IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
When a cpu requests broadcasting, before starting the tick broadcast
hrtimer, bc_set_next() checks if the timer callback (bc_handler) is active
using hrtimer_try_to_cancel(). But hrtimer_try_to_cancel() does not provide
the required synchronization when the callback is active on other core.
The callback could have already executed tick_handle_oneshot_broadcast()
and could have also returned. But still there is a small time window where
the hrtimer_try_to_cancel() returns -1. In that case bc_set_next() returns
without doing anything, but the next_event of the tick broadcast clock
device is already set to a timeout value.
In the race condition diagram below, CPU #1 is running the timer callback
and CPU #2 is entering idle state and so calls bc_set_next().
In the worst case, the next_event will contain an expiry time, but the
hrtimer will not be started which happens when the racing callback returns
HRTIMER_NORESTART. The hrtimer might never recover if all further requests
from the CPUs to subscribe to tick broadcast have timeout greater than the
next_event of tick broadcast clock device. This leads to cascading of
failures and finally noticed as rcu stall warnings
Here is a depiction of the race condition
CPU #1 (Running timer callback) CPU #2 (Enter idle
and subscribe to
tick broadcast)
--------------------- ---------------------
__run_hrtimer() tick_broadcast_enter()
bc_handler() __tick_broadcast_oneshot_control()
tick_handle_oneshot_broadcast()
raw_spin_lock(&tick_broadcast_lock);
dev->next_event = KTIME_MAX; //wait for tick_broadcast_lock
//next_event for tick broadcast clock
set to KTIME_MAX since no other cores
subscribed to tick broadcasting
raw_spin_unlock(&tick_broadcast_lock);
if (dev->next_event == KTIME_MAX)
return HRTIMER_NORESTART
// callback function exits without
restarting the hrtimer //tick_broadcast_lock acquired
raw_spin_lock(&tick_broadcast_lock);
tick_broadcast_set_event()
clockevents_program_event()
dev->next_event = expires;
bc_set_next()
hrtimer_try_to_cancel()
//returns -1 since the timer
callback is active. Exits without
restarting the timer
cpu_base->running = NULL;
The comment that hrtimer cannot be armed from within the callback is
wrong. It is fine to start the hrtimer from within the callback. Also it is
safe to start the hrtimer from the enter/exit idle code while the broadcast
handler is active. The enter/exit idle code and the broadcast handler are
synchronized using tick_broadcast_lock. So there is no need for the
existing try to cancel logic. All this can be removed which will eliminate
the race condition as well.
Fixes: 5d1638acb9 ("tick: Introduce hrtimer based broadcast")
Originally-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Balasubramani Vivekanandan <balasubramani_vivekanandan@mentor.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20190926135101.12102-2-balasubramani_vivekanandan@mentor.com
Pull timer fix from Ingo Molnar:
"Fix a timer expiry bug that would cause spurious delay of timers"
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
timer: Read jiffies once when forwarding base clk
The timer delayed for more than 3 seconds warning was triggered during
testing.
Workqueue: events_unbound sched_tick_remote
RIP: 0010:sched_tick_remote+0xee/0x100
...
Call Trace:
process_one_work+0x18c/0x3a0
worker_thread+0x30/0x380
kthread+0x113/0x130
ret_from_fork+0x22/0x40
The reason is that the code in collect_expired_timers() uses jiffies
unprotected:
if (next_event > jiffies)
base->clk = jiffies;
As the compiler is allowed to reload the value base->clk can advance
between the check and the store and in the worst case advance farther than
next event. That causes the timer expiry to be delayed until the wheel
pointer wraps around.
Convert the code to use READ_ONCE()
Fixes: 236968383c ("timers: Optimize collect_expired_timers() for NOHZ")
Signed-off-by: Li RongQing <lirongqing@baidu.com>
Signed-off-by: Liang ZhiCheng <liangzhicheng@baidu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/1568894687-14499-1-git-send-email-lirongqing@baidu.com
- Rework the main suspend-to-idle control flow to avoid repeating
"noirq" device resume and suspend operations in case of spurious
wakeups from the ACPI EC and decouple the ACPI EC wakeups support
from the LPS0 _DSM support (Rafael Wysocki).
- Extend the wakeup sources framework to expose wakeup sources as
device objects in sysfs (Tri Vo, Stephen Boyd).
- Expose system suspend statistics in sysfs (Kalesh Singh).
- Introduce a new haltpoll cpuidle driver and a new matching
governor for virtualized guests wanting to do guest-side polling
in the idle loop (Marcelo Tosatti, Joao Martins, Wanpeng Li,
Stephen Rothwell).
- Fix the menu and teo cpuidle governors to allow the scheduler tick
to be stopped if PM QoS is used to limit the CPU idle state exit
latency in some cases (Rafael Wysocki).
- Increase the resolution of the play_idle() argument to microseconds
for more fine-grained injection of CPU idle cycles (Daniel Lezcano).
- Switch over some users of cpuidle notifiers to the new QoS-based
frequency limits and drop the CPUFREQ_ADJUST and CPUFREQ_NOTIFY
policy notifier events (Viresh Kumar).
- Add new cpufreq driver based on nvmem for sun50i (Yangtao Li).
- Add support for MT8183 and MT8516 to the mediatek cpufreq driver
(Andrew-sh.Cheng, Fabien Parent).
- Add i.MX8MN support to the imx-cpufreq-dt cpufreq driver (Anson
Huang).
- Add qcs404 to cpufreq-dt-platdev blacklist (Jorge Ramirez-Ortiz).
- Update the qcom cpufreq driver (among other things, to make it
easier to extend and to use kryo cpufreq for other nvmem-based
SoCs) and add qcs404 support to it (Niklas Cassel, Douglas
RAILLARD, Sibi Sankar, Sricharan R).
- Fix assorted issues and make assorted minor improvements in the
cpufreq code (Colin Ian King, Douglas RAILLARD, Florian Fainelli,
Gustavo Silva, Hariprasad Kelam).
- Add new devfreq driver for NVidia Tegra20 (Dmitry Osipenko, Arnd
Bergmann).
- Add new Exynos PPMU events to devfreq events and extend that
mechanism (Lukasz Luba).
- Fix and clean up the exynos-bus devfreq driver (Kamil Konieczny).
- Improve devfreq documentation and governor code, fix spelling
typos in devfreq (Ezequiel Garcia, Krzysztof Kozlowski, Leonard
Crestez, MyungJoo Ham, Gaël PORTAY).
- Add regulators enable and disable to the OPP (operating performance
points) framework (Kamil Konieczny).
- Update the OPP framework to support multiple opp-suspend properties
(Anson Huang).
- Fix assorted issues and make assorted minor improvements in the OPP
code (Niklas Cassel, Viresh Kumar, Yue Hu).
- Clean up the generic power domains (genpd) framework (Ulf Hansson).
- Clean up assorted pieces of power management code and documentation
(Akinobu Mita, Amit Kucheria, Chuhong Yuan).
- Update the pm-graph tool to version 5.5 including multiple fixes
and improvements (Todd Brandt).
- Update the cpupower utility (Benjamin Weis, Geert Uytterhoeven,
Sébastien Szymanski).
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAl2ArZ4SHHJqd0Byand5
c29ja2kubmV0AAoJEILEb/54YlRxgfYQAK80hs43vWQDmp7XKrN4pQe8+qYULAGO
fBfrFl+NG9y/cnuqnt3NtA8MoyNsMMkMLkpkEDMfSbYqqH5ehEzX5+uGJWiWx8+Y
oH5KU8MH7Tj/utYaalGzDt0AHfHZDIGC0NCUNQJVtE/4mOANFabwsCwscp4MrD5Q
WjFN8U4BrsmWgJdZ/U9QIWcDZ0I+1etCF+rZG2yxSv31FMq2Zk/Qm4YyobqCvQFl
TR9rxl08wqUmIYIz5cDjt/3AKH7NLLDqOTstbCL7cmufM5XPFc1yox69xc89UrIa
4AMgmDp7SMwFG/gdUPof0WQNmx7qxmiRAPleAOYBOZW/8jPNZk2y+RhM5NeF72m7
AFqYiuxqatkSb4IsT8fLzH9IUZOdYr8uSmoMQECw+MHdApaKFjFV8Lb/qx5+AwkD
y7pwys8dZSamAjAf62eUzJDWcEwkNrujIisGrIXrVHb7ISbweskMOmdAYn9p4KgP
dfRzpJBJ45IaMIdbaVXNpg3rP7Apfs7X1X+/ZhG6f+zHH3zYwr8Y81WPqX8WaZJ4
qoVCyxiVWzMYjY2/1lzjaAdqWojPWHQ3or3eBaK52DouyG3jY6hCDTLwU7iuqcCX
jzAtrnqrNIKufvaObEmqcmYlIIOFT7QaJCtGUSRFQLfSon8fsVSR7LLeXoAMUJKT
JWQenuNaJngK
=TBDQ
-----END PGP SIGNATURE-----
Merge tag 'pm-5.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"These include a rework of the main suspend-to-idle code flow (related
to the handling of spurious wakeups), a switch over of several users
of cpufreq notifiers to QoS-based limits, a new devfreq driver for
Tegra20, a new cpuidle driver and governor for virtualized guests, an
extension of the wakeup sources framework to expose wakeup sources as
device objects in sysfs, and more.
Specifics:
- Rework the main suspend-to-idle control flow to avoid repeating
"noirq" device resume and suspend operations in case of spurious
wakeups from the ACPI EC and decouple the ACPI EC wakeups support
from the LPS0 _DSM support (Rafael Wysocki).
- Extend the wakeup sources framework to expose wakeup sources as
device objects in sysfs (Tri Vo, Stephen Boyd).
- Expose system suspend statistics in sysfs (Kalesh Singh).
- Introduce a new haltpoll cpuidle driver and a new matching governor
for virtualized guests wanting to do guest-side polling in the idle
loop (Marcelo Tosatti, Joao Martins, Wanpeng Li, Stephen Rothwell).
- Fix the menu and teo cpuidle governors to allow the scheduler tick
to be stopped if PM QoS is used to limit the CPU idle state exit
latency in some cases (Rafael Wysocki).
- Increase the resolution of the play_idle() argument to microseconds
for more fine-grained injection of CPU idle cycles (Daniel
Lezcano).
- Switch over some users of cpuidle notifiers to the new QoS-based
frequency limits and drop the CPUFREQ_ADJUST and CPUFREQ_NOTIFY
policy notifier events (Viresh Kumar).
- Add new cpufreq driver based on nvmem for sun50i (Yangtao Li).
- Add support for MT8183 and MT8516 to the mediatek cpufreq driver
(Andrew-sh.Cheng, Fabien Parent).
- Add i.MX8MN support to the imx-cpufreq-dt cpufreq driver (Anson
Huang).
- Add qcs404 to cpufreq-dt-platdev blacklist (Jorge Ramirez-Ortiz).
- Update the qcom cpufreq driver (among other things, to make it
easier to extend and to use kryo cpufreq for other nvmem-based
SoCs) and add qcs404 support to it (Niklas Cassel, Douglas
RAILLARD, Sibi Sankar, Sricharan R).
- Fix assorted issues and make assorted minor improvements in the
cpufreq code (Colin Ian King, Douglas RAILLARD, Florian Fainelli,
Gustavo Silva, Hariprasad Kelam).
- Add new devfreq driver for NVidia Tegra20 (Dmitry Osipenko, Arnd
Bergmann).
- Add new Exynos PPMU events to devfreq events and extend that
mechanism (Lukasz Luba).
- Fix and clean up the exynos-bus devfreq driver (Kamil Konieczny).
- Improve devfreq documentation and governor code, fix spelling typos
in devfreq (Ezequiel Garcia, Krzysztof Kozlowski, Leonard Crestez,
MyungJoo Ham, Gaël PORTAY).
- Add regulators enable and disable to the OPP (operating performance
points) framework (Kamil Konieczny).
- Update the OPP framework to support multiple opp-suspend properties
(Anson Huang).
- Fix assorted issues and make assorted minor improvements in the OPP
code (Niklas Cassel, Viresh Kumar, Yue Hu).
- Clean up the generic power domains (genpd) framework (Ulf Hansson).
- Clean up assorted pieces of power management code and documentation
(Akinobu Mita, Amit Kucheria, Chuhong Yuan).
- Update the pm-graph tool to version 5.5 including multiple fixes
and improvements (Todd Brandt).
- Update the cpupower utility (Benjamin Weis, Geert Uytterhoeven,
Sébastien Szymanski)"
* tag 'pm-5.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (126 commits)
cpuidle-haltpoll: Enable kvm guest polling when dedicated physical CPUs are available
cpuidle-haltpoll: do not set an owner to allow modunload
cpuidle-haltpoll: return -ENODEV on modinit failure
cpuidle-haltpoll: set haltpoll as preferred governor
cpuidle: allow governor switch on cpuidle_register_driver()
PM: runtime: Documentation: add runtime_status ABI document
pm-graph: make setVal unbuffered again for python2 and python3
powercap: idle_inject: Use higher resolution for idle injection
cpuidle: play_idle: Increase the resolution to usec
cpuidle-haltpoll: vcpu hotplug support
cpufreq: Add qcs404 to cpufreq-dt-platdev blacklist
cpufreq: qcom: Add support for qcs404 on nvmem driver
cpufreq: qcom: Refactor the driver to make it easier to extend
cpufreq: qcom: Re-organise kryo cpufreq to use it for other nvmem based qcom socs
dt-bindings: opp: Add qcom-opp bindings with properties needed for CPR
dt-bindings: opp: qcom-nvmem: Support pstates provided by a power domain
Documentation: cpufreq: Update policy notifier documentation
cpufreq: Remove CPUFREQ_ADJUST and CPUFREQ_NOTIFY policy notifier events
PM / Domains: Verify PM domain type in dev_pm_genpd_set_performance_state()
PM / Domains: Simplify genpd_lookup_dev()
...
Pull core timer updates from Thomas Gleixner:
"Timers and timekeeping updates:
- A large overhaul of the posix CPU timer code which is a preparation
for moving the CPU timer expiry out into task work so it can be
properly accounted on the task/process.
An update to the bogus permission checks will come later during the
merge window as feedback was not complete before heading of for
travel.
- Switch the timerqueue code to use cached rbtrees and get rid of the
homebrewn caching of the leftmost node.
- Consolidate hrtimer_init() + hrtimer_init_sleeper() calls into a
single function
- Implement the separation of hrtimers to be forced to expire in hard
interrupt context even when PREEMPT_RT is enabled and mark the
affected timers accordingly.
- Implement a mechanism for hrtimers and the timer wheel to protect
RT against priority inversion and live lock issues when a (hr)timer
which should be canceled is currently executing the callback.
Instead of infinitely spinning, the task which tries to cancel the
timer blocks on a per cpu base expiry lock which is held and
released by the (hr)timer expiry code.
- Enable the Hyper-V TSC page based sched_clock for Hyper-V guests
resulting in faster access to timekeeping functions.
- Updates to various clocksource/clockevent drivers and their device
tree bindings.
- The usual small improvements all over the place"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (101 commits)
posix-cpu-timers: Fix permission check regression
posix-cpu-timers: Always clear head pointer on dequeue
hrtimer: Add a missing bracket and hide `migration_base' on !SMP
posix-cpu-timers: Make expiry_active check actually work correctly
posix-timers: Unbreak CONFIG_POSIX_TIMERS=n build
tick: Mark sched_timer to expire in hard interrupt context
hrtimer: Add kernel doc annotation for HRTIMER_MODE_HARD
x86/hyperv: Hide pv_ops access for CONFIG_PARAVIRT=n
posix-cpu-timers: Utilize timerqueue for storage
posix-cpu-timers: Move state tracking to struct posix_cputimers
posix-cpu-timers: Deduplicate rlimit handling
posix-cpu-timers: Remove pointless comparisons
posix-cpu-timers: Get rid of 64bit divisions
posix-cpu-timers: Consolidate timer expiry further
posix-cpu-timers: Get rid of zero checks
rlimit: Rewrite non-sensical RLIMIT_CPU comment
posix-cpu-timers: Respect INFINITY for hard RTTIME limit
posix-cpu-timers: Switch thread group sampling to array
posix-cpu-timers: Restructure expiry array
posix-cpu-timers: Remove cputime_expires
...
The recent consolidation of the three permission checks introduced a subtle
regression. For timer_create() with a process wide timer it returns the
current task if the lookup through the PID which is encoded into the
clockid results in returning current.
That's broken because it does not validate whether the current task is the
group leader.
That was caused by the two different variants of permission checks:
- posix_cpu_timer_get() allowed access to the process wide clock when the
looked up task is current. That's not an issue because the process wide
clock is in the shared sighand.
- posix_cpu_timer_create() made sure that the looked up task is the group
leader.
Restore the previous state.
Note, that these permission checks are more than questionable, but that's
subject to follow up changes.
Fixes: 6ae40e3fdc ("posix-cpu-timers: Provide task validation functions")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1909052314110.1902@nanos.tec.linutronix.de
ENOTSUPP is not supposed to be returned to userspace. This was found on an
OpenPower machine, where the RTC does not support set_alarm.
On that system, a clock_nanosleep(CLOCK_REALTIME_ALARM, ...) results in
"524 Unknown error 524"
Replace it with EOPNOTSUPP which results in the expected "95 Operation not
supported" error.
Fixes: 1c6b39ad3f (alarmtimers: Return -ENOTSUPP if no RTC device is present)
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20190903171802.28314-1-cascardo@canonical.com
The recent change to avoid taking the expiry lock when a timer is currently
migrated missed to add a bracket at the end of the if statement leading to
compile errors. Since that commit the variable `migration_base' is always
used but it is only available on SMP configuration thus leading to another
compile error. The changelog says "The timer base and base->cpu_base
cannot be NULL in the code path", so it is safe to limit this check to SMP
configurations only.
Add the missing bracket to the if statement and hide `migration_base'
behind CONFIG_SMP bars.
[ tglx: Mark the functions inline ... ]
Fixes: 68b2c8c1e4 ("hrtimer: Don't take expiry_lock when timer is currently migrated")
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190904145527.eah7z56ntwobqm6j@linutronix.de
The state tracking changes broke the expiry active check by not writing to
it and instead sitting timers_active, which is already set.
That's not a big issue as the actual expiry is protected by sighand lock,
so concurrent handling is not possible. That means that the second task
which invokes that function executes the expiry code for nothing.
Write to the proper flag.
Also add a check whether the flag is set into check_process_timers(). That
check had been missing in the code before the rework already. The check for
another task handling the expiry of process wide timers was only done in
the fastpath check. If the fastpath check returns true because a per task
timer expired, then the checking of process wide timers was done in
parallel which is as explained above just a waste of cycles.
Fixes: 244d49e306 ("posix-cpu-timers: Move state tracking to struct posix_cputimers")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Frederic Weisbecker <frederic@kernel.org>
sched_timer must be initialized with the _HARD mode suffix to ensure expiry
in hard interrupt context on RT.
The previous conversion to HARD expiry mode missed on one instance in
tick_nohz_switch_to_nohz(). Fix it up.
Fixes: 902a9f9c50 ("tick: Mark tick related hrtimers to expiry in hard interrupt context")
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190823113845.12125-3-bigeasy@linutronix.de
Using a linear O(N) search for timer insertion affects execution time and
D-cache footprint badly with a larger number of timers.
Switch the storage to a timerqueue which is already used for hrtimers and
alarmtimers. It does not affect the size of struct k_itimer as it.alarm is
still larger.
The extra list head for the expiry list will go away later once the expiry
is moved into task work context.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1908272129220.1939@nanos.tec.linutronix.de
Both thread and process expiry functions have the same functionality for
sending signals for soft and hard RLIMITs duplicated in 4 different
ways.
Split it out into a common function and cleanup the callsites.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/20190821192922.653276779@linutronix.de
The soft RLIMIT expiry code checks whether the soft limit is greater than
the hard limit. That's pointless because if the soft RLIMIT is greater than
the hard RLIMIT then that code cannot be reached as the hard RLIMIT check
is before that and already killed the process.
Remove it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/20190821192922.548747613@linutronix.de
Instead of dividing A to match the units of B it's more efficient to
multiply B to match the units of A.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/20190821192922.458286860@linutronix.de
With the array based samples and expiry cache, the expiry function can use
a loop to collect timers from the clock specific lists.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/20190821192922.365469982@linutronix.de
Deactivation of the expiry cache is done by setting all clock caches to
0. That requires to have a check for zero in all places which update the
expiry cache:
if (cache == 0 || new < cache)
cache = new;
Use U64_MAX as the deactivated value, which allows to remove the zero
checks when updating the cache and reduces it to the obvious check:
if (new < cache)
cache = new;
This also removes the weird workaround in do_prlimit() which was required
to convert a RLIMIT_CPU value of 0 (immediate expiry) to 1 because handing
in 0 to the posix CPU timer code would have effectively disarmed it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/20190821192922.275086128@linutronix.de
The RTIME limit expiry code does not check the hard RTTIME limit for
INFINITY, i.e. being disabled. Add it.
While this could be considered an ABI breakage if something would depend on
this behaviour. Though it's highly unlikely to have an effect because
RLIM_INFINITY is at minimum INT_MAX and the RTTIME limit is in seconds, so
the timer would fire after ~68 years.
Adding this obvious correct limit check also allows further consolidation
of that code and is a prerequisite for cleaning up the 0 based checks and
the rlimit setter code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/20190821192922.078293002@linutronix.de
Now that the abused struct task_cputime is gone, it's more natural to
bundle the expiry cache and the list head of each clock into a struct and
have an array of those structs.
Follow the hrtimer naming convention of 'bases' and rename the expiry cache
to 'nextevt' and adapt all usage sites.
Generates also better code .text size shrinks by 80 bytes.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1908262021140.1939@nanos.tec.linutronix.de
The last users of the magic struct cputime based expiry cache are
gone. Remove the leftovers.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/20190821192921.790209622@linutronix.de
The expiry cache is an array indexed by clock ids. The new sample functions
allow to retrieve a corresponding array of samples.
Convert the fastpath expiry checks to make use of the new sample functions
and do the comparisons on the sample and the expiry array.
Make the check for the expiry array being zero array based as well.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/20190821192921.695481430@linutronix.de
Instead of using task_cputime and doing the addition of utime and stime at
all call sites, it's way simpler to have a sample array which allows
indexed based checks against the expiry cache array.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/20190821192921.590362974@linutronix.de
Use the array based expiry cache in check_thread_timers() and convert the
store in check_process_timers() for consistency.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/20190821192921.408222378@linutronix.de
The expiry cache can now be accessed as an array. Replace the per clock
checks with a simple comparison of the clock indexed array member.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/20190821192921.303316423@linutronix.de
Now that the expiry cache can be accessed as an array, the per clock
checking can be reduced to just comparing the corresponding array elements.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/20190821192921.212129449@linutronix.de
Using struct task_cputime for the expiry cache is a pretty odd choice and
comes with magic defines to rename the fields for usage in the expiry
cache.
struct task_cputime is basically a u64 array with 3 members, but it has
distinct members.
The expiry cache content is different than the content of task_cputime
because
expiry[PROF] = task_cputime.stime + task_cputime.utime
expiry[VIRT] = task_cputime.utime
expiry[SCHED] = task_cputime.sum_exec_runtime
So there is no direct mapping between task_cputime and the expiry cache and
the #define based remapping is just a horrible hack.
Having the expiry cache array based allows further simplification of the
expiry code.
To avoid an all in one cleanup which is hard to review add a temporary
anonymous union into struct task_cputime which allows array based access to
it. That requires to reorder the members. Add a build time sanity check to
validate that the members are at the same place.
The union and the build time checks will be removed after conversion.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/20190821192921.105793824@linutronix.de
The expiry cache belongs into the posix_cputimers container where the other
cpu timers information is.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/20190821192921.014444012@linutronix.de
Per task/process data of posix CPU timers is all over the place which
makes the code hard to follow and requires ifdeffery.
Create a container to hold all this information in one place, so data is
consolidated and the ifdeffery can be confined to the posix timer header
file and removed from places like fork.
As a first step, move the cpu_timers list head array into the new struct
and clean up the initializers and simplify fork. The remaining #ifdef in
fork will be removed later.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/20190821192920.819418976@linutronix.de
The functions have only one caller left. No point in having them.
Move the almost duplicated code into the caller and simplify it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/20190821192920.729298382@linutronix.de
Now that the sample functions have no return value anymore, the result can
simply be returned instead of using pointer indirection.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/20190821192920.535079278@linutronix.de
All callers hand in a valdiated clock id. Remove the return value which was
unchecked in most places anyway.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/20190821192920.430475832@linutronix.de
set_process_cpu_timer() checks already whether the clock id is valid. No
point in checking the return value of the sample function. That allows to
simplify the sample function later.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/20190821192920.339725769@linutronix.de
Extract the clock ID (PROF/VIRT/SCHED) from the clock selector and use it
as argument to the sample functions. That allows to simplify them once all
callers are fixed.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/20190821192920.245357769@linutronix.de
Extract the clock ID (PROF/VIRT/SCHED) from the clock selector and use it
as argument to the sample functions. That allows to simplify them once all
callers are fixed.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/20190821192920.155487201@linutronix.de
Extract the clock ID (PROF/VIRT/SCHED) from the clock selector and use it
as argument to the sample functions. That allows to simplify them once all
callers are fixed.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/20190821192920.050770464@linutronix.de
cpu_clock_sample_group() and cpu_timer_sample_group() are almost the
same. Before the rename one called thread_group_cputimer() and the other
thread_group_cputime(). Really intuitive function names.
Consolidate the functions and also avoid the thread traversal when
the thread group's accounting is already active.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/20190821192919.960966884@linutronix.de
thread_group_cputimer() is a complete misnomer. The function does two things:
- For arming process wide timers it makes sure that the atomic time
storage is up to date. If no cpu timer is armed yet, then the atomic
time storage is not updated by the scheduler for performance reasons.
In that case a full summing up of all threads needs to be done and the
update needs to be enabled.
- Samples the current time into the caller supplied storage.
Rename it to thread_group_start_cputime(), make it static and fixup the
callsite.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/20190821192919.869350319@linutronix.de
The thread group accounting is active, otherwise the expiry function would
not be running. Sample the thread group time directly.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/20190821192919.780348088@linutronix.de
get_itimer() locks sighand lock and checks whether the timer is already
expired. If it is not expired then the thread group cputime accounting is
already enabled. Use the sampling function not the one which is meant for
starting a timer.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/20190821192919.689713638@linutronix.de
get_itimer() needs a sample of the current thread group cputime. It invokes
thread_group_cputimer() - which is a misnomer. That function also starts
eventually the group cputime accouting which is bogus because the
accounting is already active when a timer is armed.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/20190821192919.599658199@linutronix.de
Replace the next slightly different copy of permission checks. That also
removes the necessarity to check the return value of the sample functions
because the clock id is already validated.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/20190821192919.414813172@linutronix.de
The code contains three slightly different copies of validating whether a
given clock resolves to a valid task and whether the current caller has
permissions to access it.
Create central functions. Replace check_clock() as a first step and rename
it to something sensible.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190821192919.326097175@linutronix.de
The VDSO update for CLOCK_BOOTTIME has a overflow issue as it shifts the
nanoseconds based boot time offset left by the clocksource shift. That
overflows once the boot time offset becomes large enough. As a consequence
CLOCK_BOOTTIME in the VDSO becomes a random number causing applications to
misbehave.
Fix it by storing a timespec64 representation of the offset when boot time
is adjusted and add that to the MONOTONIC base time value in the vdso data
page. Using the timespec64 representation avoids a 64bit division in the
update code.
Fixes: 44f57d788e ("timekeeping: Provide a generic update_vsyscall() implementation")
Reported-by: Chris Clayton <chris2553@googlemail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Chris Clayton <chris2553@googlemail.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1908221257580.1983@nanos.tec.linutronix.de
Warning when p == NULL and then proceeding and dereferencing p does not
make any sense as the kernel will crash with a NULL pointer dereference
right away.
Bailing out when p == NULL and returning an error code does not cure the
underlying problem which caused p to be NULL. Though it might allow to
do proper debugging.
Same applies to the clock id check in set_process_cpu_timer().
Clean them up and make them return without trying to do further damage.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/20190819143801.846497772@linutronix.de
migration_base is used as a placeholder when an hrtimer is migrated to a
different CPU. In the case that hrtimer_cancel_wait_running() hits a timer
which is currently migrated it would pointlessly acquire the expiry lock of
the migration base, which is even not initialized.
Surely it could be initialized, but there is absolutely no point in
acquiring this lock because the timer is guaranteed not to run it's
callback for which the caller waits to finish on that base. So it would
just do the inc/lock/dec/unlock dance for nothing.
As the base switch is short and non-preemptible, there is no issue when the
wait function returns immediately.
The timer base and base->cpu_base cannot be NULL in the code path which is
invoking that, so just replace those checks with a check whether base is
migration base.
[ tglx: Updated from RT patch. Massaged changelog. Added comment. ]
Signed-off-by: Julien Grall <julien.grall@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190821092409.13225-4-julien.grall@arm.com