task it interrupts. The same is true for forked tasks: the child inherits the patched state of the parent. Livepatch uses several complementary approaches to determine when it's safe to patch tasks: 1. The first and most effective approach is stack checking of sleeping tasks. If no affected functions are on the stack of a given task, the task is patched. In most cases this will patch most or all of the tasks on the first try. Otherwise it'll keep trying periodically. This option is only available if the architecture has reliable stacks (HAVE_RELIABLE_STACKTRACE). 2. The second approach, if needed, is kernel exit switching. A task is switched when it returns to user space from a system call, a user space IRQ, or a signal. It's useful in the following cases: a) Patching I/O-bound user tasks which are sleeping on an affected function. In this case you have to send SIGSTOP and SIGCONT to force it to exit the kernel and be patched. b) Patching CPU-bound user tasks. If the task is highly CPU-bound then it will get patched the next time it gets interrupted by an IRQ. c) In the future it could be useful for applying patches for architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In this case you would have to signal most of the tasks on the system. However this isn't supported yet because there's currently no way to patch kthreads without HAVE_RELIABLE_STACKTRACE. 3. For idle "swapper" tasks, since they don't ever exit the kernel, they instead have a klp_update_patch_state() call in the idle loop which allows them to be patched before the CPU enters the idle state. (Note there's not yet such an approach for kthreads.) All the above approaches may be skipped by setting the 'immediate' flag in the 'klp_patch' struct, which will disable per-task consistency and patch all tasks immediately. This can be useful if the patch doesn't change any function or data semantics. Note that, even with this flag set, it's possible that some tasks may still be running with an old version of the function, until that function returns. There's also an 'immediate' flag in the 'klp_func' struct which allows you to specify that certain functions in the patch can be applied without per-task consistency. This might be useful if you want to patch a common function like schedule(), and the function change doesn't need consistency but the rest of the patch does. For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user must set patch->immediate which causes all tasks to be patched immediately. This option should be used with care, only when the patch doesn't change any function or data semantics. In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE may be allowed to use per-task consistency if we can come up with another way to patch kthreads. The /sys/kernel/livepatch/<patch>/transition file shows whether a patch is in transition. Only a single patch (the topmost patch on the stack) can be in transition at a given time. A patch can remain in transition indefinitely, if any of the tasks are stuck in the initial patch state. A transition can be reversed and effectively canceled by writing the opposite value to the /sys/kernel/livepatch/<patch>/enabled file while the transition is in progress. Then all the tasks will attempt to converge back to the original patch state. [1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Ingo Molnar <mingo@kernel.org> # for the scheduler changes Signed-off-by: Jiri Kosina <jkosina@suse.cz> |