IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
When handling a page fault, we drop mmap_sem to start async readahead so
that we don't block on IO submission with mmap_sem held. However there's
no point to drop mmap_sem in case readahead is disabled. Handle that case
to avoid pointless dropping of mmap_sem and retrying the fault. This was
actually reported to block mlockall(MCL_CURRENT) indefinitely.
Fixes: 6b4c9f446981 ("filemap: drop the mmap_sem for all blocking operations")
Reported-by: Minchan Kim <minchan@kernel.org>
Reported-by: Robert Stupp <snazy@gmx.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Link: http://lkml.kernel.org/r/20200212101356.30759-1-jack@suse.cz
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kmemleak could scan task stacks while plain writes happens to those stack
variables which could results in data races. For example, in
sys_rt_sigaction and do_sigaction(), it could have plain writes in a
32-byte size. Since the kmemleak does not care about the actual values of
a non-pointer and all do_sigaction() call sites only copy to stack
variables, just disable KCSAN for kmemleak to avoid annotating anything
outside Kmemleak just because Kmemleak scans everything.
Suggested-by: Marco Elver <elver@google.com>
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Marco Elver <elver@google.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: http://lkml.kernel.org/r/1583263716-25150-1-git-send-email-cai@lca.pw
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Clang warns:
mm/kmemleak.c:1955:28: warning: array comparison always evaluates to a constant [-Wtautological-compare]
if (__start_ro_after_init < _sdata || __end_ro_after_init > _edata)
^
mm/kmemleak.c:1955:60: warning: array comparison always evaluates to a constant [-Wtautological-compare]
if (__start_ro_after_init < _sdata || __end_ro_after_init > _edata)
These are not true arrays, they are linker defined symbols, which are just
addresses. Using the address of operator silences the warning and does
not change the resulting assembly with either clang/ld.lld or gcc/ld
(tested with diff + objdump -Dr).
Suggested-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://github.com/ClangBuiltLinux/linux/issues/895
Link: http://lkml.kernel.org/r/20200220051551.44000-1-natechancellor@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit ad2c8144418c6a81cefe65379fd47bbe8344cef2.
The function node_to_mem_node() was introduced by that commit for use in SLUB
on systems with memoryless nodes, but it turned out to be unreliable on some
architectures/configurations and a simpler solution exists than fixing it up.
Thus commit 0715e6c516f1 ("mm, slub: prevent kmalloc_node crashes and
memory leaks") removed the only user of node_to_mem_node() and we can
revert the commit that introduced the function.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Bharata B Rao <bharata@linux.ibm.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Nathan Lynch <nathanl@linux.ibm.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: PUVICHAKRAVARTHY RAMACHANDRAN <puvichakravarthy@in.ibm.com>
Cc: Sachin Sant <sachinp@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/20200320115533.9604-2-vbabka@suse.cz
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In a recent discussion[1] with Vitaly Nikolenko and Silvio Cesare, it
became clear that moving the freelist pointer away from the edge of
allocations would likely improve the overall defensive posture of the
inline freelist pointer. My benchmarks show no meaningful change to
performance (they seem to show it being faster), so this looks like a
reasonable change to make.
Instead of having the freelist pointer at the very beginning of an
allocation (offset 0) or at the very end of an allocation (effectively
offset -sizeof(void *) from the next allocation), move it away from the
edges of the allocation and into the middle. This provides some
protection against small-sized neighboring overflows (or underflows), for
which the freelist pointer is commonly the target. (Large or well
controlled overwrites are much more likely to attack live object contents,
instead of attempting freelist corruption.)
The vaunted kernel build benchmark, across 5 runs. Before:
Mean: 250.05
Std Dev: 1.85
and after, which appears mysteriously faster:
Mean: 247.13
Std Dev: 0.76
Attempts at running "sysbench --test=memory" show the change to be well in
the noise (sysbench seems to be pretty unstable here -- it's not really
measuring allocation).
Hackbench is more allocation-heavy, and while the std dev is above the
difference, it looks like may manifest as an improvement as well:
20 runs of "hackbench -g 20 -l 1000", before:
Mean: 36.322
Std Dev: 0.577
and after:
Mean: 36.056
Std Dev: 0.598
[1] https://twitter.com/vnik5287/status/1235113523098685440
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Vitaly Nikolenko <vnik@duasynt.com>
Cc: Silvio Cesare <silvio.cesare@gmail.com>
Cc: Christoph Lameter <cl@linux.com>Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Link: http://lkml.kernel.org/r/202003051624.AAAC9AECC@keescook
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Under CONFIG_SLAB_FREELIST_HARDENED=y, the obfuscation was relatively weak
in that the ptr and ptr address were usually so close that the first XOR
would result in an almost entirely 0-byte value[1], leaving most of the
"secret" number ultimately being stored after the third XOR. A single
blind memory content exposure of the freelist was generally sufficient to
learn the secret.
Add a swab() call to mix bits a little more. This is a cheap way (1
cycle) to make attacks need more than a single exposure to learn the
secret (or to know _where_ the exposure is in memory).
kmalloc-32 freelist walk, before:
ptr ptr_addr stored value secret
ffff90c22e019020@ffff90c22e019000 is 86528eb656b3b5bd (86528eb656b3b59d)
ffff90c22e019040@ffff90c22e019020 is 86528eb656b3b5fd (86528eb656b3b59d)
ffff90c22e019060@ffff90c22e019040 is 86528eb656b3b5bd (86528eb656b3b59d)
ffff90c22e019080@ffff90c22e019060 is 86528eb656b3b57d (86528eb656b3b59d)
ffff90c22e0190a0@ffff90c22e019080 is 86528eb656b3b5bd (86528eb656b3b59d)
...
after:
ptr ptr_addr stored value secret
ffff9eed6e019020@ffff9eed6e019000 is 793d1135d52cda42 (86528eb656b3b59d)
ffff9eed6e019040@ffff9eed6e019020 is 593d1135d52cda22 (86528eb656b3b59d)
ffff9eed6e019060@ffff9eed6e019040 is 393d1135d52cda02 (86528eb656b3b59d)
ffff9eed6e019080@ffff9eed6e019060 is 193d1135d52cdae2 (86528eb656b3b59d)
ffff9eed6e0190a0@ffff9eed6e019080 is f93d1135d52cdac2 (86528eb656b3b59d)
[1] https://blog.infosectcbr.com.au/2020/03/weaknesses-in-linux-kernel-heap.html
Fixes: 2482ddec670f ("mm: add SLUB free list pointer obfuscation")
Reported-by: Silvio Cesare <silvio.cesare@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/202003051623.AF4F8CB@keescook
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are slub_cpu_partial() and slub_set_cpu_partial() APIs to wrap
kmem_cache->cpu_partial. This patch will use the two APIs to replace
kmem_cache->cpu_partial in slub code.
Signed-off-by: chenqiwu <chenqiwu@xiaomi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Link: http://lkml.kernel.org/r/1582079562-17980-1-git-send-email-qiwuchen55@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are slub_percpu_partial() and slub_set_percpu_partial() APIs to wrap
kmem_cache->cpu_partial. This patch will use the two to replace
cpu_slab->partial in slub code.
Signed-off-by: chenqiwu <chenqiwu@xiaomi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Link: http://lkml.kernel.org/r/1581951895-3038-1-git-send-email-qiwuchen55@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
OCFS2 doesn't mind if memory reclaim makes I/Os happen; it just cares that
it won't be reentered, so it can use memalloc_nofs_save() instead of
memalloc_noio_save().
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Cc: Jun Piao <piaojun@huawei.com>
Link: http://lkml.kernel.org/r/20200326200214.1102-1-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since snprintf() returns the would-be-output size instead of the actual
output size, the succeeding calls may go beyond the given buffer limit.
Fix it by replacing with scnprintf().
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Joseph Qi <jiangqi903@gmail.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Cc: Jun Piao <piaojun@huawei.com>
Link: http://lkml.kernel.org/r/20200311093516.25300-1-tiwai@suse.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Under some conditions, the directory cannot be deleted. The specific
scenarios are as follows: (for example, /mnt/ocfs2 is the mount point)
1. Create the /mnt/ocfs2/p_dir directory. At this time, the i_nlink
corresponding to the inode of the /mnt/ocfs2/p_dir directory is equal
to 2.
2. During the process of creating the /mnt/ocfs2/p_dir/s_dir
directory, if the call to the inc_nlink function in ocfs2_mknod
succeeds, the functions such as ocfs2_init_acl,
ocfs2_init_security_set, and ocfs2_dentry_attach_lock fail. At this
time, the i_nlink corresponding to the inode of the /mnt/ocfs2/p_dir
directory is equal to 3, but /mnt/ocfs2/p_dir/s_dir is not added to the
/mnt/ocfs2/p_dir directory entry.
3. Delete the /mnt/ocfs2/p_dir directory (rm -rf /mnt/ocfs2/p_dir).
At this time, it is found that the i_nlink corresponding to the inode
corresponding to the /mnt/ocfs2/p_dir directory is equal to 3.
Therefore, the /mnt/ocfs2/p_dir directory cannot be deleted.
Signed-off-by: Jian wang <wangjian161@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jun Piao <piaojun@huawei.com>
Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Cc: Jun Piao <piaojun@huawei.com>
Link: http://lkml.kernel.org/r/a44f6666-bbc4-405e-0e6c-0f4e922eeef6@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current codebase makes use of the zero-length array language extension
to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning in
case the flexible array does not occur last in the structure, which will
help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by this
change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://urldefense.com/v3/__https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html__;!!GqivPVa7Brio!OKPotRhYhHbCG2kibo8Q6_6CuKaa28d_74h1svxyR6rbshrK2L_BdrQpNbvJWBWb40QCkg$
[2] https://urldefense.com/v3/__https://github.com/KSPP/linux/issues/21__;!!GqivPVa7Brio!OKPotRhYhHbCG2kibo8Q6_6CuKaa28d_74h1svxyR6rbshrK2L_BdrQpNbvJWBUhNn9M6g$
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Cc: Jun Piao <piaojun@huawei.com>
Link: http://lkml.kernel.org/r/20200309202155.GA8432@embeddedor
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current codebase makes use of the zero-length array language extension
to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning in
case the flexible array does not occur last in the structure, which will
help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by this
change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://urldefense.com/v3/__https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html__;!!GqivPVa7Brio!OVOYL_CouISa5L1Lw-20EEFQntw6cKMx-j8UdY4z78uYgzKBUFcfpn50GaurvbV5v7YiUA$
[2] https://urldefense.com/v3/__https://github.com/KSPP/linux/issues/21__;!!GqivPVa7Brio!OVOYL_CouISa5L1Lw-20EEFQntw6cKMx-j8UdY4z78uYgzKBUFcfpn50GaurvbXs8Eh8eg$
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Cc: Jun Piao <piaojun@huawei.com>
Link: http://lkml.kernel.org/r/20200309202016.GA8210@embeddedor
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current codebase makes use of the zero-length array language extension
to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning in
case the flexible array does not occur last in the structure, which will
help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by this
change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://urldefense.com/v3/__https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html__;!!GqivPVa7Brio!NzMr-YRl2zy-K3lwLVVatz7x0uD2z7-ykQag4GrGigxmfWU8TWzDy6xrkTiW3hYl00czlw$
[2] https://urldefense.com/v3/__https://github.com/KSPP/linux/issues/21__;!!GqivPVa7Brio!NzMr-YRl2zy-K3lwLVVatz7x0uD2z7-ykQag4GrGigxmfWU8TWzDy6xrkTiW3hYHG1nAnw$
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Cc: Jun Piao <piaojun@huawei.com>
Link: http://lkml.kernel.org/r/20200309201907.GA8005@embeddedor
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current codebase makes use of the zero-length array language extension
to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning in
case the flexible array does not occur last in the structure, which will
help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by this
change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Cc: Jun Piao <piaojun@huawei.com>
Link: http://lkml.kernel.org/r/20200213160244.GA6088@embeddedor
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sparse reports warnings at ocfs2_refcount_cache_lock()
and ocfs2_refcount_cache_unlock()
warning: context imbalance in ocfs2_refcount_cache_lock()
- wrong count at exit
warning: context imbalance in ocfs2_refcount_cache_unlock()
- unexpected unlock
The root cause is the missing annotation at ocfs2_refcount_cache_lock()
and at ocfs2_refcount_cache_unlock()
Add the missing __acquires(&rf->rf_lock) annotation to
ocfs2_refcount_cache_lock()
Add the missing __releases(&rf->rf_lock) annotation to
ocfs2_refcount_cache_unlock()
Signed-off-by: Jules Irenge <jbi.octave@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Cc: Jun Piao <piaojun@huawei.com>
Link: http://lkml.kernel.org/r/20200224204130.18178-1-jbi.octave@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We don't need 'err' in these 2 places, better to remove them.
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: ChenGang <cg.chen@huawei.com>
Cc: Richard Fontana <rfontana@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1579577836-251879-1-git-send-email-alex.shi@linux.alibaba.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Correct annotation from "l_next_rec" to "l_next_free_rec"
Signed-off-by: Yan Wang <wangyan122@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jun Piao <piaojun@huawei.com>
Acked-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Link: http://lkml.kernel.org/r/5e76c953-3479-1280-023c-ad05e4c75608@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no need to log twice in several functions.
Signed-off-by: Yan Wang <wangyan122@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jun Piao <piaojun@huawei.com>
Acked-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Link: http://lkml.kernel.org/r/77eec86a-f634-5b98-4f7d-0cd15185a37b@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This macro has been unused since it was introduced.
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Cc: Jun Piao <piaojun@huawei.com>
Link: http://lkml.kernel.org/r/1579578203-254451-1-git-send-email-alex.shi@linux.alibaba.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This macro should be used.
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Cc: Jun Piao <piaojun@huawei.com>
Link: http://lkml.kernel.org/r/1579577840-251956-1-git-send-email-alex.shi@linux.alibaba.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
O2HB_DEFAULT_BLOCK_BITS/DLM_THREAD_MAX_ASTS/DLM_MIGRATION_RETRY_MS and
OCFS2_MAX_RESV_WINDOW_BITS/OCFS2_MIN_RESV_WINDOW_BITS have been unused
since commit 66effd3c6812 ("ocfs2/dlm: Do not migrate resource to a node
that is leaving the domain").
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: ChenGang <cg.chen@huawei.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Richard Fontana <rfontana@redhat.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Joseph Qi <jiangqi903@gmail.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Cc: Jun Piao <piaojun@huawei.com>
Link: http://lkml.kernel.org/r/1579577827-251796-1-git-send-email-alex.shi@linux.alibaba.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This macro is unused since commit ab09203e302b ("sysctl fs: Remove dead
binary sysctl support").
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Cc: Jun Piao <piaojun@huawei.com>
Link: http://lkml.kernel.org/r/1579577812-251572-1-git-send-email-alex.shi@linux.alibaba.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Here are some of the more common spelling mistakes and typos that I've
found while fixing up spelling mistakes in the kernel since November 2019
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Joe Perches <joe@perches.com>
Link: http://lkml.kernel.org/r/20200313174946.228216-1-colin.king@canonical.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are a few cases in the tree where "sysfs" is misspelled as "syfs".
Signed-off-by: Jonathan Neuschäfer <j.neuschaefer@gmx.ne>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Colin Ian King <colin.king@canonical.com>
Cc: Xiong <xndchn@gmail.com>
Cc: Stephen Boyd <sboyd@kernel.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Chris Paterson <chris.paterson2@renesas.com>
Cc: Luca Ceresoli <luca@lucaceresoli.net>
Link: http://lkml.kernel.org/r/20200218152010.27349-1-j.neuschaefer@gmx.net
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change a header to mandatory-y if both of the following are met:
[1] At least one architecture (except um) specifies it as generic-y in
arch/*/include/asm/Kbuild
[2] Every architecture (except um) either has its own implementation
(arch/*/include/asm/*.h) or specifies it as generic-y in
arch/*/include/asm/Kbuild
This commit was generated by the following shell script.
----------------------------------->8-----------------------------------
arches=$(cd arch; ls -1 | sed -e '/Kconfig/d' -e '/um/d')
tmpfile=$(mktemp)
grep "^mandatory-y +=" include/asm-generic/Kbuild > $tmpfile
find arch -path 'arch/*/include/asm/Kbuild' |
xargs sed -n 's/^generic-y += \(.*\)/\1/p' | sort -u |
while read header
do
mandatory=yes
for arch in $arches
do
if ! grep -q "generic-y += $header" arch/$arch/include/asm/Kbuild &&
! [ -f arch/$arch/include/asm/$header ]; then
mandatory=no
break
fi
done
if [ "$mandatory" = yes ]; then
echo "mandatory-y += $header" >> $tmpfile
for arch in $arches
do
sed -i "/generic-y += $header/d" arch/$arch/include/asm/Kbuild
done
fi
done
sed -i '/^mandatory-y +=/d' include/asm-generic/Kbuild
LANG=C sort $tmpfile >> include/asm-generic/Kbuild
----------------------------------->8-----------------------------------
One obvious benefit is the diff stat:
25 files changed, 52 insertions(+), 557 deletions(-)
It is tedious to list generic-y for each arch that needs it.
So, mandatory-y works like a fallback default (by just wrapping
asm-generic one) when arch does not have a specific header
implementation.
See the following commits:
def3f7cefe4e81c296090e1722a76551142c227c
a1b39bae16a62ce4aae02d958224f19316d98b24
It is tedious to convert headers one by one, so I processed by a shell
script.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Simek <michal.simek@xilinx.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Link: http://lkml.kernel.org/r/20200210175452.5030-1-masahiroy@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The timer used by delayed kthread works are IRQ safe because the used
kthread_delayed_work_timer_fn() is IRQ safe.
It is properly marked when initialized by KTHREAD_DELAYED_WORK_INIT().
But TIMER_IRQSAFE flag is missing when initialized by
kthread_init_delayed_work().
The missing flag might trigger invalid warning from del_timer_sync() when
kthread_mod_delayed_work() is called with interrupts disabled.
This patch is result of a discussion about using the API, see
https://lkml.kernel.org/r/cfa886ad-e3b7-c0d2-3ff8-58d94170eab5@ti.com
Reported-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Grygorii Strashko <grygorii.strashko@ti.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20200217120709.1974-1-pmladek@suse.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A recent change to the netlink code: 6e237d099fac ("netlink: Relax attr
validation for fixed length types") logs a warning when programs send
messages with invalid attributes (e.g., wrong length for a u32). Yafang
reported this error message for tools/accounting/getdelays.c.
send_cmd() is wrongly adding 1 to the attribute length. As noted in
include/uapi/linux/netlink.h nla_len should be NLA_HDRLEN + payload
length, so drop the +1.
Fixes: 9e06d3f9f6b1 ("per task delay accounting taskstats interface: documentation fix")
Reported-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: David Ahern <dsahern@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Yafang Shao <laoar.shao@gmail.com>
Cc: Johannes Berg <johannes@sipsolutions.net>
Cc: Shailabh Nagar <nagar@watson.ibm.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200327173111.63922-1-dsahern@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We fall back to lookup+create (instead of atomic_open) in several cases:
1) we don't have write access to filesystem and O_TRUNC is
present in the flags. It's not something we want ->atomic_open() to
see - it just might go ahead and truncate the file. However, we can
pass it the flags sans O_TRUNC - eventually do_open() will call
handle_truncate() anyway.
2) we have O_CREAT | O_EXCL and we can't write to parent.
That's going to be an error, of course, but we want to know _which_
error should that be - might be EEXIST (if file exists), might be
EACCES or EROFS. Simply stripping O_CREAT (and checking if we see
ENOENT) would suffice, if not for O_EXCL. However, we used to have
->atomic_open() fully responsible for rejecting O_CREAT | O_EXCL
on existing file and just stripping O_CREAT would've disarmed
those checks. With nothing downstream to catch the problem -
FMODE_OPENED used to be "don't bother with EEXIST checks,
->atomic_open() has done those". Now EEXIST checks downstream
are skipped only if FMODE_CREATED is set - FMODE_OPENED alone
is not enough. That has eliminated the need to fall back onto
lookup+create path in this case.
3) O_WRONLY or O_RDWR when we have no write access to
filesystem, with nothing else objectionable. Fallback is
(and had always been) pointless.
IOW, we don't really need that fallback; all we need in such
cases is to trim O_TRUNC and O_CREAT properly.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
argument had been unused since 1643b43fbd052 (lookup_open(): lift the
"fallback to !O_CREAT" logics from atomic_open()) back in 2016
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Currently path_openat() has "EEXIST on O_EXCL|O_CREAT" checks done on one
of the ways out of open_last_lookups(). There are 4 cases:
1) the last component is . or ..; check is not done.
2) we had FMODE_OPENED or FMODE_CREATED set while in lookup_open();
check is not done.
3) symlink to be traversed is found; check is not done (nor
should it be)
4) everything else: check done (before complete_walk(), even).
In case (1) O_EXCL|O_CREAT ends up failing with -EISDIR - that's
open("/tmp/.", O_CREAT|O_EXCL, 0600)
Note that in the same conditions
open("/tmp", O_CREAT|O_EXCL, 0600)
would have yielded EEXIST. Either error is allowed, switching to -EEXIST
in these cases would've been more consistent.
Case (2) is more subtle; first of all, if we have FMODE_CREATED set, the
object hadn't existed prior to the call. The check should not be done in
such a case. The rest is problematic, though - we have
FMODE_OPENED set (i.e. it went through ->atomic_open() and got
successfully opened there)
FMODE_CREATED is *NOT* set
O_CREAT and O_EXCL are both set.
Any such case is a bug - either we failed to set FMODE_CREATED when we
had, in fact, created an object (no such instances in the tree) or
we have opened a pre-existing file despite having had both O_CREAT and
O_EXCL passed. One of those was, in fact caught (and fixed) while
sorting out this mess (gfs2 on cold dcache). And in such situations
we should fail with EEXIST.
Note that for (1) and (4) FMODE_CREATED is not set - for (1) there's nothing
in handle_dots() to set it, for (4) we'd explicitly checked that.
And (1), (2) and (4) are exactly the cases when we leave the loop in
the caller, with do_open() called immediately after that loop. IOW, we
can move the check over there, and make it
If we have O_CREAT|O_EXCL and after successful pathname resolution
FMODE_CREATED is *not* set, we must have run into a preexisting file and
should fail with EEXIST.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
now we can have open_last_lookups() directly from the loop in
path_openat() - the rest of do_last() never returns a symlink
to follow, so we can bloody well leave the loop first.
Rename the rest of that thing from do_last() to do_open() and
make it return an int.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
pick_link() needs to push onto stack; we start with using two-element
array embedded into struct nameidata and the first time we need
more than that we switch to separately allocated array.
Allocation can fail, of course, and handling of that would be simple
enough - we need to drop 'link' and bugger off. However, the things
get more complicated in RCU mode. There we must do GFP_ATOMIC
allocation. If that fails, we try to switch to non-RCU mode and
repeat the allocation.
To switch to non-RCU mode we need to grab references to 'link' and
to everything in nameidata. The latter done by unlazy_walk();
the former - legitimize_path(). 'link' must go first - after
unlazy_walk() we are out of RCU-critical period and it's too
late to call legitimize_path() since the references in link->mnt
and link->dentry might be pointing to freed and reused memory.
So we do legitimize_path(), then unlazy_walk(). And that's where
it gets too subtle: what to do if the former fails? We MUST
do path_put(link) to avoid leaks. And we can't do that under
rcu_read_lock(). Solution in mainline was to empty then nameidata
manually, drop out of RCU mode and then do put_path().
In effect, we open-code the things eventual terminate_walk()
would've done on error in RCU mode. That looks badly out of place
and confusing. We could add a comment along the lines of the
explanation above, but... there's a simpler solution. Call
unlazy_walk() even if legitimaze_path() fails. It will take
us out of RCU mode, so we'll be able to do path_put(link).
Yes, it will do unnecessary work - attempt to grab references
on the stuff in nameidata, only to have them dropped as soon
as we return the error to upper layer and get terminate_walk()
called there. So what? We are thoroughly off the fast path
by that point - we had GFP_ATOMIC allocation fail, we had
->d_seq or mount_lock mismatch and we are about to try walking
the same path from scratch in non-RCU mode. Which will need
to do the same allocation, this time with GFP_KERNEL, so it will
be able to apply memory pressure for blocking stuff.
Compared to that the cost of several lockref_get_not_dead()
is noise. And the logics become much easier to understand
that way.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
step_into() tries to avoid grabbing and dropping mount references
on the steps that do not involve crossing mountpoints (which is
obviously the majority of cases). So it uses a local struct path
with unusual refcounting rules - path.mnt is pinned if and only if
it's not equal to nd->path.mnt.
We used to have similar beasts all over the place and we had quite
a few bugs crop up in their handling - it's easy to get confused
when changing e.g. cleanup on failure exits (or adding a new check,
etc.)
Now that's mostly gone - the step_into() instance (which is what
we need them for) is the only one left. It is exposed to mount
traversal and it's (shortly) seen by pick_link(). Since pick_link()
needs to store it in link stack, where the normal rules apply,
it has to make sure that mount is pinned regardless of nd->path.mnt
value. That's done on all calls of pick_link() and very early
in those. Let's do that in the caller (step_into()) instead -
that way the fewer places need to be aware of such struct path
instances.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The only remaining caller (path_pts()) should be using follow_down()
anyway. And clean path_pts() a bit.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
new helper: choose_mountpoint(). Wrapper around choose_mountpoint_rcu(),
similar to lookup_mnt() vs. __lookup_mnt(). follow_dotdot() switched to
it. Now we don't grab mount_lock exclusive anymore; note that the
primitive used non-RCU mount traversals in other direction (lookup_mnt())
doesn't bother with that either - it uses mount_lock seqcount instead.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The loops in follow_dotdot{_rcu()} are doing the same thing:
we have a mount and we want to find out how far up the chain
of mounts do we need to go.
We follow the chain of mount until we find one that is not
directly overmounting the root of another mount. If such
a mount is found, we want the location it's mounted upon.
If we run out of chain (i.e. get to a mount that is not
mounted on anything else) or run into process' root, we
report failure.
On success, we want (in RCU case) d_seq of resulting location
sampled or (in non-RCU case) references to that location
acquired.
This commit introduces such primitive for RCU case and
switches follow_dotdot_rcu() to it; non-RCU case will be
go in the next commit.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Change nd->path only after the loop is done and only in case we hadn't
ended up finding ourselves in root. Same for NO_XDEV check.
That separates the "check how far back do we need to go through the
mount stack" logics from the rest of .. traversal.
NOTE: path_get/path_put introduced here are temporary. They will
go away later in the series.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Change nd->path only after the loop is done and only in case we hadn't
ended up finding ourselves in root. Same for NO_XDEV check. Don't
recheck mount_lock on each step either.
That separates the "check how far back do we need to go through the
mount stack" logics from the rest of .. traversal.
Note that the sequence for d_seq/d_inode here is
* sample mount_lock seqcount
...
* sample d_seq
* fetch d_inode
* verify mount_lock seqcount
The last step makes sure that d_inode value we'd got matches d_seq -
it dentry is guaranteed to have been a mountpoint through the
entire thing, so its d_inode must have been stable.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The logics in both of them is the same:
while true
if in process' root // uncommon
break
if *not* in mount root // normal case
find the parent
return
if at absolute root // very uncommon
break
move to underlying mountpoint
report that we are in root
Pull the common path out of the loop:
if in process' root // uncommon
goto in_root
if unlikely(in mount root)
while true
if at absolute root
goto in_root
move to underlying mountpoint
if in process' root
goto in_root
if in mount root
break;
find the parent // we are not in mount root
return
in_root:
report that we are in root
The reason for that transformation is that we get to keep the
common path straight *and* get a separate block for "move
through underlying mountpoints", which will allow to sanitize
NO_XDEV handling there. What's more, the pared-down loops
will be easier to deal with - in particular, non-RCU case
has no need to grab mount_lock and rewriting it to the
form that wouldn't do that is a non-trivial change. Better
do that with less stuff getting in the way...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
lift step_into() into handle_dots() (where they merge with each other);
have follow_... return dentry and pass inode/seq to the caller.
[braino fix folded; kudos to Qian Cai <cai@lca.pw> for reporting it]
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>