IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
So that the user can specify outside CFLAGS/LDFLAGS values.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Herton Krzesinski <herton@redhat.com>
Cc: Len Brown <len.brown@intel.com>
Link: http://lkml.kernel.org/r/20181212102537.25902-5-jolsa@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Often a new processor gets a new model number, but from a turbostat
point of view, it is the same as a previous model. Support duplicates
with 1-line updates, rather than error-prone scattering of model #'s.
Signed-off-by: Len Brown <len.brown@intel.com>
When the C-state limit is 8 on Goldmont, PC10 is enabled.
Previously turbostat saw this as "undefined", and thus assumed
it should not show some counters, such as pc3, pc6, pc7.
Signed-off-by: Len Brown <len.brown@intel.com>
A recent turbostat release increased topo.max_cpu_num
to make it convenient to handle sysfs bitmaps of 32-cpus.
But users, who regularly make use of "--debug", then saw a bunch of output
for cpus that were not present.
Remove that extra output by checking a cpu is online before dumping its info.
Signed-off-by: Len Brown <len.brown@intel.com>
Cc: Prarit Bhargava <prarit@redhat.com>
turbostat recently gained a feature adding APIC and X2APIC columns.
While they are disabled by-default, they are enabled with --debug
or when explicitly requested, eg.
$ sudo turbostat --quiet --show Package,Node,Core,CPU,APIC,X2APIC date
But these columns erroneously showed zeros on AMD hardware.
This patch corrects the APIC and X2APIC [sic] columns on AMD.
Signed-off-by: Len Brown <len.brown@intel.com>
Going primarily by:
https://en.wikipedia.org/wiki/List_of_Intel_Atom_microprocessors
with additional information gleaned from other related pages; notably:
- Bonnell shrink was called Saltwell
- Moorefield is the Merriefield refresh which makes it Airmont
The general naming scheme is: FAM6_ATOM_UARCH_SOCTYPE
for i in `git grep -l FAM6_ATOM` ; do
sed -i -e 's/ATOM_PINEVIEW/ATOM_BONNELL/g' \
-e 's/ATOM_LINCROFT/ATOM_BONNELL_MID/' \
-e 's/ATOM_PENWELL/ATOM_SALTWELL_MID/g' \
-e 's/ATOM_CLOVERVIEW/ATOM_SALTWELL_TABLET/g' \
-e 's/ATOM_CEDARVIEW/ATOM_SALTWELL/g' \
-e 's/ATOM_SILVERMONT1/ATOM_SILVERMONT/g' \
-e 's/ATOM_SILVERMONT2/ATOM_SILVERMONT_X/g' \
-e 's/ATOM_MERRIFIELD/ATOM_SILVERMONT_MID/g' \
-e 's/ATOM_MOOREFIELD/ATOM_AIRMONT_MID/g' \
-e 's/ATOM_DENVERTON/ATOM_GOLDMONT_X/g' \
-e 's/ATOM_GEMINI_LAKE/ATOM_GOLDMONT_PLUS/g' ${i}
done
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: dave.hansen@linux.intel.com
Cc: len.brown@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This fixes the reported family on modern AMD processors (e.g. Ryzen,
which is family 0x17). Previously these processors all showed up as
family 0xf.
See the document
https://support.amd.com/TechDocs/56255_OSRR.pdf
section CPUID_Fn00000001_EAX for how to calculate the family
from the BaseFamily and ExtFamily values.
This matches the code in arch/x86/lib/cpu.c
Signed-off-by: Calvin Walton <calvin.walton@kepstin.ca>
Signed-off-by: Len Brown <len.brown@intel.com>
turbostat fails on some multi-package topologies because the logical node
enumeration assumes that the nodes are sequentially numbered,
which causes the logical numa nodes to not be enumerated, or enumerated incorrectly.
Use a more robust enumeration algorithm which allows for non-seqential physical nodes.
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: Len Brown <len.brown@intel.com>
This patch fixes a regression introduced in
commit 8cb48b32a5 ("tools/power turbostat: track thread ID in cpu_topology")
Turbostat uses incorrect cores number ('topo.num_cores') - its value is count
of logical CPUs, instead of count of physical cores. So it is twice as large as
it should be on a typical Intel system. For example, on a 6 core Xeon system
'topo.num_cores' is 12, and on a 52 core Xeon system 'topo.num_cores' is 104.
And interestingly, on a 68-core Knights Landing Intel system 'topo.num_cores'
is 272, because this system has 4 logical CPUs per core.
As a result, some of the turbostat calculations are incorrect. For example,
on idle 52-core Xeon system when all cores are ~99% in Core C6 (CPU%c6), the
summary (very first) line shows ~48% Core C6, while it should be ~99%.
This patch fixes the problem by fixing 'topo.num_cores' calculation.
Was:
1. Init 'thread_id' for all CPUs to -1
2. Run 'get_thread_siblings()' which sets it to 0 or 1
3. Increment 'topo.num_cores' when thread_id != -1 (bug!)
Now:
1. Init 'thread_id' for all CPUs to -1
2. Run 'get_thread_siblings()' which sets it to 0 or 1
3. Increment 'topo.num_cores' when thread_id is not 0
I did not have a chance to test this on an AMD machine, and only tested on a
couple of Intel Xeons (6 and 52 cores).
Reported-by: Vladislav Govtva <vladislav.govtva@intel.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
The -S (system summary) option failed to print any data on a 1-processor system.
Reported-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Document the missing command line tokens in the help() function.
Signed-off-by: Nathan Ciobanu <nathan.d.ciobanu@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Improve the help() output by adding the single character
tokens (e.g -a).
Signed-off-by: Nathan Ciobanu <nathan.d.ciobanu@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Sort the command line arguments output of help() in
alphabetical order in line with other linux tools.
Signed-off-by: Nathan Ciobanu <nathan.d.ciobanu@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Running turbostat on machines that don't expose nodes
in sysfs (no /sys/bus/node) causes a segfault or a -nan
value diesplayed in the log. This is caused by
physical_node_id being reported as -1 and logical_node_id
being calculated as a negative number resulting in the new
GET_THREAD/GET_CORE returning an incorrect address.
Signed-off-by: Nathan Ciobanu <nathan.d.ciobanu@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Add APIC and X2APIC columns to the topology section.
They are disabled-by-default -- enable like so:
--debug
or
--enable APIC,X2APIC
Signed-off-by: Len Brown <len.brown@intel.com>
The --show and --hide options failed on "Node", which was listed as "Node%".
The --show and --hide options were generally fouled-up do due to come
content merges that scrambled the list of column name indexes.
Signed-off-by: Len Brown <len.brown@intel.com>
Output a Node column if there is more than one node/socket.
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: Len Brown <len.brown@intel.com>
The previous patches have added node information to turbostat, but the
counters code does not take it into account.
Add node information from cpu_topology calculations to turbostat
counters.
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Cleanup, remove num_ from num_nodes_per_pkg, num_cores_per_node, and
num_threads_per_node.
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: Len Brown <len.brown@intel.com>
turbostat incorrectly assumes that there is one node per package. As a
result num_cores_per_pkg is not correctly named and is actually
num_cores_per_node.
Rename num_cores_per_pkg to num_cores_per_node.
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: Len Brown <len.brown@intel.com>
The code can be simplified if the cpu_topology *cpus tracks the thread
IDs. This removes an additional file lookup and simplifies the counter
initialization code.
Add thread ID to cpu_topology information and cleanup the counter
initialization code.
v2: prevent thread_id from being overwritten
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: Len Brown <len.brown@intel.com>
The code currently assumes each package has exactly one node. This is not
the case for AMD systems and Intel systems with COD. AMD systems also
may re-enumerate each node's core IDs starting at 0 (for example, an AMD
processor may have two nodes, each with core IDs from 0 to 7). In order
to properly enumerate the cores we need to track both the physical and
logical node IDs.
Add physical_node_id to track the node ID assigned by the kernel, and
logical_node_id used by turbostat to track the nodes per package ie) a
0-based count within the package.
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: Len Brown <len.brown@intel.com>
The turbostat code only looks at thread_siblings_list to determine if
processing units/threads are on the same the core. This works well on
Intel systems which have a shared L1 instruction and data cache. This
does not work on AMD systems which have shared L1 instruction cache but
separate L1 data caches. Other utilities also check sibling's core ID
to determine if the processing unit shares the same core.
Additionally, the cpu_topology *cpus list used in topology_probe() can
be used elsewhere in the code to simplify things.
Export *cpus to the entire turbostat code, and add Processing Unit/Thread
IDs information to each cpu_topology struct. Confirm that the thread
is on the same core as indicated by thread_siblings_list.
[v2]: Fixup CPU_* usage that caused gcc malloc error.
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Future fixes will use sysfs files that contain cpumask output. The code
needs to know the length of the cpumask in order to determine which cpus
are set in a cpumask. Currently topo.max_cpu_num is the maximum cpu
number. It can be increased the the maximum value of cpus represented in
cpumasks.
Set max_num_cpus to the length of a cpumask.
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: Len Brown <len.brown@intel.com>
There's a use case during test to only print specific round of iterations
if --num_iterations is specified, for example, with this patch applied:
turbostat -i 5 -n 4
will capture 4 samples with 5 seconds interval.
[lenb: renamed to --num_iterations from --iterations]
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Reviewed-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
All MSRs related to turbostat are same as Kabylake.
Even though SDM claims that core C3 residency can be read from MSR 0x662,
the read on this MSR fails on CNL platform. Hence disabled C3 MSR read
and display.
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
The SNB_C1_AUTO_UNDEMOTE definition should have been deleted once
it was copied into msr-index.h. One copy of the truth is better --
particularly when Matt needs to fix it:-)
Signed-off-by: Len Brown <len.brown@intel.com>
According to the Intel Software Developers' Manual, Vol. 4, Order No.
335592, these macros have been reversed since they were added.
Fixes: 889facbee3 ("tools/power turbostat: v3.0: monitor Watts and Temperature")
Signed-off-by: Matt Turner <mattst88@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Like the "C1" and "C1%" column, the new POLL and POLL% columns
show invocations and residency% during the measurement interval.
While it didn't seem important to track in the past,
we've recently found some Linux cpuidle bugs related to POLL%.
Signed-off-by: Len Brown <len.brown@intel.com>
The column header for PC10 residency is "Pk%pc10"
This is missing the 'g' that others have, eg Pkg%pc6,
to allow tab-delimited columns to fit into 8-columns.
However, --hide Pk%pc10 did not work, it was still looking for the 'g'.
This was confusing, because --list shows the correct "Pk%pc10"
Reported-by: Wendy Wang <wendy.wang@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Linux 4.15 exports the ACPI Low Power Idle Table's
counters in /sys/devices/system/cpu/cpuidle/
low_power_idle_cpu_residency_us
Show this in the "CPU%LPI" column.
Today this reflects the "North Complex"
residency in PC10, so expect it to
closely follow "Pk%pc10".
low_power_idle_system_residency_us
Show this in the "SYS%LPI" column.
Today, this reflects the North is in PC10,
plus the PCH is sufficiently quiescent
to save additional power via the "S0ix"
system state, as measured by the
PCH SLP_S0 counter.
Signed-off-by: Len Brown <len.brown@intel.com>
rpm-lint flagged these as being executable:
kernel-tools.x86_64: W: spurious-executable-perm /usr/share/man/man8/turbostat.8.gz
kernel-tools.x86_64: W: spurious-executable-perm /usr/share/man/man8/x86_energy_perf_policy.8.gz
Fix this
Signed-off-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Len Brown <len.brown@intel.com>
When the user reuests to collect and show columns
that are not present on every row (eg. for every CPU)
turbostat still prints an (empty) line for every CPU.
Update so no blank lines are printed.
old:
# turbostat --quiet --show Pkg%pc6
Pkg%pc6
9.12
9.12
Pkg%pc6
9.12
9.12
new:
# turbostat --quiet --show Pkg%pc6
Pkg%pc6
9.12
9.12
Pkg%pc6
9.12
9.12
Reported-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Improve readability a little bit by changing this output:
MSR_PKG_CST_CONFIG_CONTROL: 0x00008407 (locked: pkg-cstate-limit=7: unlimited, automatic-c-state-conversion=off)
with this output:
MSR_PKG_CST_CONFIG_CONTROL: 0x00008407 (locked, pkg-cstate-limit=7 (unlimited), automatic-c-state-conversion=off)
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
BDX and SKX have a bit that tells them to PROMOTE shallow
C-states requests to MWAIT(C6). It is generally a BIOS bug
if this bit is set. As we have encountered that BIOS bug,
let's print this bit in turbostat debug output.
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Some SKX use a 24 MHz crystal, so do not hard code 25 MHz.
Also, SKX crystal is not exact, because SKX uses an EMI reduction
circuit that costs a fraction of a percent.
Signed-off-by: Len Brown <len.brown@intel.com>
MSR_IA32_MISC_ENABLE[18] is the MWAIT ENABLE bit, not DISABLE bit...
so
MSR_IA32_MISC_ENABLE: 0x00850089 (TCC EIST No-MWAIT PREFETCH TURBO)
should print as:
MSR_IA32_MISC_ENABLE: 0x00850089 (TCC EIST MWAIT PREFETCH TURBO)
Signed-off-by: Len Brown <len.brown@intel.com>
The recent patch that implements table printing on a keypress introduced a
regression - turbostat prints the table almost continuously if it is run from a
daemon program.
The problem is also easy to reproduce like this:
echo | turbostat
The reason is that we cannot assume that stdin is always a TTY. It can be many
things.
This patch adds fixes the problem by limiting the new keypress functionality to
TTYs only. If stdin is not a TTY, we just sleep for the full interval time.
While on it, clean-up 'do_sleep()' to return no value, as callers do not expect
that anyway.
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
In turbostat interval mode, a newline typed on standard input
will now conclude the current interval. Data will immediately
be collected and printed for that interval, and the next interval
will be started.
This is similar to the recently added SIGUSR1 feature.
But that is for use by programs, while this is for interactive use.
Signed-off-by: Len Brown <len.brown@intel.com>
Interval-mode turbostat now catches and discards SIGUSR1.
Thus, SIGUSR1 can be used to tell turbostat to cut short
the current measurement interval. Turbostat will then start
the next measurement interval using the regular interval length.
This can be used to give turbostat variable intervals.
Invoke turbostat with --interval LARGE_NUMBER_SEC
and have a program that has permission to send it a SIGUSR1
always before LARGE_NUMBER_SEC expires.
It may also be useful to use "--enable Time_Of_Day_Seconds"
to observe the actual interval length.
Signed-off-by: Len Brown <len.brown@intel.com>
Add a Time_Of_Day_Seconds column showing when measurement
for each row was completed. Units are [sec.subsec] since Epoch,
as reported by gettimeofday(2).
While useful to correlate turbostat output with other tools,
this built-in column is disabled, by default.
Add the "--enable" option to enable such disabled-by-default
built-in columns:
"--enable Time_Of_Day_Seconds"
"--enable usec"
"--enable all", will enable all disabled-by-defauilt built-in counters.
When "--debug" is used, all disabled-by-default columns are enabled,
unless explicitly skipped using "--hide"
Signed-off-by: Len Brown <len.brown@intel.com>
Turbostat neglects to display all package C-states for some Skylake Xeon BIOS configurations.
This is due to a typo in the table decoding MSR_PKG_CST_CONFIG_CONTROL (0x000000e2)
Here we fix that typo, according to Intel SDM, vol 4, Table 2-41 -
"MSRs Supported by Intel® Xeon® Processor Scalable Family with DisplayFamily_DisplayModel 06_55H".
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This reverts commit c91fc8519d.
That change caused a C6 and PC6 residency regression on large idle systems.
Users also complained about new output indicating jitter:
turbostat: cpu6 jitter 3794 9142
Signed-off-by: Len Brown <len.brown@intel.com>
Cc: 4.13+ <stable@vger.kernel.org> # v4.13+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Turbostat has the capability to set its own affinity to
each CPU so that its MSR accesses are on the local CPU.
However, using the in-kernel cross-call in the msr driver
tends to be less invasive, so do that -- by-default.
'-m' remains to get the old behaviour.
Signed-off-by: Len Brown <len.brown@intel.com>
The --debug option now pre-pends each row with
the number of micro-seconds [usec] to collect
the finishing snapshot for that row.
Signed-off-by: Len Brown <len.brown@intel.com>
Skylake has some new counters, and they were erroneously
exempt from --show and --hide
eg.
turbostat --quiet --show CPU
CPU Totl%C0 Any%C0 GFX%C0 CPUGFX%
- 116.73 90.56 85.69 79.00
0 117.78 91.38 86.47 79.71
2
1
3
is now
CPU
-
0
2
1
3
Signed-off-by: Len Brown <len.brown@intel.com>
Most CPUs do not have a hardware c1 counter,
and so turbostat derives c1 residency:
c1 = TSC - MPERF - other_core_cstate_counters
As it is not possible to atomically read these coutners,
measurement jitter can case this calcuation to "go negative"
when very close to 0. Turbostat detect that case and
simply prints c1 = 0.00%
But that check neglected to account for systems where the TSC
crystal clock domain and the MPERF BCLK domain are differ by
a small amount. That allowed very small negative c1 numbers
to escape this check and be printed as huge positve numbers.
This code begs for a bit of cleanup, but this patch
is the minimal change to fix the issue.
Signed-off-by: Len Brown <len.brown@intel.com>
Add GFX%rc6 and GFXMHz to the column descriptions section
of the turbostat man page.
Signed-off-by: Doug Smythies <dsmythies@telus.net>
Signed-off-by: Len Brown <len.brown@intel.com>
cpu0: MSR_IA32_TEMPERATURE_TARGET: 0x00641400 (100 C)
cpu0: MSR_IA32_PACKAGE_THERM_STATUS: 0x884b0800 (25 C)
cpu0: MSR_IA32_PACKAGE_THERM_INTERRUPT: 0x00000003 (100 C, 100 C)
Enable the same per-core output, but hide it behind --debug
because it is too verbose on big systems.
Signed-off-by: Len Brown <len.brown@intel.com>
While the current SDM is silent on the matter, the Core and GFX
RAPL power meters on SKL and KBL appear to work -- so show them.
Reported-by: Yaroslav Isakov <yaroslav.isakov@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
turbostat displays a GFXMHz column, which comes from reading
/sys/class/graphics/fb0/device/drm/card0/gt_cur_freq_mhz
But GFXMHz was not changing, even when a manual
cat /sys/class/graphics/fb0/device/drm/card0/gt_cur_freq_mhz
showed a new value.
It turns out that a rewind() on the open file is not sufficient,
fflush() (or a close/open) is needed to read fresh values.
Reported-by: Yaroslav Isakov <yaroslav.isakov@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
The turbostat before this last set of changes is obsolete.
This new version can do a lot more, but it also has
some different defaults, that might catch some off-guard.
So it seems a good time to give a new version number.
Signed-off-by: Len Brown <len.brown@intel.com>
When the "u32" keyword is used with --add, it means that
the output should be truncated to 32-bits. This was not
happening and all 64-bits were printed.
Also, when no column name was used for an added MSR,
The default column name was in deximal, eg. MSR16.
Users report that they tend to use hex MSR numbers,
so print them in hex. To always fit into the columns,
use the syntax M0x10. Note that the user can always
supply any column header that they want.
eg --add msr0x10,MY_TSC
Signed-off-by: Len Brown <len.brown@intel.com>
When turbostat is run in one-shot command mode,
the parent takes the 'before' counter snapshot,
fork/exec/wait for the child to exit,
takes the 'after' counter snapshot,
and prints the results.
however, if the child fails to exec the command,
it immediately returns, without indicating that
anythign was wrong.
Add an error message showing that exec failed:
sudo turbostat sleeeep 4
...
turbostat: exec sleeeep: No such file or directory
...
Note that the parent will still print out the statistics,
because it can't tell the difference between the failed
exec and a command that is purposefully returning
the same status. Unfortunately, this may obscure the
error message. However, if the --out parameter is used,
the error message is evident on stderr.
Reported-by: Wendy Wang <wendy.wang@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
On multi-package systems, the "Package" column was being displayed
only if --debug was used. Show it always.
Signed-off-by: Len Brown <len.brown@intel.com>
Originally, the only way to hide the sysfs C-state statistics columns
was with "--hide sysfs". This was because we process "--hide" before
we probe for those columns.
hack --hide to remember deferred hide requests, and apply
them when sysfs is probed.
"--hide sysfs" is still available as short-hand to refer to
the entire group of counters.
The down-side of this change is that we no longer error check for
bogus --hide column names. But the user will quickly figure that
out if a column they mean to hide is still there...
Signed-off-by: Len Brown <len.brown@intel.com>
--Package is now "--cpu package",
which will display just the 1st CPU in each package
--processor is not "--cpu core"
which will display just the 1st CPU in each core
Signed-off-by: Len Brown <len.brown@intel.com>
Make it possible to take the entire un-edited output
from `turbostat --list` and feed it to "turbostat --show"
or "turbostat --hide".
To do this, the leading comma was removed
(no mater what columns are active)
and also they dynamic C-state "C1, C2, C3" etc are replaced
by the string "sysfs", which refers to them as a group.
Signed-off-by: Len Brown <len.brown@intel.com>
When a counter overlfows 7 columns, it shifts the remaining
columns to the right, so they no longer line up under
their column header.
Update turbostat to dectect when it is handling large
numbers, and switch to wider columns where, necessary.
Reported-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
It is handy to know the list of column header names,
so that they can be used with --add and --skip
The new --list option shows them:
sudo ./turbostat --list --hide sysfs
,Core,CPU,Avg_MHz,Busy%,Bzy_MHz,TSC_MHz,IRQ,SMI,CPU%c1,CPU%c3,CPU%c6,CPU%c7,CoreTmp,PkgTmp,GFX%rc6,GFXMHz,PkgWatt,CorWatt,GFXWatt
Signed-off-by: Len Brown <len.brown@intel.com>
The IRQ column has been working for periodic mode,
but not in one-shot command mode, it shows only 0.
until now.
Signed-off-by: Len Brown <len.brown@intel.com>
With the --cpu parameter, turbostat prints only lines
for the specified set of CPUs:
sudo ./turbostat --quiet --show Core,CPU --cpu 0,1,3..5,6-7
Core CPU
- -
0 0
0 4
1 1
1 5
2 6
3 3
3 7
Signed-off-by: Len Brown <len.brown@intel.com>
When turbostat shows % of time in a CPU idle power state,
it has always been showing information from underlying
hardware residency counters.
While this reflects what the hardware is doing, and is thus
useful for understanding the hardware,
it doesn't directly tell us what Linux requested --
which is useful for tuning Linux itself.
Here we add columns to turbostat to show the
Linux cpuidle sub-system statistics:
/sys/devices/system/cpu/cpu*/cpuidle/state*/*
The first group of columns are the "usage", which is the
number of times software requested that C-state in the
measurement interval. eg C1 below.
The second group of columns are the "time", which is the percentage
of the measurement interval time that software has requested
the specified C-state. eg C1% below.
These software counters can be compared to the underlying
hardware residency counters (eg CPU%c1 CPU%c3 CPU%c6 CPU%c7)
to compare what sofware requested to what the hardware delivered.
These sysfs attributes are discovered when turbostat starts,
rather than being "built in". So the --show and --hide
parameters do not know about these dynamic column names.
However "--show sysfs" and "--hide sysfs" act on the
entire group of columns:
turbostat --show sysfs
...
cpu4: POLL: CPUIDLE CORE POLL IDLE
cpu4: C1: MWAIT 0x00
cpu4: C1E: MWAIT 0x01
cpu4: C3: MWAIT 0x10
cpu4: C6: MWAIT 0x20
cpu4: C7s: MWAIT 0x32
...
C1 C1E C3 C6 C7s C1% C1E% C3% C6% C7s%
3 6 5 1 188 0.00 0.02 0.00 0.00 99.93
0 6 5 0 58 0.00 0.16 0.02 0.00 99.70
0 0 0 0 9 0.00 0.00 0.00 0.00 99.96
0 0 0 1 24 0.00 0.00 0.00 0.02 99.93
0 0 0 0 9 0.00 0.00 0.00 0.00 99.97
0 0 0 0 32 0.00 0.00 0.00 0.00 99.96
0 0 0 0 7 0.00 0.00 0.00 0.00 99.98
2 0 0 0 36 0.00 0.00 0.00 0.00 99.97
1 0 0 0 13 0.00 0.00 0.00 0.00 99.98
Signed-off-by: Len Brown <len.brown@intel.com>
Previously, the --add option could specify only an MSR.
Here is is extended so an arbitrary /sys attribute,
as specified by an absolute file path name.
sudo ./turbostat --add /sys/devices/system/cpu/cpu0/cpuidle/state5/usage
Signed-off-by: Len Brown <len.brown@intel.com>
Newer processors do not hard-code the the number of cpus in each bin
to {1, 2, 3, 4, 5, 6, 7, 8} Rather, they can specify any number
of CPUS in each of the 8 bins:
eg.
...
37 * 100.0 = 3600.0 MHz max turbo 4 active cores
38 * 100.0 = 3700.0 MHz max turbo 3 active cores
39 * 100.0 = 3800.0 MHz max turbo 2 active cores
39 * 100.0 = 3900.0 MHz max turbo 1 active cores
could now look something like this:
...
37 * 100.0 = 3600.0 MHz max turbo 16 active cores
38 * 100.0 = 3700.0 MHz max turbo 8 active cores
39 * 100.0 = 3800.0 MHz max turbo 4 active cores
39 * 100.0 = 3900.0 MHz max turbo 2 active cores
Signed-off-by: Len Brown <len.brown@intel.com>
The CC1 column in tubostat can be computed by subtracting
the core c-state residency countes from the total Cx residency.
CC1 = (Idle_time_as_measured by MPERF) - (all core C-states with
residency counters)
However, as the underlying counter reads are not atomic,
error can be noticed in this calculations, especially
when the numbers are small.
Denverton has a hardware CC1 residency counter
to improve the accuracy of the cc1 statistic -- use it.
At the same time, Denverton has no concept of CC3, PC3, CC7, PC7,
so skip collecting and printing those columns.
Finally, a note of clarification.
Turbostat prints the standard PC2 residency counter,
but on Denverton hardware, that actually means PC1E.
Turbostat prints the standard PC6 residency counter,
but on Denverton hardware, that actually means PC2.
At this point, we document that differnce in this commit message,
rather than adding a quirk to the software.
Signed-off-by: Len Brown <len.brown@intel.com>
Fix a bug with --add, where the title of the column
is un-initialized if not specified by the user.
The initial implementation of --show and --hide
neglected to handle the pc8/pc9/pc10 counters.
Fix a bug where "--show Core" only worked with --debug
Reported-by: Wendy Wang <wendy.wang@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
The CPU ticks at a rate in the "bus clock" domain.
eg. 100 MHz * bus_ratio.
On newer processors, the TSC has been moved out of this BCLK
domain and into a separate crystal-clock domain.
While the TSC ticks "close to" the base frequency, those that look
closely at the numbers will notice small errors in calculations that
mix units of TSC clocks and bus clocks.
"tsc_tweak" was introduced to address the most visible
mixing -- the %Busy and the the Busy_MHz calculations.
(A simplification as since removed TSC from the BusyMHz calculation)
Here we apply the tsc_tweak to everyplace where BCLK
and TSC units are mixed. The results is that
on a system which is 100% idle, the sum of the C-states
are now much more likely to be closer to 100%.
Reported-by: Travis Downs <travis.downs@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Some users want turbostat to tell them everything, by default.
Some users want turbostat to be quiet, by default.
I find that I'm in the 1st camp, and so I've never liked
needing to type the --debug parameter to decode the system
configuration.
So here we change the default and print the system configuration,
by default. (The --debug option is now un-documented, though
it does still exist for debugging turbostat internals)
When you do not want to see the system configuration
header, use the new "--quiet" option.
Signed-off-by: Len Brown <len.brown@intel.com>
Some time ago, turbostat overflowed 80 columns.
So on the assumption that a "casual" user would always
want topology and frequency columns, we hid the rest
of the columns and the system configuration decoding
behind the --debug option.
Not everybody liked that change -- including me.
I use --debug 99% of the time...
Well, now we have "-o file" to put turbostat output into a file,
so unless you are watching real-time in a small window,
column count is less frequently a factor.
And more recently, we got the "--hide columnA,columnB" option
to specify columns to skip.
So now we "un-hide" the rest of the columns from behind --debug,
and show them all, by default.
Signed-off-by: Len Brown <len.brown@intel.com>
useful for observing if the BIOS disabled prefetch
Not architectural, but docuemented as present on NHM, SNB
and is present on others.
Signed-off-by: Len Brown <len.brown@intel.com>
show the CPUID feature for turbo to clarify the case
when it may not be shown in MISC_ENABLE
CPUID(6): APERF, TURBO, DTS, PTM, No-HWP, No-HWPnotify, No-HWPwindow, No-HWPepp, No-HWPpkg, EPB
cpu4: MSR_IA32_MISC_ENABLE: 0x00850089 (TCC EIST MWAIT TURBO)
Signed-off-by: Len Brown <len.brown@intel.com>
Turbostat dumps MSR_TURBO_RATIO_LIMIT on Core Architecture.
But Atom Architecture uses MSR_ATOM_CORE_RATIOS and
MSR_ATOM_CORE_TURBO_RATIOS.
Signed-off-by: Len Brown <len.brown@intel.com>
Decode MISC_ENABLE.NO_TURBO,
also use the #defines in msr-index.h for decoding this register
cpu0: MSR_IA32_MISC_ENABLE: 0x00850089 (TCC EIST MWAIT TURBO)
Although it is not architectural, decode also
MSR_IA32_MISC_ENABLE.prefetch-disable (bit-9).
documented to be present on: Core, P4, Intel-Xeon
reserved on: Atom, Silvermont, Nehalem, SNB, PHI ec.
Signed-off-by: Len Brown <len.brown@intel.com>
Add a digit of precision to the --debug output for frequency range.
This is useful when BCLK is not an integer.
old:
6 * 83 = 500 MHz max efficiency frequency
26 * 83 = 2166 MHz base frequency
new:
6 * 83.3 = 499.8 MHz max efficiency frequency
26 * 83.3 = 2165.8 MHz base frequency
Signed-off-by: Len Brown <len.brown@intel.com>
The Baytrail SOC, with its Silvermont core, has some unique properties:
1. a hardware CC1 residency counter
2. a module-c6 residency counter
3. a package-c6 counter at traditional package-c7 counter address.
The SOC does not support c3, pc3, c7 or pc7 counters.
Signed-off-by: Len Brown <len.brown@intel.com>
with --debug, see:
cpu0: MSR_CC6_DEMOTION_POLICY_CONFIG: 0x00000000 (DISable-CC6-Demotion)
cpu0: MSR_MC6_DEMOTION_POLICY_CONFIG: 0x00000000 (DISable-MC6-Demotion)
Note that the hardware default is to enable demotion,
and Linux started clearing these registers in 3.17.
Signed-off-by: Len Brown <len.brown@intel.com>
and so --debug fails with:
turbostat: msr 1 offset 0x1aa read failed: Input/output error
It seems that baytrail, and airmont do not have this MSR.
It is included in subsequent Goldmont Atom.
Signed-off-by: Len Brown <len.brown@intel.com>
Add the "--show" and "--hide" cmdline parameters.
By default, turbostat shows all columns.
turbostat --hide counter_list
will continue showing all columns, except for those listed.
turbostat --show counter_list
will show _only_ the listed columns
These features work for built-in counters, and have no effect
on columns added with the --add parameter.
Signed-off-by: Len Brown <len.brown@intel.com>