IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Fix the incorrect use of igrab() inside the i_lock in NFS and Ceph‥
If we are already holding the i_lock, we have a reference to the
inode so we can safely use ihold() to gain an extra reference. This
avoids hangs due to lock recursion on the i_lock now that the
inode_lock is gone and igrab() uses the i_lock itself.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Cc: Ryan Mallon <ryan@bluewatersys.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-linus' of git://oss.sgi.com/xfs/xfs:
xfs: stop using the page cache to back the buffer cache
xfs: register the inode cache shrinker before quotachecks
xfs: xfs_trans_read_buf() should return an error on failure
xfs: introduce inode cluster buffer trylocks for xfs_iflush
vmap: flush vmap aliases when mapping fails
xfs: preallocation transactions do not need to be synchronous
Fix up trivial conflicts in fs/xfs/linux-2.6/xfs_buf.c due to plug removal.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ecryptfs/ecryptfs-2.6:
eCryptfs: write lock requested keys
eCryptfs: move ecryptfs_find_auth_tok_for_sig() call before mutex_lock
eCryptfs: verify authentication tokens before their use
eCryptfs: modified size of keysig in the ecryptfs_key_sig structure
eCryptfs: removed num_global_auth_toks from ecryptfs_mount_crypt_stat
eCryptfs: ecryptfs_keyring_auth_tok_for_sig() bug fix
eCryptfs: Unlock page in write_begin error path
ecryptfs: modify write path to encrypt page in writepage
eCryptfs: Remove ECRYPTFS_NEW_FILE crypt stat flag
eCryptfs: Remove unnecessary grow_file() function
* 'for-linus-unmerged' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable: (45 commits)
Btrfs: fix __btrfs_map_block on 32 bit machines
btrfs: fix possible deadlock by clearing __GFP_FS flag
btrfs: check link counter overflow in link(2)
btrfs: don't mess with i_nlink of unlocked inode in rename()
Btrfs: check return value of btrfs_alloc_path()
Btrfs: fix OOPS of empty filesystem after balance
Btrfs: fix memory leak of empty filesystem after balance
Btrfs: fix return value of setflags ioctl
Btrfs: fix uncheck memory allocations
btrfs: make inode ref log recovery faster
Btrfs: add btrfs_trim_fs() to handle FITRIM
Btrfs: adjust btrfs_discard_extent() return errors and trimmed bytes
Btrfs: make btrfs_map_block() return entire free extent for each device of RAID0/1/10/DUP
Btrfs: make update_reserved_bytes() public
btrfs: return EXDEV when linking from different subvolumes
Btrfs: Per file/directory controls for COW and compression
Btrfs: add datacow flag in inode flag
btrfs: use GFP_NOFS instead of GFP_KERNEL
Btrfs: check return value of read_tree_block()
btrfs: properly access unaligned checksum buffer
...
Fix up trivial conflicts in fs/btrfs/volumes.c due to plug removal in
the block layer.
When a hole spans across page boundaries, the next write forces
a read of the block. This could end up reading existing garbage
data from the disk in ocfs2_map_page_blocks. This leads to
non-zero holes. In order to avoid this, mark the writes as new
when the holes span across page boundaries.
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.de>
Signed-off-by: jlbec <jlbec@evilplan.org>
When CONFIG_DEBUG_FS=y and CONFIG_OCFS2_FS_STATS=n, we get the
following warning:
fs/ocfs2/cluster/tcp.c:213:16: warning: ‘o2net_get_func_run_time’
defined but not used
Since o2net_get_func_run_time is only called from
o2net_update_recv_stats, so move it under CONFIG_OCFS2_FS_STATS.
Signed-off-by: Rakib Mullick <rakib.mullick@gmail.com>
Signed-off-by: jlbec <jlbec@evilplan.org>
* 'bugfixes' of git://git.linux-nfs.org/projects/trondmy/nfs-2.6:
NFS: Ensure that rpc_release_resources_task() can be called twice.
NFS: Don't leak RPC clients in NFSv4 secinfo negotiation
NFS: Fix a hang in the writeback path
Recent changes for discard support didn't compile,
this fixes them not to try and % 64 bit numbers.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Using the GFP_HIGHUSER_MOVABLE flag to allocate the metadata's page may cause
deadlock.
Task1
open()
...
btrfs_search_slot()
...
btrfs_cow_block()
...
alloc_page()
wait for reclaiming
shrink_slab()
...
shrink_icache_memory()
...
btrfs_evict_inode()
...
btrfs_search_slot()
If the path is locked by task1, the deadlock happens.
So the btree's page cache is different with the file's page cache, it can not
allocate pages by GFP_HIGHUSER_MOVABLE flag, we must clear __GFP_FS flag in
GFP_HIGHUSER_MOVABLE flag.
Reported-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
old_inode is not locked; it's not safe to play with its link
count. Instead of bumping it and calling btrfs_unlink_inode(),
add a variant of the latter that does not do btrfs_drop_nlink()/
btrfs_update_inode(), call it instead of btrfs_inc_nlink()/
btrfs_unlink_inode() and do btrfs_update_inode() ourselves.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Adding the check on the return value of btrfs_alloc_path() to several places.
And, some of callers are modified by this change.
Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
btrfs will remove unused block groups after balance.
When a empty filesystem is balanced, the block group with tag "DATA" may be
dropped, and after umount and mount again, it will not find "DATA" space_info
and lead to OOPS.
So we initial the necessary space_infos(DATA, SYSTEM, METADATA) to avoid OOPS.
Reported-by: Daniel J Blueman <daniel.blueman@gmail.com>
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
After Josef's patch(commit 3c14874acc71180553fb5aba528e3cf57c5b958b),
btrfs will exclude super bytes when reading block groups(by marking a extent
state UPTODATE). However, these bytes do not get freed while balance remove
unused block groups, and we won't process those removed ones any more, when
we do umount and unload the btrfs module, btrfs hits a memory leak.
This patch add the missing free operation.
Reproduce steps:
$ mkfs.btrfs disk
$ mount disk /mnt/btrfs -o loop
$ btrfs filesystem balance /mnt/btrfs
$ umount /mnt/btrfs
$ rmmod btrfs
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
setflags ioctl should return error when any checks fail.
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
To make Btrfs code more robust, several return value checks where memory
allocation can fail are introduced. I use BUG_ON where I don't know how
to handle the error properly, which increases the number of using the
notorious BUG_ON, though.
Signed-off-by: Yoshinori Sano <yoshinori.sano@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When we recover from crash via write-ahead log tree and process
the inode refs, for each btrfs_inode_ref item, we will
1) check if we already have a perfect match in fs/file tree, if
we have, then we're done.
2) search the corresponding back reference in fs/file tree, and
check all the names in this back reference to see if they are
also in the log to avoid conflict corners.
3) recover the logged inode refs to fs/file tree.
In current btrfs, however,
- for 2)'s check, once is enough, since the checked back reference
will remain unchanged after processing all the inode refs belonged
to the key.
- it has no need to do another 1) between 2) and 3).
I've made a small test to show how it improves,
$dd if=/dev/zero of=foobar bs=4K count=1
$sync
$make 100 hard links continuously, like ln foobar link_i
$fsync foobar
$echo b > /proc/sysrq-trigger
after reboot
$time mount DEV PATH
without patch:
real 0m0.285s
user 0m0.001s
sys 0m0.009s
with patch:
real 0m0.123s
user 0m0.000s
sys 0m0.010s
Changelog v1->v2:
- fix double free - pointed by David Sterba
Changelog v2->v3:
- adjust free order
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
We take an free extent out from allocator, trim it, then put it back,
but before we trim the block group, we should make sure the block group is
cached, so plus a little change to make cache_block_group() run without a
transaction.
Signed-off-by: Li Dongyang <lidongyang@novell.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Callers of btrfs_discard_extent() should check if we are mounted with -o discard,
as we want to make fitrim to work even the fs is not mounted with -o discard.
Also we should use REQ_DISCARD to map the free extent to get a full mapping,
last we only return errors if
1. the error is not a EOPNOTSUPP
2. no device supports discard
Signed-off-by: Li Dongyang <lidongyang@novell.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
btrfs_map_block() will only return a single stripe length, but we want the
full extent be mapped to each disk when we are trimming the extent,
so we add length to btrfs_bio_stripe and fill it if we are mapping for REQ_DISCARD.
Signed-off-by: Li Dongyang <lidongyang@novell.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Make the function public as we should update the reserved extents calculations
after taking out an extent for trimming.
Signed-off-by: Li Dongyang <lidongyang@novell.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
btrfs_link returns EPERM if a cross-subvolume link is attempted.
However, in this case I believe EXDEV to be the more appropriate value.
>From the link(2) man page:
EXDEV oldpath and newpath are not on the same mounted file system. (Linux
permits a file system to be mounted at multiple points, but link()
does not work across different mount points, even if the same file
system is mounted on both.)
This matters because an application may have different behaviors based on
return codes.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Data compression and data cow are controlled across the entire FS by mount
options right now. ioctls are needed to set this on a per file or per
directory basis. This has been proposed previously, but VFS developers
wanted us to use generic ioctls rather than btrfs-specific ones.
According to Chris's comment, there should be just one true compression
method(probably LZO) stored in the super. However, before this, we would
wait for that one method is stable enough to be adopted into the super.
So I list it as a long term goal, and just store it in ram today.
After applying this patch, we can use the generic "FS_IOC_SETFLAGS" ioctl to
control file and directory's datacow and compression attribute.
NOTE:
- The compression type is selected by such rules:
If we mount btrfs with compress options, ie, zlib/lzo, the type is it.
Otherwise, we'll use the default compress type (zlib today).
v1->v2:
- rebase to the latest btrfs.
v2->v3:
- fix a problem, i.e. when a file is set NOCOW via mount option, then this NOCOW
will be screwed by inheritance from parent directory.
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
In the filesystem context, we must allocate memory by GFP_NOFS,
or we may start another filesystem operation and make kswap thread hang up.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This patch is checking return value of read_tree_block(),
and if it is NULL, error processing.
Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
On Fri, Mar 18, 2011 at 11:56:53AM -0400, Chris Mason wrote:
> Thanks for fielding this one. Does put_unaligned_le32 optimize away on
> platforms with efficient access? It would be great if we didn't need
> the #ifdef.
(quicktest: assembly output is same for put_unaligned_le32 and direct
assignment on my x86_64)
I was originally following examples in
Documentation/unaligned-memory-access.txt. From other code it seems to me that
the define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS is intended for larger
portions of code. Macros/wrappers for {put,get}_unaligned* are chosen via
arch/<arch>/include/asm/unaligned.h accordingly, therefore it's safe to use
put_unaligned_le32 without the ifdef.
dave
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This patch changes some BUG_ON() to the error return.
(but, most callers still use BUG_ON())
Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Tracepoints can provide insight into why btrfs hits bugs and be greatly
helpful for debugging, e.g
dd-7822 [000] 2121.641088: btrfs_inode_request: root = 5(FS_TREE), gen = 4, ino = 256, blocks = 8, disk_i_size = 0, last_trans = 8, logged_trans = 0
dd-7822 [000] 2121.641100: btrfs_inode_new: root = 5(FS_TREE), gen = 8, ino = 257, blocks = 0, disk_i_size = 0, last_trans = 0, logged_trans = 0
btrfs-transacti-7804 [001] 2146.935420: btrfs_cow_block: root = 2(EXTENT_TREE), refs = 2, orig_buf = 29368320 (orig_level = 0), cow_buf = 29388800 (cow_level = 0)
btrfs-transacti-7804 [001] 2146.935473: btrfs_cow_block: root = 1(ROOT_TREE), refs = 2, orig_buf = 29364224 (orig_level = 0), cow_buf = 29392896 (cow_level = 0)
btrfs-transacti-7804 [001] 2146.972221: btrfs_transaction_commit: root = 1(ROOT_TREE), gen = 8
flush-btrfs-2-7821 [001] 2155.824210: btrfs_chunk_alloc: root = 3(CHUNK_TREE), offset = 1103101952, size = 1073741824, num_stripes = 1, sub_stripes = 0, type = DATA
flush-btrfs-2-7821 [001] 2155.824241: btrfs_cow_block: root = 2(EXTENT_TREE), refs = 2, orig_buf = 29388800 (orig_level = 0), cow_buf = 29396992 (cow_level = 0)
flush-btrfs-2-7821 [001] 2155.824255: btrfs_cow_block: root = 4(DEV_TREE), refs = 2, orig_buf = 29372416 (orig_level = 0), cow_buf = 29401088 (cow_level = 0)
flush-btrfs-2-7821 [000] 2155.824329: btrfs_cow_block: root = 3(CHUNK_TREE), refs = 2, orig_buf = 20971520 (orig_level = 0), cow_buf = 20975616 (cow_level = 0)
btrfs-endio-wri-7800 [001] 2155.898019: btrfs_cow_block: root = 5(FS_TREE), refs = 2, orig_buf = 29384704 (orig_level = 0), cow_buf = 29405184 (cow_level = 0)
btrfs-endio-wri-7800 [001] 2155.898043: btrfs_cow_block: root = 7(CSUM_TREE), refs = 2, orig_buf = 29376512 (orig_level = 0), cow_buf = 29409280 (cow_level = 0)
Here is what I have added:
1) ordere_extent:
btrfs_ordered_extent_add
btrfs_ordered_extent_remove
btrfs_ordered_extent_start
btrfs_ordered_extent_put
These provide critical information to understand how ordered_extents are
updated.
2) extent_map:
btrfs_get_extent
extent_map is used in both read and write cases, and it is useful for tracking
how btrfs specific IO is running.
3) writepage:
__extent_writepage
btrfs_writepage_end_io_hook
Pages are cirtical resourses and produce a lot of corner cases during writeback,
so it is valuable to know how page is written to disk.
4) inode:
btrfs_inode_new
btrfs_inode_request
btrfs_inode_evict
These can show where and when a inode is created, when a inode is evicted.
5) sync:
btrfs_sync_file
btrfs_sync_fs
These show sync arguments.
6) transaction:
btrfs_transaction_commit
In transaction based filesystem, it will be useful to know the generation and
who does commit.
7) back reference and cow:
btrfs_delayed_tree_ref
btrfs_delayed_data_ref
btrfs_delayed_ref_head
btrfs_cow_block
Btrfs natively supports back references, these tracepoints are helpful on
understanding btrfs's COW mechanism.
8) chunk:
btrfs_chunk_alloc
btrfs_chunk_free
Chunk is a link between physical offset and logical offset, and stands for space
infomation in btrfs, and these are helpful on tracing space things.
9) reserved_extent:
btrfs_reserved_extent_alloc
btrfs_reserved_extent_free
These can show how btrfs uses its space.
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The pointer to the extent buffer for the root of each tree
is protected by a spinlock so that we can safely read the pointer
and take a reference on the extent buffer.
But now that the extent buffers are freed via RCU, we can safely
use rcu_read_lock instead.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
A requested key is write locked in order to prevent modifications on the
authentication token while it is being used.
Signed-off-by: Roberto Sassu <roberto.sassu@polito.it>
Signed-off-by: Tyler Hicks <tyhicks@linux.vnet.ibm.com>
The ecryptfs_find_auth_tok_for_sig() call is moved before the
mutex_lock(s->tfm_mutex) instruction in order to avoid possible deadlocks
that may occur by holding the lock on the two semaphores 'key->sem' and
's->tfm_mutex' in reverse order.
Signed-off-by: Roberto Sassu <roberto.sassu@polito.it>
Signed-off-by: Tyler Hicks <tyhicks@linux.vnet.ibm.com>
Authentication tokens content may change if another requestor calls the
update() method of the corresponding key. The new function
ecryptfs_verify_auth_tok_from_key() retrieves the authentication token from
the provided key and verifies if it is still valid before being used to
encrypt or decrypt an eCryptfs file.
Signed-off-by: Roberto Sassu <roberto.sassu@polito.it>
[tyhicks: Minor formatting changes]
Signed-off-by: Tyler Hicks <tyhicks@linux.vnet.ibm.com>
The size of the 'keysig' array is incremented of one byte in order to make
room for the NULL character. The 'keysig' variable is used, in the function
ecryptfs_generate_key_packet_set(), to find an authentication token with
the given signature and is printed a debug message if it cannot be
retrieved.
Signed-off-by: Roberto Sassu <roberto.sassu@polito.it>
Signed-off-by: Tyler Hicks <tyhicks@linux.vnet.ibm.com>
This patch removes the 'num_global_auth_toks' field of the
ecryptfs_mount_crypt_stat structure, used to count the number of items in
the 'global_auth_tok_list' list. This variable is not needed because there
are no checks based upon it.
Signed-off-by: Roberto Sassu <roberto.sassu@polito.it>
Signed-off-by: Tyler Hicks <tyhicks@linux.vnet.ibm.com>
The pointer '(*auth_tok_key)' is set to NULL in case request_key()
fails, in order to prevent its use by functions calling
ecryptfs_keyring_auth_tok_for_sig().
Signed-off-by: Roberto Sassu <roberto.sassu@polito.it>
Cc: <stable@kernel.org>
Signed-off-by: Tyler Hicks <tyhicks@linux.vnet.ibm.com>
Unlock the page in error path of ecryptfs_write_begin(). This may
happen, for example, if decryption fails while bring the page
up-to-date.
Cc: <stable@kernel.org>
Signed-off-by: Tyler Hicks <tyhicks@linux.vnet.ibm.com>
Change the write path to encrypt the data only when the page is written to
disk in ecryptfs_writepage. Previously, ecryptfs encrypts the page in
ecryptfs_write_end which means that if there are multiple write requests to
the same page, ecryptfs ends up re-encrypting that page over and over again.
This patch minimizes the number of encryptions needed.
Signed-off-by: Thieu Le <thieule@chromium.org>
[tyhicks: Changed NULL .drop_inode sop pointer to generic_drop_inode]
Signed-off-by: Tyler Hicks <tyhicks@linux.vnet.ibm.com>
Now that grow_file() is not called in the ecryptfs_create() path, the
ECRYPTFS_NEW_FILE flag is no longer needed. It helped
ecryptfs_readpage() know not to decrypt zeroes that were read from the
lower file in the grow_file() path.
Signed-off-by: Tyler Hicks <tyhicks@linux.vnet.ibm.com>
When creating a new eCryptfs file, the crypto metadata is written out
and then the lower file was being "grown" with 4 kB of encrypted zeroes.
I suspect that growing the encrypted file was to prevent an information
leak that the unencrypted file was empty. However, the unencrypted file
size is stored, in plaintext, in the metadata so growing the file is
unnecessary.
Signed-off-by: Tyler Hicks <tyhicks@linux.vnet.ibm.com>
Fix inode.c kernel-doc fatal error: 2 comment sections have the same name:
Error(fs/inode.c:1171): duplicate section name 'Note'
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When m_start returns an error, the seq_file logic will still call m_stop
with that error entry, so we'd better make sure that we check it before
using it as a vma.
Introduced by commit ec6fd8a4355c ("report errors in /proc/*/*map*
sanely"), which replaced NULL with various ERR_PTR() cases.
(On ia64, you happen to get a unaligned fault instead of a page fault,
since the address used is generally some random error code like -EPERM)
Reported-by: Anca Emanuel <anca.emanuel@gmail.com>
Reported-by: Tony Luck <tony.luck@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Américo Wang <xiyou.wangcong@gmail.com>
Cc: Stephen Wilson <wilsons@start.ca>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that the inode scalability patches have been merged, it is no longer
safe to call igrab() under the inode->i_lock.
Now that we no longer call nfs_clear_request() until the nfs_page is
being freed, we know that we are always holding a reference to the
nfs_open_context, which again holds a reference to the path, and so
the inode cannot be freed until the last nfs_page has been removed
from the radix tree and freed.
We can therefore skip the igrab()/iput() altogether.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
I noticed that dio_end_io calls the appropriate endio function with an error,
but the endio functions don't actually do anything with that error, they assume
that if there was an error then the bio will not be uptodate. So if we had
checksum failures we would never pass back EIO. So if there is an error in our
endio functions make sure to clear the uptodate flag on the bio. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
When doing direct writes we store the checksums in the ordered sum stuff in the
ordered extent for writing them when the write completes, so we don't even use
the dip->csums array. So if we're writing, don't bother allocating dip->csums
since we won't use it anyway. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
This patch makes the free space cluster refilling code a little easier to
understand, and fixes some things with the bitmap part of it. Currently we
either want to refill a cluster with
1) All normal extent entries (those without bitmaps)
2) A bitmap entry with enough space
The current code has this ugly jump around logic that will first try and fill up
the cluster with extent entries and then if it can't do that it will try and
find a bitmap to use. So instead split this out into two functions, one that
tries to find only normal entries, and one that tries to find bitmaps.
This also fixes a suboptimal thing we would do with bitmaps. If we used a
bitmap we would just tell the cluster that we were pointing at a bitmap and it
would do the tree search in the block group for that entry every time we tried
to make an allocation. Instead of doing that now we just add it to the clusters
group.
I tested this with my ENOSPC tests and xfstests and it survived.
Signed-off-by: Josef Bacik <josef@redhat.com>