IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Commit 408579cd62 ("mm: Update do_vmi_align_munmap() return
semantics") made the return value and locking semantics of
do_vmi_align_munmap() more straightforward, but in the process it ended
up unlocking the mmap lock just a tad too early: the debug code doing
the mmap layout validation still needs to run with the lock held, or
things might change under it while it's trying to validate things.
So just move the unlocking to after the validate_mm() call.
Reported-by: kernel test robot <oliver.sang@intel.com>
Link: https://lore.kernel.org/lkml/ZKIsoMOT71uwCIZX@xsang-OptiPlex-9020/
Fixes: 408579cd62 ("mm: Update do_vmi_align_munmap() return semantics")
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since do_vmi_align_munmap() will always honor the downgrade request on
the success, the callers no longer have to deal with confusing return
codes. Since all callers that request downgrade actually want the lock
to be dropped, change the downgrade to an unlock request.
Note that the lock still needs to be held in read mode during the page
table clean up to avoid races with a map request.
Update do_vmi_align_munmap() to return 0 for success. Clean up the
callers and comments to always expect the unlock to be honored on the
success path. The error path will always leave the lock untouched.
As part of the cleanup, the wrapper function do_vmi_munmap() and callers
to the wrapper are also updated.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/linux-mm/20230629191414.1215929-1-willy@infradead.org/
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that stack growth must always hold the mmap_lock for write, we can
always downgrade the mmap_lock to read and safely unmap pages from the
page table, even if we're next to a stack.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This modifies our user mode stack expansion code to always take the
mmap_lock for writing before modifying the VM layout.
It's actually something we always technically should have done, but
because we didn't strictly need it, we were being lazy ("opportunistic"
sounds so much better, doesn't it?) about things, and had this hack in
place where we would extend the stack vma in-place without doing the
proper locking.
And it worked fine. We just needed to change vm_start (or, in the case
of grow-up stacks, vm_end) and together with some special ad-hoc locking
using the anon_vma lock and the mm->page_table_lock, it all was fairly
straightforward.
That is, it was all fine until Ruihan Li pointed out that now that the
vma layout uses the maple tree code, we *really* don't just change
vm_start and vm_end any more, and the locking really is broken. Oops.
It's not actually all _that_ horrible to fix this once and for all, and
do proper locking, but it's a bit painful. We have basically three
different cases of stack expansion, and they all work just a bit
differently:
- the common and obvious case is the page fault handling. It's actually
fairly simple and straightforward, except for the fact that we have
something like 24 different versions of it, and you end up in a maze
of twisty little passages, all alike.
- the simplest case is the execve() code that creates a new stack.
There are no real locking concerns because it's all in a private new
VM that hasn't been exposed to anybody, but lockdep still can end up
unhappy if you get it wrong.
- and finally, we have GUP and page pinning, which shouldn't really be
expanding the stack in the first place, but in addition to execve()
we also use it for ptrace(). And debuggers do want to possibly access
memory under the stack pointer and thus need to be able to expand the
stack as a special case.
None of these cases are exactly complicated, but the page fault case in
particular is just repeated slightly differently many many times. And
ia64 in particular has a fairly complicated situation where you can have
both a regular grow-down stack _and_ a special grow-up stack for the
register backing store.
So to make this slightly more manageable, the bulk of this series is to
first create a helper function for the most common page fault case, and
convert all the straightforward architectures to it.
Thus the new 'lock_mm_and_find_vma()' helper function, which ends up
being used by x86, arm, powerpc, mips, riscv, alpha, arc, csky, hexagon,
loongarch, nios2, sh, sparc32, and xtensa. So we not only convert more
than half the architectures, we now have more shared code and avoid some
of those twisty little passages.
And largely due to this common helper function, the full diffstat of
this series ends up deleting more lines than it adds.
That still leaves eight architectures (ia64, m68k, microblaze, openrisc,
parisc, s390, sparc64 and um) that end up doing 'expand_stack()'
manually because they are doing something slightly different from the
normal pattern. Along with the couple of special cases in execve() and
GUP.
So there's a couple of patches that first create 'locked' helper
versions of the stack expansion functions, so that there's a obvious
path forward in the conversion. The execve() case is then actually
pretty simple, and is a nice cleanup from our old "grow-up stackls are
special, because at execve time even they grow down".
The #ifdef CONFIG_STACK_GROWSUP in that code just goes away, because
it's just more straightforward to write out the stack expansion there
manually, instead od having get_user_pages_remote() do it for us in some
situations but not others and have to worry about locking rules for GUP.
And the final step is then to just convert the remaining odd cases to a
new world order where 'expand_stack()' is called with the mmap_lock held
for reading, but where it might drop it and upgrade it to a write, only
to return with it held for reading (in the success case) or with it
completely dropped (in the failure case).
In the process, we remove all the stack expansion from GUP (where
dropping the lock wouldn't be ok without special rules anyway), and add
it in manually to __access_remote_vm() for ptrace().
Thanks to Adrian Glaubitz and Frank Scheiner who tested the ia64 cases.
Everything else here felt pretty straightforward, but the ia64 rules for
stack expansion are really quite odd and very different from everything
else. Also thanks to Vegard Nossum who caught me getting one of those
odd conditions entirely the wrong way around.
Anyway, I think I want to actually move all the stack expansion code to
a whole new file of its own, rather than have it split up between
mm/mmap.c and mm/memory.c, but since this will have to be backported to
the initial maple tree vma introduction anyway, I tried to keep the
patches _fairly_ minimal.
Also, while I don't think it's valid to expand the stack from GUP, the
final patch in here is a "warn if some crazy GUP user wants to try to
expand the stack" patch. That one will be reverted before the final
release, but it's left to catch any odd cases during the merge window
and release candidates.
Reported-by: Ruihan Li <lrh2000@pku.edu.cn>
* branch 'expand-stack':
gup: add warning if some caller would seem to want stack expansion
mm: always expand the stack with the mmap write lock held
execve: expand new process stack manually ahead of time
mm: make find_extend_vma() fail if write lock not held
powerpc/mm: convert coprocessor fault to lock_mm_and_find_vma()
mm/fault: convert remaining simple cases to lock_mm_and_find_vma()
arm/mm: Convert to using lock_mm_and_find_vma()
riscv/mm: Convert to using lock_mm_and_find_vma()
mips/mm: Convert to using lock_mm_and_find_vma()
powerpc/mm: Convert to using lock_mm_and_find_vma()
arm64/mm: Convert to using lock_mm_and_find_vma()
mm: make the page fault mmap locking killable
mm: introduce new 'lock_mm_and_find_vma()' page fault helper
- Yosry has also eliminated cgroup's atomic rstat flushing.
- Nhat Pham adds the new cachestat() syscall. It provides userspace
with the ability to query pagecache status - a similar concept to
mincore() but more powerful and with improved usability.
- Mel Gorman provides more optimizations for compaction, reducing the
prevalence of page rescanning.
- Lorenzo Stoakes has done some maintanance work on the get_user_pages()
interface.
- Liam Howlett continues with cleanups and maintenance work to the maple
tree code. Peng Zhang also does some work on maple tree.
- Johannes Weiner has done some cleanup work on the compaction code.
- David Hildenbrand has contributed additional selftests for
get_user_pages().
- Thomas Gleixner has contributed some maintenance and optimization work
for the vmalloc code.
- Baolin Wang has provided some compaction cleanups,
- SeongJae Park continues maintenance work on the DAMON code.
- Huang Ying has done some maintenance on the swap code's usage of
device refcounting.
- Christoph Hellwig has some cleanups for the filemap/directio code.
- Ryan Roberts provides two patch series which yield some
rationalization of the kernel's access to pte entries - use the provided
APIs rather than open-coding accesses.
- Lorenzo Stoakes has some fixes to the interaction between pagecache
and directio access to file mappings.
- John Hubbard has a series of fixes to the MM selftesting code.
- ZhangPeng continues the folio conversion campaign.
- Hugh Dickins has been working on the pagetable handling code, mainly
with a view to reducing the load on the mmap_lock.
- Catalin Marinas has reduced the arm64 kmalloc() minimum alignment from
128 to 8.
- Domenico Cerasuolo has improved the zswap reclaim mechanism by
reorganizing the LRU management.
- Matthew Wilcox provides some fixups to make gfs2 work better with the
buffer_head code.
- Vishal Moola also has done some folio conversion work.
- Matthew Wilcox has removed the remnants of the pagevec code - their
functionality is migrated over to struct folio_batch.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZJejewAKCRDdBJ7gKXxA
joggAPwKMfT9lvDBEUnJagY7dbDPky1cSYZdJKxxM2cApGa42gEA6Cl8HRAWqSOh
J0qXCzqaaN8+BuEyLGDVPaXur9KirwY=
=B7yQ
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2023-06-24-19-15' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull mm updates from Andrew Morton:
- Yosry Ahmed brought back some cgroup v1 stats in OOM logs
- Yosry has also eliminated cgroup's atomic rstat flushing
- Nhat Pham adds the new cachestat() syscall. It provides userspace
with the ability to query pagecache status - a similar concept to
mincore() but more powerful and with improved usability
- Mel Gorman provides more optimizations for compaction, reducing the
prevalence of page rescanning
- Lorenzo Stoakes has done some maintanance work on the
get_user_pages() interface
- Liam Howlett continues with cleanups and maintenance work to the
maple tree code. Peng Zhang also does some work on maple tree
- Johannes Weiner has done some cleanup work on the compaction code
- David Hildenbrand has contributed additional selftests for
get_user_pages()
- Thomas Gleixner has contributed some maintenance and optimization
work for the vmalloc code
- Baolin Wang has provided some compaction cleanups,
- SeongJae Park continues maintenance work on the DAMON code
- Huang Ying has done some maintenance on the swap code's usage of
device refcounting
- Christoph Hellwig has some cleanups for the filemap/directio code
- Ryan Roberts provides two patch series which yield some
rationalization of the kernel's access to pte entries - use the
provided APIs rather than open-coding accesses
- Lorenzo Stoakes has some fixes to the interaction between pagecache
and directio access to file mappings
- John Hubbard has a series of fixes to the MM selftesting code
- ZhangPeng continues the folio conversion campaign
- Hugh Dickins has been working on the pagetable handling code, mainly
with a view to reducing the load on the mmap_lock
- Catalin Marinas has reduced the arm64 kmalloc() minimum alignment
from 128 to 8
- Domenico Cerasuolo has improved the zswap reclaim mechanism by
reorganizing the LRU management
- Matthew Wilcox provides some fixups to make gfs2 work better with the
buffer_head code
- Vishal Moola also has done some folio conversion work
- Matthew Wilcox has removed the remnants of the pagevec code - their
functionality is migrated over to struct folio_batch
* tag 'mm-stable-2023-06-24-19-15' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (380 commits)
mm/hugetlb: remove hugetlb_set_page_subpool()
mm: nommu: correct the range of mmap_sem_read_lock in task_mem()
hugetlb: revert use of page_cache_next_miss()
Revert "page cache: fix page_cache_next/prev_miss off by one"
mm/vmscan: fix root proactive reclaim unthrottling unbalanced node
mm: memcg: rename and document global_reclaim()
mm: kill [add|del]_page_to_lru_list()
mm: compaction: convert to use a folio in isolate_migratepages_block()
mm: zswap: fix double invalidate with exclusive loads
mm: remove unnecessary pagevec includes
mm: remove references to pagevec
mm: rename invalidate_mapping_pagevec to mapping_try_invalidate
mm: remove struct pagevec
net: convert sunrpc from pagevec to folio_batch
i915: convert i915_gpu_error to use a folio_batch
pagevec: rename fbatch_count()
mm: remove check_move_unevictable_pages()
drm: convert drm_gem_put_pages() to use a folio_batch
i915: convert shmem_sg_free_table() to use a folio_batch
scatterlist: add sg_set_folio()
...
If mas_store_gfp() in the gather loop failed, the 'error' variable that
ultimately gets returned was not being set. In many cases, its original
value of -ENOMEM was still in place, and that was fine. But if VMAs had
been split at the start or end of the range, then 'error' could be zero.
Change to the 'error = foo(); if (error) goto …' idiom to fix the bug.
Also clean up a later case which avoided the same bug by *explicitly*
setting error = -ENOMEM right before calling the function that might
return -ENOMEM.
In a final cosmetic change, move the 'Point of no return' comment to
*after* the goto. That's been in the wrong place since the preallocation
was removed, and this new error path was added.
Fixes: 606c812eb1 ("mm/mmap: Fix error path in do_vmi_align_munmap()")
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Cc: stable@vger.kernel.org
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
This finishes the job of always holding the mmap write lock when
extending the user stack vma, and removes the 'write_locked' argument
from the vm helper functions again.
For some cases, we just avoid expanding the stack at all: drivers and
page pinning really shouldn't be extending any stacks. Let's see if any
strange users really wanted that.
It's worth noting that architectures that weren't converted to the new
lock_mm_and_find_vma() helper function are left using the legacy
"expand_stack()" function, but it has been changed to drop the mmap_lock
and take it for writing while expanding the vma. This makes it fairly
straightforward to convert the remaining architectures.
As a result of dropping and re-taking the lock, the calling conventions
for this function have also changed, since the old vma may no longer be
valid. So it will now return the new vma if successful, and NULL - and
the lock dropped - if the area could not be extended.
Tested-by: Vegard Nossum <vegard.nossum@oracle.com>
Tested-by: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de> # ia64
Tested-by: Frank Scheiner <frank.scheiner@web.de> # ia64
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make calls to extend_vma() and find_extend_vma() fail if the write lock
is required.
To avoid making this a flag-day event, this still allows the old
read-locking case for the trivial situations, and passes in a flag to
say "is it write-locked". That way write-lockers can say "yes, I'm
being careful", and legacy users will continue to work in all the common
cases until they have been fully converted to the new world order.
Co-Developed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
arm has an additional check for address < FIRST_USER_ADDRESS before
expanding the stack. Since FIRST_USER_ADDRESS is defined everywhere
(generally as 0), move that check to the generic expand_downwards().
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Android reported a performance regression in the userfaultfd unmap path.
A closer inspection on the userfaultfd_unmap_prep() change showed that a
second tree walk would be necessary in the reworked code.
Fix the regression by passing each VMA that will be unmapped through to
the userfaultfd_unmap_prep() function as they are added to the unmap list,
instead of re-walking the tree for the VMA.
Link: https://lkml.kernel.org/r/20230601015402.2819343-1-Liam.Howlett@oracle.com
Fixes: 69dbe6daf1 ("userfaultfd: use maple tree iterator to iterate VMAs")
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Reported-by: Suren Baghdasaryan <surenb@google.com>
Suggested-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The error unrolling was leaving the VMAs detached in many cases and
leaving the locked_vm statistic altered, and skipping the unrolling
entirely in the case of the vma tree write failing.
Fix the error path by re-attaching the detached VMAs and adding the
necessary goto for the failed vma tree write, and fix the locked_vm
statistic by only updating after the vma tree write succeeds.
Fixes: 763ecb0350 ("mm: remove the vma linked list")
Reported-by: Vegard Nossum <vegard.nossum@oracle.com>
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm/gup: disallow GUP writing to file-backed mappings by
default", v9.
Writing to file-backed mappings which require folio dirty tracking using
GUP is a fundamentally broken operation, as kernel write access to GUP
mappings do not adhere to the semantics expected by a file system.
A GUP caller uses the direct mapping to access the folio, which does not
cause write notify to trigger, nor does it enforce that the caller marks
the folio dirty.
The problem arises when, after an initial write to the folio, writeback
results in the folio being cleaned and then the caller, via the GUP
interface, writes to the folio again.
As a result of the use of this secondary, direct, mapping to the folio no
write notify will occur, and if the caller does mark the folio dirty, this
will be done so unexpectedly.
For example, consider the following scenario:-
1. A folio is written to via GUP which write-faults the memory, notifying
the file system and dirtying the folio.
2. Later, writeback is triggered, resulting in the folio being cleaned and
the PTE being marked read-only.
3. The GUP caller writes to the folio, as it is mapped read/write via the
direct mapping.
4. The GUP caller, now done with the page, unpins it and sets it dirty
(though it does not have to).
This change updates both the PUP FOLL_LONGTERM slow and fast APIs. As
pin_user_pages_fast_only() does not exist, we can rely on a slightly
imperfect whitelisting in the PUP-fast case and fall back to the slow case
should this fail.
This patch (of 3):
vma_wants_writenotify() is specifically intended for setting PTE page
table flags, accounting for existing page table flag state and whether the
underlying filesystem performs dirty tracking for a file-backed mapping.
Everything is predicated firstly on whether the mapping is shared
writable, as this is the only instance where dirty tracking is pertinent -
MAP_PRIVATE mappings will always be CoW'd and unshared, and read-only
file-backed shared mappings cannot be written to, even with FOLL_FORCE.
All other checks are in line with existing logic, though now separated
into checks eplicitily for dirty tracking and those for determining how to
set page table flags.
We make this change so we can perform checks in the GUP logic to determine
which mappings might be problematic when written to.
Link: https://lkml.kernel.org/r/cover.1683235180.git.lstoakes@gmail.com
Link: https://lkml.kernel.org/r/0f218370bd49b4e6bbfbb499f7c7b92c26ba1ceb.1683235180.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Mika Penttilä <mpenttil@redhat.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Kirill A . Shutemov <kirill@shutemov.name>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
It is felt that the name mlock_future_check() is vague - it doesn't
particularly convey the function's operation. mlock_future_ok() is a
clearer name for a predicate function.
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
In all but one instance, mlock_future_check() is treated as a boolean
function despite returning an error code. In one instance, this error
code is ignored and replaced with -ENOMEM.
This is confusing, and the inversion of true -> failure, false -> success
is not warranted. Convert the function to a bool, lightly refactor and
return true if the check passes, false if not.
Link: https://lkml.kernel.org/r/20230522082412.56685-1-lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
If the iterator has moved to the previous entry, then step forward one
range, back to the gap.
Link: https://lkml.kernel.org/r/20230518145544.1722059-36-Liam.Howlett@oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: David Binderman <dcb314@hotmail.com>
Cc: Peng Zhang <zhangpeng.00@bytedance.com>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Vernon Yang <vernon2gm@gmail.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The maple tree iterator clean up is incompatible with the way
do_vmi_align_munmap() expects it to behave. Update the expected behaviour
to map now since the change will work currently.
Link: https://lkml.kernel.org/r/20230518145544.1722059-23-Liam.Howlett@oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: David Binderman <dcb314@hotmail.com>
Cc: Peng Zhang <zhangpeng.00@bytedance.com>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Vernon Yang <vernon2gm@gmail.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Use the vma iterator in the validation code and combine the code to check
the maple tree into the main validate_mm() function.
Introduce a new function vma_iter_dump_tree() to dump the maple tree in
hex layout.
Replace all calls to validate_mm_mt() with validate_mm().
[Liam.Howlett@oracle.com: update validate_mm() to use vma iterator CONFIG flag]
Link: https://lkml.kernel.org/r/20230606183538.588190-1-Liam.Howlett@oracle.com
Link: https://lkml.kernel.org/r/20230518145544.1722059-18-Liam.Howlett@oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: David Binderman <dcb314@hotmail.com>
Cc: Peng Zhang <zhangpeng.00@bytedance.com>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Vernon Yang <vernon2gm@gmail.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Allow different formatting strings to be used when dumping the tree.
Currently supports hex and decimal.
Link: https://lkml.kernel.org/r/20230518145544.1722059-6-Liam.Howlett@oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: David Binderman <dcb314@hotmail.com>
Cc: Peng Zhang <zhangpeng.00@bytedance.com>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Vernon Yang <vernon2gm@gmail.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
We may still have inconsistent input parameters even if we choose not to
merge and the vma_merge() invariant checks are useful for checking this
with no production runtime cost (these are only relevant when
CONFIG_DEBUG_VM is specified).
Therefore, perform these checks regardless of whether we merge.
This is relevant, as a recent issue (addressed in commit "mm/mempolicy:
Correctly update prev when policy is equal on mbind") in the mbind logic
was only picked up in the 6.2.y stable branch where these assertions are
performed prior to determining mergeability.
Had this remained the same in mainline this issue may have been picked up
faster, so moving forward let's always check them.
Link: https://lkml.kernel.org/r/df548a6ae3fa135eec3b446eb3dae8eb4227da97.1682885809.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
switching from a user process to a kernel thread.
- More folio conversions from Kefeng Wang, Zhang Peng and Pankaj Raghav.
- zsmalloc performance improvements from Sergey Senozhatsky.
- Yue Zhao has found and fixed some data race issues around the
alteration of memcg userspace tunables.
- VFS rationalizations from Christoph Hellwig:
- removal of most of the callers of write_one_page().
- make __filemap_get_folio()'s return value more useful
- Luis Chamberlain has changed tmpfs so it no longer requires swap
backing. Use `mount -o noswap'.
- Qi Zheng has made the slab shrinkers operate locklessly, providing
some scalability benefits.
- Keith Busch has improved dmapool's performance, making part of its
operations O(1) rather than O(n).
- Peter Xu adds the UFFD_FEATURE_WP_UNPOPULATED feature to userfaultd,
permitting userspace to wr-protect anon memory unpopulated ptes.
- Kirill Shutemov has changed MAX_ORDER's meaning to be inclusive rather
than exclusive, and has fixed a bunch of errors which were caused by its
unintuitive meaning.
- Axel Rasmussen give userfaultfd the UFFDIO_CONTINUE_MODE_WP feature,
which causes minor faults to install a write-protected pte.
- Vlastimil Babka has done some maintenance work on vma_merge():
cleanups to the kernel code and improvements to our userspace test
harness.
- Cleanups to do_fault_around() by Lorenzo Stoakes.
- Mike Rapoport has moved a lot of initialization code out of various
mm/ files and into mm/mm_init.c.
- Lorenzo Stoakes removd vmf_insert_mixed_prot(), which was added for
DRM, but DRM doesn't use it any more.
- Lorenzo has also coverted read_kcore() and vread() to use iterators
and has thereby removed the use of bounce buffers in some cases.
- Lorenzo has also contributed further cleanups of vma_merge().
- Chaitanya Prakash provides some fixes to the mmap selftesting code.
- Matthew Wilcox changes xfs and afs so they no longer take sleeping
locks in ->map_page(), a step towards RCUification of pagefaults.
- Suren Baghdasaryan has improved mmap_lock scalability by switching to
per-VMA locking.
- Frederic Weisbecker has reworked the percpu cache draining so that it
no longer causes latency glitches on cpu isolated workloads.
- Mike Rapoport cleans up and corrects the ARCH_FORCE_MAX_ORDER Kconfig
logic.
- Liu Shixin has changed zswap's initialization so we no longer waste a
chunk of memory if zswap is not being used.
- Yosry Ahmed has improved the performance of memcg statistics flushing.
- David Stevens has fixed several issues involving khugepaged,
userfaultfd and shmem.
- Christoph Hellwig has provided some cleanup work to zram's IO-related
code paths.
- David Hildenbrand has fixed up some issues in the selftest code's
testing of our pte state changing.
- Pankaj Raghav has made page_endio() unneeded and has removed it.
- Peter Xu contributed some rationalizations of the userfaultfd
selftests.
- Yosry Ahmed has fixed an issue around memcg's page recalim accounting.
- Chaitanya Prakash has fixed some arm-related issues in the
selftests/mm code.
- Longlong Xia has improved the way in which KSM handles hwpoisoned
pages.
- Peter Xu fixes a few issues with uffd-wp at fork() time.
- Stefan Roesch has changed KSM so that it may now be used on a
per-process and per-cgroup basis.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZEr3zQAKCRDdBJ7gKXxA
jlLoAP0fpQBipwFxED0Us4SKQfupV6z4caXNJGPeay7Aj11/kQD/aMRC2uPfgr96
eMG3kwn2pqkB9ST2QpkaRbxA//eMbQY=
=J+Dj
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2023-04-27-15-30' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Nick Piggin's "shoot lazy tlbs" series, to improve the peformance of
switching from a user process to a kernel thread.
- More folio conversions from Kefeng Wang, Zhang Peng and Pankaj
Raghav.
- zsmalloc performance improvements from Sergey Senozhatsky.
- Yue Zhao has found and fixed some data race issues around the
alteration of memcg userspace tunables.
- VFS rationalizations from Christoph Hellwig:
- removal of most of the callers of write_one_page()
- make __filemap_get_folio()'s return value more useful
- Luis Chamberlain has changed tmpfs so it no longer requires swap
backing. Use `mount -o noswap'.
- Qi Zheng has made the slab shrinkers operate locklessly, providing
some scalability benefits.
- Keith Busch has improved dmapool's performance, making part of its
operations O(1) rather than O(n).
- Peter Xu adds the UFFD_FEATURE_WP_UNPOPULATED feature to userfaultd,
permitting userspace to wr-protect anon memory unpopulated ptes.
- Kirill Shutemov has changed MAX_ORDER's meaning to be inclusive
rather than exclusive, and has fixed a bunch of errors which were
caused by its unintuitive meaning.
- Axel Rasmussen give userfaultfd the UFFDIO_CONTINUE_MODE_WP feature,
which causes minor faults to install a write-protected pte.
- Vlastimil Babka has done some maintenance work on vma_merge():
cleanups to the kernel code and improvements to our userspace test
harness.
- Cleanups to do_fault_around() by Lorenzo Stoakes.
- Mike Rapoport has moved a lot of initialization code out of various
mm/ files and into mm/mm_init.c.
- Lorenzo Stoakes removd vmf_insert_mixed_prot(), which was added for
DRM, but DRM doesn't use it any more.
- Lorenzo has also coverted read_kcore() and vread() to use iterators
and has thereby removed the use of bounce buffers in some cases.
- Lorenzo has also contributed further cleanups of vma_merge().
- Chaitanya Prakash provides some fixes to the mmap selftesting code.
- Matthew Wilcox changes xfs and afs so they no longer take sleeping
locks in ->map_page(), a step towards RCUification of pagefaults.
- Suren Baghdasaryan has improved mmap_lock scalability by switching to
per-VMA locking.
- Frederic Weisbecker has reworked the percpu cache draining so that it
no longer causes latency glitches on cpu isolated workloads.
- Mike Rapoport cleans up and corrects the ARCH_FORCE_MAX_ORDER Kconfig
logic.
- Liu Shixin has changed zswap's initialization so we no longer waste a
chunk of memory if zswap is not being used.
- Yosry Ahmed has improved the performance of memcg statistics
flushing.
- David Stevens has fixed several issues involving khugepaged,
userfaultfd and shmem.
- Christoph Hellwig has provided some cleanup work to zram's IO-related
code paths.
- David Hildenbrand has fixed up some issues in the selftest code's
testing of our pte state changing.
- Pankaj Raghav has made page_endio() unneeded and has removed it.
- Peter Xu contributed some rationalizations of the userfaultfd
selftests.
- Yosry Ahmed has fixed an issue around memcg's page recalim
accounting.
- Chaitanya Prakash has fixed some arm-related issues in the
selftests/mm code.
- Longlong Xia has improved the way in which KSM handles hwpoisoned
pages.
- Peter Xu fixes a few issues with uffd-wp at fork() time.
- Stefan Roesch has changed KSM so that it may now be used on a
per-process and per-cgroup basis.
* tag 'mm-stable-2023-04-27-15-30' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (369 commits)
mm,unmap: avoid flushing TLB in batch if PTE is inaccessible
shmem: restrict noswap option to initial user namespace
mm/khugepaged: fix conflicting mods to collapse_file()
sparse: remove unnecessary 0 values from rc
mm: move 'mmap_min_addr' logic from callers into vm_unmapped_area()
hugetlb: pte_alloc_huge() to replace huge pte_alloc_map()
maple_tree: fix allocation in mas_sparse_area()
mm: do not increment pgfault stats when page fault handler retries
zsmalloc: allow only one active pool compaction context
selftests/mm: add new selftests for KSM
mm: add new KSM process and sysfs knobs
mm: add new api to enable ksm per process
mm: shrinkers: fix debugfs file permissions
mm: don't check VMA write permissions if the PTE/PMD indicates write permissions
migrate_pages_batch: fix statistics for longterm pin retry
userfaultfd: use helper function range_in_vma()
lib/show_mem.c: use for_each_populated_zone() simplify code
mm: correct arg in reclaim_pages()/reclaim_clean_pages_from_list()
fs/buffer: convert create_page_buffers to folio_create_buffers
fs/buffer: add folio_create_empty_buffers helper
...
After upgrading build guests to v6.3, rpm started segfaulting for
specific packages, which was bisected to commit 0503ea8f5b ("mm/mmap:
remove __vma_adjust()"). rpm is doing many mremap() operations with file
mappings of its db. The problem is that in vma_merge() case 3 (we merge
with the next vma, expanding it downwards) vm_pgoff is not adjusted as
it should when vm_start changes. As a result the rpm process most likely
sees data from the wrong offset of the file. Fix the vm_pgoff
calculation.
For case 8 this is a non-functional change as the resulting vm_pgoff is
the same.
Reported-and-bisected-by: Jiri Slaby <jirislaby@kernel.org>
Reported-and-tested-by: Fabian Vogt <fvogt@suse.com>
Link: https://bugzilla.suse.com/show_bug.cgi?id=1210903
Fixes: 0503ea8f5b ("mm/mmap: remove __vma_adjust()")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of having callers care about the mmap_min_addr logic for the
lowest valid mapping address (and some of them getting it wrong), just
move the logic into vm_unmapped_area() itself. One less thing for various
architecture cases (and generic helpers) to worry about.
We should really try to make much more of this be common code, but baby
steps..
Without this, vm_unmapped_area() could return an address below
mmap_min_addr (because some caller forgot about that). That then causes
the mmap machinery to think it has found a workable address, but then
later security_mmap_addr(addr) is unhappy about it and the mmap() returns
with a nonsensical error (EPERM).
The proper action is to either return ENOMEM (if the virtual address space
is exhausted), or try to find another address (ie do a bottom-up search
for free addresses after the top-down one failed).
See commit 2afc745f3e ("mm: ensure get_unmapped_area() returns higher
address than mmap_min_addr"), which fixed this for one call site (the
generic arch_get_unmapped_area_topdown() fallback) but left other cases
alone.
Link: https://lkml.kernel.org/r/20230418214009.1142926-1-Liam.Howlett@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Liam Howlett <liam.howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "mm: process/cgroup ksm support", v9.
So far KSM can only be enabled by calling madvise for memory regions. To
be able to use KSM for more workloads, KSM needs to have the ability to be
enabled / disabled at the process / cgroup level.
Use case 1:
The madvise call is not available in the programming language. An
example for this are programs with forked workloads using a garbage
collected language without pointers. In such a language madvise cannot
be made available.
In addition the addresses of objects get moved around as they are
garbage collected. KSM sharing needs to be enabled "from the outside"
for these type of workloads.
Use case 2:
The same interpreter can also be used for workloads where KSM brings
no benefit or even has overhead. We'd like to be able to enable KSM on
a workload by workload basis.
Use case 3:
With the madvise call sharing opportunities are only enabled for the
current process: it is a workload-local decision. A considerable number
of sharing opportunities may exist across multiple workloads or jobs (if
they are part of the same security domain). Only a higler level entity
like a job scheduler or container can know for certain if its running
one or more instances of a job. That job scheduler however doesn't have
the necessary internal workload knowledge to make targeted madvise
calls.
Security concerns:
In previous discussions security concerns have been brought up. The
problem is that an individual workload does not have the knowledge about
what else is running on a machine. Therefore it has to be very
conservative in what memory areas can be shared or not. However, if the
system is dedicated to running multiple jobs within the same security
domain, its the job scheduler that has the knowledge that sharing can be
safely enabled and is even desirable.
Performance:
Experiments with using UKSM have shown a capacity increase of around 20%.
Here are the metrics from an instagram workload (taken from a machine
with 64GB main memory):
full_scans: 445
general_profit: 20158298048
max_page_sharing: 256
merge_across_nodes: 1
pages_shared: 129547
pages_sharing: 5119146
pages_to_scan: 4000
pages_unshared: 1760924
pages_volatile: 10761341
run: 1
sleep_millisecs: 20
stable_node_chains: 167
stable_node_chains_prune_millisecs: 2000
stable_node_dups: 2751
use_zero_pages: 0
zero_pages_sharing: 0
After the service is running for 30 minutes to an hour, 4 to 5 million
shared pages are common for this workload when using KSM.
Detailed changes:
1. New options for prctl system command
This patch series adds two new options to the prctl system call.
The first one allows to enable KSM at the process level and the second
one to query the setting.
The setting will be inherited by child processes.
With the above setting, KSM can be enabled for the seed process of a cgroup
and all processes in the cgroup will inherit the setting.
2. Changes to KSM processing
When KSM is enabled at the process level, the KSM code will iterate
over all the VMA's and enable KSM for the eligible VMA's.
When forking a process that has KSM enabled, the setting will be
inherited by the new child process.
3. Add general_profit metric
The general_profit metric of KSM is specified in the documentation,
but not calculated. This adds the general profit metric to
/sys/kernel/debug/mm/ksm.
4. Add more metrics to ksm_stat
This adds the process profit metric to /proc/<pid>/ksm_stat.
5. Add more tests to ksm_tests and ksm_functional_tests
This adds an option to specify the merge type to the ksm_tests.
This allows to test madvise and prctl KSM.
It also adds a two new tests to ksm_functional_tests: one to test
the new prctl options and the other one is a fork test to verify that
the KSM process setting is inherited by client processes.
This patch (of 3):
So far KSM can only be enabled by calling madvise for memory regions. To
be able to use KSM for more workloads, KSM needs to have the ability to be
enabled / disabled at the process / cgroup level.
1. New options for prctl system command
This patch series adds two new options to the prctl system call.
The first one allows to enable KSM at the process level and the second
one to query the setting.
The setting will be inherited by child processes.
With the above setting, KSM can be enabled for the seed process of a
cgroup and all processes in the cgroup will inherit the setting.
2. Changes to KSM processing
When KSM is enabled at the process level, the KSM code will iterate
over all the VMA's and enable KSM for the eligible VMA's.
When forking a process that has KSM enabled, the setting will be
inherited by the new child process.
1) Introduce new MMF_VM_MERGE_ANY flag
This introduces the new flag MMF_VM_MERGE_ANY flag. When this flag
is set, kernel samepage merging (ksm) gets enabled for all vma's of a
process.
2) Setting VM_MERGEABLE on VMA creation
When a VMA is created, if the MMF_VM_MERGE_ANY flag is set, the
VM_MERGEABLE flag will be set for this VMA.
3) support disabling of ksm for a process
This adds the ability to disable ksm for a process if ksm has been
enabled for the process with prctl.
4) add new prctl option to get and set ksm for a process
This adds two new options to the prctl system call
- enable ksm for all vmas of a process (if the vmas support it).
- query if ksm has been enabled for a process.
3. Disabling MMF_VM_MERGE_ANY for storage keys in s390
In the s390 architecture when storage keys are used, the
MMF_VM_MERGE_ANY will be disabled.
Link: https://lkml.kernel.org/r/20230418051342.1919757-1-shr@devkernel.io
Link: https://lkml.kernel.org/r/20230418051342.1919757-2-shr@devkernel.io
Signed-off-by: Stefan Roesch <shr@devkernel.io>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Bagas Sanjaya <bagasdotme@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The maple tree limits the gap returned to a window that specifically fits
what was asked. This may not be optimal in the case of switching search
directions or a gap that does not satisfy the requested space for other
reasons. Fix the search by retrying the operation and limiting the search
window in the rare occasion that a conflict occurs.
Link: https://lkml.kernel.org/r/20230414185919.4175572-1-Liam.Howlett@oracle.com
Fixes: 3499a13168 ("mm/mmap: use maple tree for unmapped_area{_topdown}")
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Reported-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
call_rcu() can take a long time when callback offloading is enabled. Its
use in the vm_area_free can cause regressions in the exit path when
multiple VMAs are being freed.
Because exit_mmap() is called only after the last mm user drops its
refcount, the page fault handlers can't be racing with it. Any other
possible user like oom-reaper or process_mrelease are already synchronized
using mmap_lock. Therefore exit_mmap() can free VMAs directly, without
the use of call_rcu().
Expose __vm_area_free() and use it from exit_mmap() to avoid possible
call_rcu() floods and performance regressions caused by it.
Link: https://lkml.kernel.org/r/20230227173632.3292573-33-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Per-vma locking mechanism will search for VMA under RCU protection and
then after locking it, has to ensure it was not removed from the VMA tree
after we found it. To make this check efficient, introduce a
vma->detached flag to mark VMAs which were removed from the VMA tree.
Link: https://lkml.kernel.org/r/20230227173632.3292573-23-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Page fault handlers might need to fire MMU notifications while a new
notifier is being registered. Modify mm_take_all_locks to write-lock all
VMAs and prevent this race with page fault handlers that would hold VMA
locks. VMAs are locked before i_mmap_rwsem and anon_vma to keep the same
locking order as in page fault handlers.
Link: https://lkml.kernel.org/r/20230227173632.3292573-22-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Normally free_pgtables needs to lock affected VMAs except for the case
when VMAs were isolated under VMA write-lock. munmap() does just that,
isolating while holding appropriate locks and then downgrading mmap_lock
and dropping per-VMA locks before freeing page tables. Add a parameter to
free_pgtables for such scenario.
Link: https://lkml.kernel.org/r/20230227173632.3292573-20-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Write-lock VMA as locked before copying it and when copy_vma produces a
new VMA.
Link: https://lkml.kernel.org/r/20230227173632.3292573-18-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Laurent Dufour <laurent.dufour@fr.ibm.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Write-lock all VMAs which might be affected by a merge, split, expand or
shrink operations. All these operations use vma_prepare() before making
the modifications, therefore it provides a centralized place to perform
VMA locking.
[surenb@google.com: remove unnecessary vp->vma check in vma_prepare]
Link: https://lkml.kernel.org/r/20230301022720.1380780-1-surenb@google.com
Link: https://lore.kernel.org/r/202302281802.J93Nma7q-lkp@intel.com/
Link: https://lkml.kernel.org/r/20230227173632.3292573-17-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Laurent Dufour <laurent.dufour@fr.ibm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
vma_prepare() acquires all locks required before VMA modifications. Move
vma_prepare() before vma_adjust_trans_huge() so that VMA is locked before
any modification.
Link: https://lkml.kernel.org/r/20230227173632.3292573-15-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Rather than setting err = -1 and only resetting if we hit merge cases,
explicitly check the non-mergeable case to make it abundantly clear that
we only proceed with the rest if something is mergeable, default err to 0
and only update if an error might occur.
Move the merge_prev, merge_next cases closer to the logic determining
curr, next and reorder initial variables so they are more logically
grouped.
This has no functional impact.
Link: https://lkml.kernel.org/r/99259fbc6403e80e270e1cc4612abbc8620b121b.1679516210.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Hildenbrand <david@redhat.com>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Vernon Yang <vernon2gm@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Previously, vma was an uninitialised variable which was only definitely
assigned as a result of the logic covering all possible input cases - for
it to have remained uninitialised, prev would have to be NULL, and next
would _have_ to be mergeable.
The value of res defaults to NULL, so we can neatly eliminate the
assignment to res and vma in the if (prev) block and ensure that both res
and vma are both explicitly assigned, by just setting both to prev.
In addition we add an explanation as to under what circumstances both
might change, and since we absolutely do rely on addr == curr->vm_start
should curr exist, assert that this is the case.
Link: https://lkml.kernel.org/r/83938bed24422cbe5954bbf491341674becfe567.1679516210.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Vernon Yang <vernon2gm@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Use find_vma_intersection() and vma_lookup() to both simplify the logic
and to fold the end == next->vm_start condition into one block.
This groups all of the simple range checks together and establishes the
invariant that, if prev, curr or next are non-NULL then their positions
are as expected.
This has no functional impact.
Link: https://lkml.kernel.org/r/c6d960641b4ba58fa6ad3d07bf68c27d847963c8.1679516210.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Vernon Yang <vernon2gm@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "further cleanup of vma_merge()", v2.
Following on from Vlastimil Babka's patch series "cleanup vma_merge() and
improve mergeability tests" which was in turn based on Liam's prior
cleanups, this patch series introduces changes discussed in review of
Vlastimil's series and goes further in attempting to make the logic as
clear as possible.
Nearly all of this should have absolutely no functional impact, however it
does add a singular VM_WARN_ON() case.
With many thanks to Vernon for helping kick start the discussion around
simplification - abstract use of vma did indeed turn out not to be
necessary - and to Liam for his excellent suggestions which greatly
simplified things.
This patch (of 4):
Previously the ASCII diagram above vma_merge() and the accompanying
variable naming was rather confusing, however recent efforts by Liam
Howlett and Vlastimil Babka have significantly improved matters.
This patch goes a little further - replacing 'X' with 'N' which feels a
lot more natural and replacing what was 'N' with 'C' which stands for
'concurrent' VMA.
No word quite describes a VMA that has coincident start as the input span,
concurrent, abbreviated to 'curr' (and which can be thought of also as
'current') however fits intuitions well alongside prev and next.
This has no functional impact.
Link: https://lkml.kernel.org/r/cover.1679431180.git.lstoakes@gmail.com
Link: https://lkml.kernel.org/r/6001e08fa7e119470cbb1d2b6275ad8d742ff9a7.1679431180.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Vernon Yang <vernon2gm@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Since pre-git times, is_mergeable_vma() returns false for a vma with
vm_ops->close, so that no owner assumptions are violated in case the vma
is removed as part of the merge.
This check is currently very conservative and can prevent merging even
situations where vma can't be removed, such as simple expansion of
previous vma, as evidenced by commit d014cd7c1c ("mm, mremap: fix
mremap() expanding for vma's with vm_ops->close()")
In order to allow more merging when appropriate and simplify the code that
was made more complex by commit d014cd7c1c, start distinguishing cases
where the vma can be really removed, and allow merging with vm_ops->close
otherwise.
As a first step, add a may_remove_vma parameter to is_mergeable_vma().
can_vma_merge_before() sets it to true, because when called from
vma_merge(), a removal of the vma is possible.
In can_vma_merge_after(), pass the parameter as false, because no
removal can occur in each of its callers:
- vma_merge() calls it on the 'prev' vma, which is never removed
- mmap_region() and do_brk_flags() call it to determine if it can expand
a vma, which is not removed
As a result, vma's with vm_ops->close may now merge with compatible ranges
in more situations than previously. We can also revert commit
d014cd7c1c as the next step to simplify mremap code again.
[vbabka@suse.cz: adjust comment as suggested by Lorenzo]
Link: https://lkml.kernel.org/r/74f2ea6c-f1a9-6dd7-260c-25e660f42379@suse.cz
Link: https://lkml.kernel.org/r/20230309111258.24079-10-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The comments already mention returning 'true' so make the code match them.
Link: https://lkml.kernel.org/r/20230309111258.24079-9-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The variable 'adj_next' holds the value by which we adjust vm_start of a
vma in variable 'adjust', that's either 'next' or 'mid', so the current
name is inaccurate. Rename it to 'adj_start'.
Link: https://lkml.kernel.org/r/20230309111258.24079-8-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
There are several places where we test if 'mid' is really the area NNNN in
the diagram and the tests have two variants and are non-obvious to follow.
Instead, set 'mid' to NULL up-front if it's not the NNNN area, and
simplify the tests.
Also update the description in comment accordingly.
[vbabka@suse.cz: adjust/add comments as suggested by Lorenzo]
Link: https://lkml.kernel.org/r/def43190-53f7-a607-d1b0-b657565f4288@suse.cz
Link: https://lkml.kernel.org/r/20230309111258.24079-7-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
It is more intuitive to go from prev to mid and then next. No functional
change.
Link: https://lkml.kernel.org/r/20230309111258.24079-6-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Almost all cases now use the 'next' pointer for the vma following the
merged area, and the cases diagram shows it as XXXX. Case 4 is different
as it uses 'mid' and NNNN, so change it for consistency. No functional
change.
Link: https://lkml.kernel.org/r/20230309111258.24079-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Case 1 is now shown in the comment as next vma being merged with prev, so
use 'next' instead of 'mid'. In case 1 they both point to the same vma.
As a consequence, in case 6, the dup_anon_vma() is now tried first on
'next' and then on 'mid', before it was the opposite order. This is not a
functional change, as those two vma's cannnot have a different anon_vma,
as that would have prevented the merging in the first place.
Link: https://lkml.kernel.org/r/20230309111258.24079-4-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
In case 3 we we use 'next' for everything but vma_pgoff. So use 'next'
for that as well, instead of 'mid', for consistency. Then in case 8 we
have to use 'mid' explicitly, which should also make the intent more
obvious.
Adjust the diagram for cases 1-3 in the comment to match the code - we are
using 'next' for case 3 so mark the range with XXXX instead of NNNN. For
case 2 that's a no-op as the code doesn't touch 'next' or 'mid'. For case
1 it's now wrong but that will be fixed next.
No functional change.
Link: https://lkml.kernel.org/r/20230309111258.24079-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "cleanup vma_merge() and improve mergeability tests".
My initial goal here was to try making the check for vm_ops->close in
is_mergeable_vma() only be applied for vma's that would be truly removed
as part of the merge (see Patch 9). This would then allow reverting the
quick fix d014cd7c1c ("mm, mremap: fix mremap() expanding for vma's with
vm_ops->close()"). This was successful enough to allow the revert (Patch
10). Checks using can_vma_merge_before() are still pessimistic about
possible vma removal, and making them precise would probably complicate
the vma_merge() code too much.
Liam's 6.3-rc1 simplification of vma_merge() and removal of __vma_adjust()
was very much helpful in understanding the vma_merge() implementation and
especially when vma removals can happen, which is now very obvious. While
studing the code, I've found ways to make it hopefully even more easy to
follow, so that's the patches 1-8. That made me also notice a bug that's
now already fixed in 6.3-rc1.
This patch (of 10):
In the merging preparation part of vma_merge(), some vma pointer variables
are assigned for later execution of the merge, but also read from in the
block itself. The code is easier follow and check against the cases
diagram in the comment if the code reads only from the "primary" vma
variables prev, mid, next instead. No functional change.
Link: https://lkml.kernel.org/r/20230309111258.24079-1-vbabka@suse.cz
Link: https://lkml.kernel.org/r/20230309111258.24079-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>]
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Use the maple tree in RCU mode for VMA tracking.
The maple tree tracks the stack and is able to update the pivot
(lower/upper boundary) in-place to allow the page fault handler to write
to the tree while holding just the mmap read lock. This is safe as the
writes to the stack have a guard VMA which ensures there will always be a
NULL in the direction of the growth and thus will only update a pivot.
It is possible, but not recommended, to have VMAs that grow up/down
without guard VMAs. syzbot has constructed a testcase which sets up a VMA
to grow and consume the empty space. Overwriting the entire NULL entry
causes the tree to be altered in a way that is not safe for concurrent
readers; the readers may see a node being rewritten or one that does not
match the maple state they are using.
Enabling RCU mode allows the concurrent readers to see a stable node and
will return the expected result.
[Liam.Howlett@Oracle.com: we don't need to free the nodes with RCU[
Link: https://lore.kernel.org/linux-mm/000000000000b0a65805f663ace6@google.com/
Link: https://lkml.kernel.org/r/20230227173632.3292573-9-surenb@google.com
Fixes: d4af56c5c7 ("mm: start tracking VMAs with maple tree")
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reported-by: syzbot+8d95422d3537159ca390@syzkaller.appspotmail.com
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>