IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The uncoupling physical vs virtual address spaces brings
the following benefits to s390:
- virtual memory layout flexibility;
- closes the address gap between kernel and modules, it
caused s390-only problems in the past (e.g. 'perf' bugs);
- allows getting rid of trampolines used for module calls
into kernel;
- allows simplifying BPF trampoline;
- minor performance improvement in branch prediction;
- kernel randomization entropy is magnitude bigger, as it is
derived from the amount of available virtual, not physical
memory;
The whole change could be described in two pictures below:
before and after the change.
Some aspects of the virtual memory layout setup are not
clarified (number of page levels, alignment, DMA memory),
since these are not a part of this change or secondary
with regard to how the uncoupling itself is implemented.
The focus of the pictures is to explain why __va() and __pa()
macros are implemented the way they are.
Memory layout in V==R mode:
| Physical | Virtual |
+- 0 --------------+- 0 --------------+ identity mapping start
| | S390_lowcore | Low-address memory
| +- 8 KB -----------+
| | |
| | identity | phys == virt
| | mapping | virt == phys
| | |
+- AMODE31_START --+- AMODE31_START --+ .amode31 rand. phys/virt start
|.amode31 text/data|.amode31 text/data|
+- AMODE31_END ----+- AMODE31_END ----+ .amode31 rand. phys/virt start
| | |
| | |
+- __kaslr_offset, __kaslr_offset_phys| kernel rand. phys/virt start
| | |
| kernel text/data | kernel text/data | phys == kvirt
| | |
+------------------+------------------+ kernel phys/virt end
| | |
| | |
| | |
| | |
+- ident_map_size -+- ident_map_size -+ identity mapping end
| |
| ... unused gap |
| |
+---- vmemmap -----+ 'struct page' array start
| |
| virtually mapped |
| memory map |
| |
+- __abs_lowcore --+
| |
| Absolute Lowcore |
| |
+- __memcpy_real_area
| |
| Real Memory Copy|
| |
+- VMALLOC_START --+ vmalloc area start
| |
| vmalloc area |
| |
+- MODULES_VADDR --+ modules area start
| |
| modules area |
| |
+------------------+ UltraVisor Secure Storage limit
| |
| ... unused gap |
| |
+KASAN_SHADOW_START+ KASAN shadow memory start
| |
| KASAN shadow |
| |
+------------------+ ASCE limit
Memory layout in V!=R mode:
| Physical | Virtual |
+- 0 --------------+- 0 --------------+
| | S390_lowcore | Low-address memory
| +- 8 KB -----------+
| | |
| | |
| | ... unused gap |
| | |
+- AMODE31_START --+- AMODE31_START --+ .amode31 rand. phys/virt start
|.amode31 text/data|.amode31 text/data|
+- AMODE31_END ----+- AMODE31_END ----+ .amode31 rand. phys/virt end (<2GB)
| | |
| | |
+- __kaslr_offset_phys | kernel rand. phys start
| | |
| kernel text/data | |
| | |
+------------------+ | kernel phys end
| | |
| | |
| | |
| | |
+- ident_map_size -+ |
| |
| ... unused gap |
| |
+- __identity_base + identity mapping start (>= 2GB)
| |
| identity | phys == virt - __identity_base
| mapping | virt == phys + __identity_base
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
+---- vmemmap -----+ 'struct page' array start
| |
| virtually mapped |
| memory map |
| |
+- __abs_lowcore --+
| |
| Absolute Lowcore |
| |
+- __memcpy_real_area
| |
| Real Memory Copy|
| |
+- VMALLOC_START --+ vmalloc area start
| |
| vmalloc area |
| |
+- MODULES_VADDR --+ modules area start
| |
| modules area |
| |
+- __kaslr_offset -+ kernel rand. virt start
| |
| kernel text/data | phys == (kvirt - __kaslr_offset) +
| | __kaslr_offset_phys
+- kernel .bss end + kernel rand. virt end
| |
| ... unused gap |
| |
+------------------+ UltraVisor Secure Storage limit
| |
| ... unused gap |
| |
+KASAN_SHADOW_START+ KASAN shadow memory start
| |
| KASAN shadow |
| |
+------------------+ ASCE limit
Unused gaps in the virtual memory layout could be present
or not - depending on how partucular system is configured.
No page tables are created for the unused gaps.
The relative order of vmalloc, modules and kernel image in
virtual memory is defined by following considerations:
- start of the modules area and end of the kernel should reside
within 4GB to accommodate relative 32-bit jumps. The best way
to achieve that is to place kernel next to modules;
- vmalloc and module areas should locate next to each other
to prevent failures and extra reworks in user level tools
(makedumpfile, crash, etc.) which treat vmalloc and module
addresses similarily;
- kernel needs to be the last area in the virtual memory
layout to easily distinguish between kernel and non-kernel
virtual addresses. That is needed to (again) simplify
handling of addresses in user level tools and make __pa()
macro faster (see below);
Concluding the above, the relative order of the considered
virtual areas in memory is: vmalloc - modules - kernel.
Therefore, the only change to the current memory layout is
moving kernel to the end of virtual address space.
With that approach the implementation of __pa() macro is
straightforward - all linear virtual addresses less than
kernel base are considered identity mapping:
phys == virt - __identity_base
All addresses greater than kernel base are kernel ones:
phys == (kvirt - __kaslr_offset) + __kaslr_offset_phys
By contrast, __va() macro deals only with identity mapping
addresses:
virt == phys + __identity_base
.amode31 section is mapped separately and is not covered by
__pa() macro. In fact, it could have been handled easily by
checking whether a virtual address is within the section or
not, but there is no need for that. Thus, let __pa() code
do as little machine cycles as possible.
The KASAN shadow memory is located at the very end of the
virtual memory layout, at addresses higher than the kernel.
However, that is not a linear mapping and no code other than
KASAN instrumentation or API is expected to access it.
When KASLR mode is enabled the kernel base address randomized
within a memory window that spans whole unused virtual address
space. The size of that window depends from the amount of
physical memory available to the system, the limit imposed by
UltraVisor (if present) and the vmalloc area size as provided
by vmalloc= kernel command line parameter.
In case the virtual memory is exhausted the minimum size of
the randomization window is forcefully set to 2GB, which
amounts to in 15 bits of entropy if KASAN is enabled or 17
bits of entropy in default configuration.
The default kernel offset 0x100000 is used as a magic value
both in the decompressor code and vmlinux linker script, but
it will be removed with a follow-up change.
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
This is a preparatory rework to allow uncoupling virtual
and physical addresses spaces.
The vmcore ELF program headers describe virtual memory
regions of a crashed kernel. User level tools use that
information for the kernel text and data analysis (e.g
vmcore-dmesg extracts the kernel log).
Currently the kernel image is covered by program headers
describing the identity mapping regions. But in the future
the kernel image will be mapped into separate region outside
of the identity mapping. Create the additional ELF program
header that covers kernel image only, so that vmcore tools
could locate kernel text and data.
Further, the identity mapping in crashed and capture kernels
will have different base address. Due to that __va() macro
can not be used in the capture kernel. Instead, read crashed
kernel identity mapping base address from os_info and use
it for PT_LOAD type program headers creation.
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
This is a preparatory rework to allow uncoupling virtual
and physical addresses spaces.
The virtual memory layout is needed for address translation
by crash tool when /proc/kcore device is used as the memory
image.
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
This is a preparatory rework to allow uncoupling virtual
and physical addresses spaces.
The virtual memory layout will be read out by makedumpfile,
crash and other user tools for virtual address translation.
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Introduce entries that do not reference any data in memory,
but rather provide values. Set the size of such entries to
zero and do not compute checksum for them, since there is no
data which integrity needs to be checked. The integrity of
the value entries itself is still covered by the os_info
checksum.
Reserve the lowest unused entry index OS_INFO_RESERVED for
future use - presumably for the number of entries present.
That could later be used by user level tools. The existing
tools would not notice any difference.
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
This is a preparatory rework to allow uncoupling virtual
and physical addresses spaces.
Introduce .amode31 section address range AMODE31_START
and AMODE31_END macros for later use.
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
This is a preparatory rework to allow uncoupling virtual
and physical addresses spaces.
Currently the identity mapping base address is implicit
and is always set to zero. Make it explicit by putting
into __identity_base persistent boot variable and use it
in proper context - which is the value of PAGE_OFFSET.
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
This is a preparatory rework to allow uncoupling virtual
and physical addresses spaces.
Currently __kaslr_offset is the kernel offset in both
physical memory on boot and in virtual memory after DAT
mode is enabled.
Uncouple these offsets and rename the physical address
space variant to __kaslr_offset_phys while keep the name
__kaslr_offset for the offset in virtual address space.
Do not use __kaslr_offset_phys after DAT mode is enabled
just yet, but still make it a persistent boot variable
for later use.
Use __kaslr_offset and __kaslr_offset_phys offsets in
proper contexts and alter handle_relocs() function to
distinguish between the two.
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
This is a preparatory rework to allow uncoupling virtual
and physical addresses spaces.
Put virtual memory layout information into a structure
to improve code generation when accessing the structure
members, which are currently only ident_map_size and
__kaslr_offset.
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Move everyting KASLR related to <asm/page.h>,
similarly to many other architectures.
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Suggested-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
This is a preparatory rework to allow uncoupling virtual
and physical addresses spaces.
Currently the order of virtual memory areas is (the lowcore
and .amode31 section are skipped, as it is irrelevant):
identity mapping (the kernel is contained within)
vmemmap
vmalloc
modules
Absolute Lowcore
Real Memory Copy
In the future the kernel will be mapped separately and placed
to the end of the virtual address space, so the layout would
turn like this:
identity mapping
vmemmap
vmalloc
modules
Absolute Lowcore
Real Memory Copy
kernel
However, the distance between kernel and modules needs to be as
little as possible, ideally - none. Thus, the Absolute Lowcore
and Real Memory Copy areas would stay in the way and therefore
need to be moved as well:
identity mapping
vmemmap
Absolute Lowcore
Real Memory Copy
vmalloc
modules
kernel
To facilitate such layout swap the vmalloc and Absolute Lowcore
together with Real Memory Copy areas. As result, the current
layout turns into:
identity mapping (the kernel is contained within)
vmemmap
Absolute Lowcore
Real Memory Copy
vmalloc
modules
This will allow to locate the kernel directly next to the
modules once it gets mapped separately.
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
In case vmemmap array could overlap with vmalloc area on
virtual memory layout setup, the size of vmalloc area
is decreased. That could result in less memory than user
requested with vmalloc= kernel command line parameter.
Instead, reduce the size of identity mapping (and the
size of vmemmap array as result) to avoid such overlap.
Further, currently the virtual memmory allocation "rolls"
from top to bottom and it is only VMALLOC_START that could
get increased due to the overlap. Change that to decrease-
only, which makes the whole allocation algorithm more easy
to comprehend.
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
The maximum mappable physical address (as returned by
arch_get_mappable_range() callback) is limited by the
value of (1UL << MAX_PHYSMEM_BITS).
The maximum physical address available to a DCSS segment
is 512GB.
In case the available online or offline memory size is less
than the DCSS limit arch_get_mappable_range() would include
never used [512GB..(1UL << MAX_PHYSMEM_BITS)] range.
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
vmemmap is forcefully set to start at MAX_PHYSMEM_BITS at most.
That could be needed in the past to limit ident_map_size to
MAX_PHYSMEM_BITS. However since commit 75eba6ec0de1 ("s390:
unify identity mapping limits handling") ident_map_size is
limited in setup_ident_map_size() function, which is called
earlier.
Another reason to limit vmemmap start to MAX_PHYSMEM_BITS is
because it was returned by arch_get_mappable_range() as the
maximum mappable physical address. Since commit f641679dfe55
("s390/mm: rework arch_get_mappable_range() callback") that
is not required anymore.
As result, there is no neccessity to limit vmemmap starting
address with MAX_PHYSMEM_BITS.
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
The CPU Measurement facility crypto counter set functionality
is defined by the Second Counter Version Number. This number
varies between machine types, but is upward compatible.
Lessen the checks to reflect this behavior.
Signed-off-by: Thomas Richter <tmricht@linux.ibm.com>
Acked-by: Sumanth Korikkar <sumanthk@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Common pattern in non-verbose build output for quiet commands is that the
shorthand of a command including whitespace contains at least eight
characters. Adjust this for the RELOCS command, which comes only with seven
characters.
Before:
SORTTAB vmlinux
CC arch/s390/boot/version.o
RELOCS arch/s390/boot/relocs.S
OBJCOPY arch/s390/boot/info.bin
After:
SORTTAB vmlinux
CC arch/s390/boot/version.o
RELOCS arch/s390/boot/relocs.S
OBJCOPY arch/s390/boot/info.bin
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
The configuration option ZCRYPT_DEBUG is used only in ap queue code,
so rename it to AP_DEBUG. It also no longer depends on ZCRYPT but on
AP. While at it, also update the help text.
Signed-off-by: Holger Dengler <dengler@linux.ibm.com>
Reviewed-by: Harald Freudenberger <freude@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
The direct dependency of chsc and the AP bus prevents the
modularization of ap bus. Introduce a notifier interface for AP
changes, which decouples the producer of the change events (chsc) from
the consumer (ap_bus).
Remove the ap_cfg_chg() interface and replace it with the notifier
invocation. The ap bus module registers a notification handler, which
triggers the AP bus scan.
Cc: Vineeth Vijayan <vneethv@linux.ibm.com>
Cc: Peter Oberparleiter <oberpar@linux.ibm.com>
Signed-off-by: Holger Dengler <dengler@linux.ibm.com>
Reviewed-by: Harald Freudenberger <freude@linux.ibm.com>
Acked-by: Vineeth Vijayan <vneethv@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
The inline function is_prot_virt_guest() in asm/uv.h makes use of the
prot_virt_guest symbol. As this inline function can be called by other
parts of the kernel (modules and built-in), the symbol should be
exported, similar to the prot_virt_host symbol.
One consumer of is_prot_virt_guest() will be the ap bus code.
Cc: Janosch Frank <frankja@linux.ibm.com>
Cc: Claudio Imbrenda <imbrenda@linux.ibm.com>
Signed-off-by: Holger Dengler <dengler@linux.ibm.com>
Reviewed-by: Harald Freudenberger <freude@linux.ibm.com>
Acked-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Since qci is available on most of the current machines, move away from
the dynamic buffers for qci information and store it instead in a
statically defined buffer.
The new flags member in struct ap_config_info is now used as an
indicator, if qci is available in the system (at least one of these
bits is set).
Suggested-by: Harald Freudenberger <freude@linux.ibm.com>
Signed-off-by: Holger Dengler <dengler@linux.ibm.com>
Reviewed-by: Harald Freudenberger <freude@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
In case of a sampling event, the PAI PMU device drivers need a
reference to this event. Currently to PMU device driver reference
is removed when a sampling event is destroyed. This may lead to
situations where the reference of the PMU device driver is removed
while being used by a different sampling event.
Reset the event reference pointer of the PMU device driver when
a sampling event is deleted and before the next one might be added.
Fixes: 39d62336f5 ("s390/pai: add support for cryptography counters")
Signed-off-by: Thomas Richter <tmricht@linux.ibm.com>
Acked-by: Sumanth Korikkar <sumanthk@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
preempt_count-related functions are quite ubiquitous and may be called
by noinstr ones, introducing unwanted instrumentation. Here is one
example call chain:
irqentry_nmi_enter() # noinstr
lockdep_hardirqs_enabled()
this_cpu_read()
__pcpu_size_call_return()
this_cpu_read_*()
this_cpu_generic_read()
__this_cpu_generic_read_nopreempt()
preempt_disable_notrace()
__preempt_count_inc()
__preempt_count_add()
They are very small, so there are no significant downsides to
force-inlining them.
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Link: https://lore.kernel.org/r/20240320230007.4782-3-iii@linux.ibm.com
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
The recently added check to figure out if a fault happened on gmap ASCE
dereferences the gmap pointer in lowcore without checking that it is not
NULL. For all non-KVM processes the pointer is NULL, so that some value
from lowcore will be read. With the current layouts of struct gmap and
struct lowcore the read value (aka ASCE) is zero, so that this doesn't lead
to any observable bug; at least currently.
Fix this by adding the missing NULL pointer check.
Fixes: 64c3431808 ("s390/entry: compare gmap asce to determine guest/host fault")
Acked-by: Sven Schnelle <svens@linux.ibm.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Remove support for the "Crypto usage statistics" feature
(CONFIG_CRYPTO_STATS). This feature does not appear to have ever been
used, and it is harmful because it significantly reduces performance and
is a large maintenance burden.
Covering each of these points in detail:
1. Feature is not being used
Since these generic crypto statistics are only readable using netlink,
it's fairly straightforward to look for programs that use them. I'm
unable to find any evidence that any such programs exist. For example,
Debian Code Search returns no hits except the kernel header and kernel
code itself and translations of the kernel header:
https://codesearch.debian.net/search?q=CRYPTOCFGA_STAT&literal=1&perpkg=1
The patch series that added this feature in 2018
(https://lore.kernel.org/linux-crypto/1537351855-16618-1-git-send-email-clabbe@baylibre.com/)
said "The goal is to have an ifconfig for crypto device." This doesn't
appear to have happened.
It's not clear that there is real demand for crypto statistics. Just
because the kernel provides other types of statistics such as I/O and
networking statistics and some people find those useful does not mean
that crypto statistics are useful too.
Further evidence that programs are not using CONFIG_CRYPTO_STATS is that
it was able to be disabled in RHEL and Fedora as a bug fix
(https://gitlab.com/redhat/centos-stream/src/kernel/centos-stream-9/-/merge_requests/2947).
Even further evidence comes from the fact that there are and have been
bugs in how the stats work, but they were never reported. For example,
before Linux v6.7 hash stats were double-counted in most cases.
There has also never been any documentation for this feature, so it
might be hard to use even if someone wanted to.
2. CONFIG_CRYPTO_STATS significantly reduces performance
Enabling CONFIG_CRYPTO_STATS significantly reduces the performance of
the crypto API, even if no program ever retrieves the statistics. This
primarily affects systems with a large number of CPUs. For example,
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/2039576 reported
that Lustre client encryption performance improved from 21.7GB/s to
48.2GB/s by disabling CONFIG_CRYPTO_STATS.
It can be argued that this means that CONFIG_CRYPTO_STATS should be
optimized with per-cpu counters similar to many of the networking
counters. But no one has done this in 5+ years. This is consistent
with the fact that the feature appears to be unused, so there seems to
be little interest in improving it as opposed to just disabling it.
It can be argued that because CONFIG_CRYPTO_STATS is off by default,
performance doesn't matter. But Linux distros tend to error on the side
of enabling options. The option is enabled in Ubuntu and Arch Linux,
and until recently was enabled in RHEL and Fedora (see above). So, even
just having the option available is harmful to users.
3. CONFIG_CRYPTO_STATS is a large maintenance burden
There are over 1000 lines of code associated with CONFIG_CRYPTO_STATS,
spread among 32 files. It significantly complicates much of the
implementation of the crypto API. After the initial submission, many
fixes and refactorings have consumed effort of multiple people to keep
this feature "working". We should be spending this effort elsewhere.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Corentin Labbe <clabbe@baylibre.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Daniel Borkmann says:
====================
pull-request: bpf-next 2024-03-25
We've added 38 non-merge commits during the last 13 day(s) which contain
a total of 50 files changed, 867 insertions(+), 274 deletions(-).
The main changes are:
1) Add the ability to specify and retrieve BPF cookie also for raw
tracepoint programs in order to ease migration from classic to raw
tracepoints, from Andrii Nakryiko.
2) Allow the use of bpf_get_{ns_,}current_pid_tgid() helper for all
program types and add additional BPF selftests, from Yonghong Song.
3) Several improvements to bpftool and its build, for example, enabling
libbpf logs when loading pid_iter in debug mode, from Quentin Monnet.
4) Check the return code of all BPF-related set_memory_*() functions during
load and bail out in case they fail, from Christophe Leroy.
5) Avoid a goto in regs_refine_cond_op() such that the verifier can
be better integrated into Agni tool which doesn't support backedges
yet, from Harishankar Vishwanathan.
6) Add a small BPF trie perf improvement by always inlining
longest_prefix_match, from Jesper Dangaard Brouer.
7) Small BPF selftest refactor in bpf_tcp_ca.c to utilize start_server()
helper instead of open-coding it, from Geliang Tang.
8) Improve test_tc_tunnel.sh BPF selftest to prevent client connect
before the server bind, from Alessandro Carminati.
9) Fix BPF selftest benchmark for older glibc and use syscall(SYS_gettid)
instead of gettid(), from Alan Maguire.
10) Implement a backward-compatible method for struct_ops types with
additional fields which are not present in older kernels,
from Kui-Feng Lee.
11) Add a small helper to check if an instruction is addr_space_cast
from as(0) to as(1) and utilize it in x86-64 JIT, from Puranjay Mohan.
12) Small cleanup to remove unnecessary error check in
bpf_struct_ops_map_update_elem, from Martin KaFai Lau.
13) Improvements to libbpf fd validity checks for BPF map/programs,
from Mykyta Yatsenko.
* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (38 commits)
selftests/bpf: Fix flaky test btf_map_in_map/lookup_update
bpf: implement insn_is_cast_user() helper for JITs
bpf: Avoid get_kernel_nofault() to fetch kprobe entry IP
selftests/bpf: Use start_server in bpf_tcp_ca
bpf: Sync uapi bpf.h to tools directory
libbpf: Add new sec_def "sk_skb/verdict"
selftests/bpf: Mark uprobe trigger functions with nocf_check attribute
selftests/bpf: Use syscall(SYS_gettid) instead of gettid() wrapper in bench
bpf-next: Avoid goto in regs_refine_cond_op()
bpftool: Clean up HOST_CFLAGS, HOST_LDFLAGS for bootstrap bpftool
selftests/bpf: scale benchmark counting by using per-CPU counters
bpftool: Remove unnecessary source files from bootstrap version
bpftool: Enable libbpf logs when loading pid_iter in debug mode
selftests/bpf: add raw_tp/tp_btf BPF cookie subtests
libbpf: add support for BPF cookie for raw_tp/tp_btf programs
bpf: support BPF cookie in raw tracepoint (raw_tp, tp_btf) programs
bpf: pass whole link instead of prog when triggering raw tracepoint
bpf: flatten bpf_probe_register call chain
selftests/bpf: Prevent client connect before server bind in test_tc_tunnel.sh
selftests/bpf: Add a sk_msg prog bpf_get_ns_current_pid_tgid() test
...
====================
Link: https://lore.kernel.org/r/20240325233940.7154-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Daniel Borkmann says:
====================
pull-request: bpf 2024-03-25
The following pull-request contains BPF updates for your *net* tree.
We've added 17 non-merge commits during the last 12 day(s) which contain
a total of 19 files changed, 184 insertions(+), 61 deletions(-).
The main changes are:
1) Fix an arm64 BPF JIT bug in BPF_LDX_MEMSX implementation's offset handling
found via test_bpf module, from Puranjay Mohan.
2) Various fixups to the BPF arena code in particular in the BPF verifier and
around BPF selftests to match latest corresponding LLVM implementation,
from Puranjay Mohan and Alexei Starovoitov.
3) Fix xsk to not assume that metadata is always requested in TX completion,
from Stanislav Fomichev.
4) Fix riscv BPF JIT's kfunc parameter incompatibility between BPF and the riscv
ABI which requires sign-extension on int/uint, from Pu Lehui.
5) Fix s390x BPF JIT's bpf_plt pointer arithmetic which triggered a crash when
testing struct_ops, from Ilya Leoshkevich.
6) Fix libbpf's arena mmap handling which had incorrect u64-to-pointer cast on
32-bit architectures, from Andrii Nakryiko.
7) Fix libbpf to define MFD_CLOEXEC when not available, from Arnaldo Carvalho de Melo.
8) Fix arm64 BPF JIT implementation for 32bit unconditional bswap which
resulted in an incorrect swap as indicated by test_bpf, from Artem Savkov.
9) Fix BPF man page build script to use silent mode, from Hangbin Liu.
* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf:
riscv, bpf: Fix kfunc parameters incompatibility between bpf and riscv abi
bpf: verifier: reject addr_space_cast insn without arena
selftests/bpf: verifier_arena: fix mmap address for arm64
bpf: verifier: fix addr_space_cast from as(1) to as(0)
libbpf: Define MFD_CLOEXEC if not available
arm64: bpf: fix 32bit unconditional bswap
bpf, arm64: fix bug in BPF_LDX_MEMSX
libbpf: fix u64-to-pointer cast on 32-bit arches
s390/bpf: Fix bpf_plt pointer arithmetic
xsk: Don't assume metadata is always requested in TX completion
selftests/bpf: Add arena test case for 4Gbyte corner case
selftests/bpf: Remove hard coded PAGE_SIZE macro.
libbpf, selftests/bpf: Adjust libbpf, bpftool, selftests to match LLVM
bpf: Clarify bpf_arena comments.
MAINTAINERS: Update email address for Quentin Monnet
scripts/bpf_doc: Use silent mode when exec make cmd
bpf: Temporarily disable atomic operations in BPF arena
====================
Link: https://lore.kernel.org/r/20240325213520.26688-1-daniel@iogearbox.net
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Kui-Feng Lee reported a crash on s390x triggered by the
dummy_st_ops/dummy_init_ptr_arg test [1]:
[<0000000000000002>] 0x2
[<00000000009d5cde>] bpf_struct_ops_test_run+0x156/0x250
[<000000000033145a>] __sys_bpf+0xa1a/0xd00
[<00000000003319dc>] __s390x_sys_bpf+0x44/0x50
[<0000000000c4382c>] __do_syscall+0x244/0x300
[<0000000000c59a40>] system_call+0x70/0x98
This is caused by GCC moving memcpy() after assignments in
bpf_jit_plt(), resulting in NULL pointers being written instead of
the return and the target addresses.
Looking at the GCC internals, the reordering is allowed because the
alias analysis thinks that the memcpy() destination and the assignments'
left-hand-sides are based on different objects: new_plt and
bpf_plt_ret/bpf_plt_target respectively, and therefore they cannot
alias.
This is in turn due to a violation of the C standard:
When two pointers are subtracted, both shall point to elements of the
same array object, or one past the last element of the array object
...
From the C's perspective, bpf_plt_ret and bpf_plt are distinct objects
and cannot be subtracted. In the practical terms, doing so confuses the
GCC's alias analysis.
The code was written this way in order to let the C side know a few
offsets defined in the assembly. While nice, this is by no means
necessary. Fix the noncompliance by hardcoding these offsets.
[1] https://lore.kernel.org/bpf/c9923c1d-971d-4022-8dc8-1364e929d34c@gmail.com/
Fixes: f1d5df84cd ("s390/bpf: Implement bpf_arch_text_poke()")
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Message-ID: <20240320015515.11883-1-iii@linux.ibm.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Pull more s390 updates from Heiko Carstens:
- Various virtual vs physical address usage fixes
- Add new bitwise types and helper functions and use them in s390
specific drivers and code to make it easier to find virtual vs
physical address usage bugs.
Right now virtual and physical addresses are identical for s390,
except for module, vmalloc, and similar areas. This will be changed,
hopefully with the next merge window, so that e.g. the kernel image
and modules will be located close to each other, allowing for direct
branches and also for some other simplifications.
As a prerequisite this requires to fix all misuses of virtual and
physical addresses. As it turned out people are so used to the
concept that virtual and physical addresses are the same, that new
bugs got added to code which was already fixed. In order to avoid
that even more code gets merged which adds such bugs add and use new
bitwise types, so that sparse can be used to find such usage bugs.
Most likely the new types can go away again after some time
- Provide a simple ARCH_HAS_DEBUG_VIRTUAL implementation
- Fix kprobe branch handling: if an out-of-line single stepped relative
branch instruction has a target address within a certain address area
in the entry code, the program check handler may incorrectly execute
cleanup code as if KVM code was executed, leading to crashes
- Fix reference counting of zcrypt card objects
- Various other small fixes and cleanups
* tag 's390-6.9-2' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (41 commits)
s390/entry: compare gmap asce to determine guest/host fault
s390/entry: remove OUTSIDE macro
s390/entry: add CIF_SIE flag and remove sie64a() address check
s390/cio: use while (i--) pattern to clean up
s390/raw3270: make class3270 constant
s390/raw3270: improve raw3270_init() readability
s390/tape: make tape_class constant
s390/vmlogrdr: make vmlogrdr_class constant
s390/vmur: make vmur_class constant
s390/zcrypt: make zcrypt_class constant
s390/mm: provide simple ARCH_HAS_DEBUG_VIRTUAL support
s390/vfio_ccw_cp: use new address translation helpers
s390/iucv: use new address translation helpers
s390/ctcm: use new address translation helpers
s390/lcs: use new address translation helpers
s390/qeth: use new address translation helpers
s390/zfcp: use new address translation helpers
s390/tape: fix virtual vs physical address confusion
s390/3270: use new address translation helpers
s390/3215: use new address translation helpers
...
With the current implementation, there are some cornercases where
a host fault would be treated as a guest fault, for example
when the sie instruction causes a program check. Therefore store
the gmap asce in ptregs, and use that to compare the primary asce
from the fault instead of matching instruction addresses.
Suggested-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
With only one OUTSIDE user left, remove the macro and move the code
directly to the machine check handler. This has the advantage that
it is much easier to determine which registers are used.
Signed-off-by: Sven Schnelle <svens@linux.ibm.com>
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
When a program check, interrupt or machine check is triggered, the
PSW address is compared to a certain range of the sie64a() function
to figure out whether SIE was interrupted and a cleanup of SIE is
needed.
This doesn't work with kprobes: If kprobes probes an instruction, it
copies the instruction to the kprobes instruction page and overwrites the
original instruction with an undefind instruction (Opcode 00). When this
instruction is hit later, kprobes single-steps the instruction on the
kprobes_instruction page.
However, if this instruction is a relative branch instruction it will now
point to a different location in memory due to being moved to the kprobes
instruction page. If the new branch target points into sie64a() the kernel
assumes it interrupted SIE when processing the breakpoint and will crash
trying to access the SIE control block.
Instead of comparing the address, introduce a new CIF_SIE flag which
indicates whether SIE was interrupted.
Signed-off-by: Sven Schnelle <svens@linux.ibm.com>
Suggested-by: Heiko Carstens <hca@linux.ibm.com>
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Pull kvm updates from Paolo Bonzini:
"S390:
- Changes to FPU handling came in via the main s390 pull request
- Only deliver to the guest the SCLP events that userspace has
requested
- More virtual vs physical address fixes (only a cleanup since
virtual and physical address spaces are currently the same)
- Fix selftests undefined behavior
x86:
- Fix a restriction that the guest can't program a PMU event whose
encoding matches an architectural event that isn't included in the
guest CPUID. The enumeration of an architectural event only says
that if a CPU supports an architectural event, then the event can
be programmed *using the architectural encoding*. The enumeration
does NOT say anything about the encoding when the CPU doesn't
report support the event *in general*. It might support it, and it
might support it using the same encoding that made it into the
architectural PMU spec
- Fix a variety of bugs in KVM's emulation of RDPMC (more details on
individual commits) and add a selftest to verify KVM correctly
emulates RDMPC, counter availability, and a variety of other
PMC-related behaviors that depend on guest CPUID and therefore are
easier to validate with selftests than with custom guests (aka
kvm-unit-tests)
- Zero out PMU state on AMD if the virtual PMU is disabled, it does
not cause any bug but it wastes time in various cases where KVM
would check if a PMC event needs to be synthesized
- Optimize triggering of emulated events, with a nice ~10%
performance improvement in VM-Exit microbenchmarks when a vPMU is
exposed to the guest
- Tighten the check for "PMI in guest" to reduce false positives if
an NMI arrives in the host while KVM is handling an IRQ VM-Exit
- Fix a bug where KVM would report stale/bogus exit qualification
information when exiting to userspace with an internal error exit
code
- Add a VMX flag in /proc/cpuinfo to report 5-level EPT support
- Rework TDP MMU root unload, free, and alloc to run with mmu_lock
held for read, e.g. to avoid serializing vCPUs when userspace
deletes a memslot
- Tear down TDP MMU page tables at 4KiB granularity (used to be
1GiB). KVM doesn't support yielding in the middle of processing a
zap, and 1GiB granularity resulted in multi-millisecond lags that
are quite impolite for CONFIG_PREEMPT kernels
- Allocate write-tracking metadata on-demand to avoid the memory
overhead when a kernel is built with i915 virtualization support
but the workloads use neither shadow paging nor i915 virtualization
- Explicitly initialize a variety of on-stack variables in the
emulator that triggered KMSAN false positives
- Fix the debugregs ABI for 32-bit KVM
- Rework the "force immediate exit" code so that vendor code
ultimately decides how and when to force the exit, which allowed
some optimization for both Intel and AMD
- Fix a long-standing bug where kvm_has_noapic_vcpu could be left
elevated if vCPU creation ultimately failed, causing extra
unnecessary work
- Cleanup the logic for checking if the currently loaded vCPU is
in-kernel
- Harden against underflowing the active mmu_notifier invalidation
count, so that "bad" invalidations (usually due to bugs elsehwere
in the kernel) are detected earlier and are less likely to hang the
kernel
x86 Xen emulation:
- Overlay pages can now be cached based on host virtual address,
instead of guest physical addresses. This removes the need to
reconfigure and invalidate the cache if the guest changes the gpa
but the underlying host virtual address remains the same
- When possible, use a single host TSC value when computing the
deadline for Xen timers in order to improve the accuracy of the
timer emulation
- Inject pending upcall events when the vCPU software-enables its
APIC to fix a bug where an upcall can be lost (and to follow Xen's
behavior)
- Fall back to the slow path instead of warning if "fast" IRQ
delivery of Xen events fails, e.g. if the guest has aliased xAPIC
IDs
RISC-V:
- Support exception and interrupt handling in selftests
- New self test for RISC-V architectural timer (Sstc extension)
- New extension support (Ztso, Zacas)
- Support userspace emulation of random number seed CSRs
ARM:
- Infrastructure for building KVM's trap configuration based on the
architectural features (or lack thereof) advertised in the VM's ID
registers
- Support for mapping vfio-pci BARs as Normal-NC (vaguely similar to
x86's WC) at stage-2, improving the performance of interacting with
assigned devices that can tolerate it
- Conversion of KVM's representation of LPIs to an xarray, utilized
to address serialization some of the serialization on the LPI
injection path
- Support for _architectural_ VHE-only systems, advertised through
the absence of FEAT_E2H0 in the CPU's ID register
- Miscellaneous cleanups, fixes, and spelling corrections to KVM and
selftests
LoongArch:
- Set reserved bits as zero in CPUCFG
- Start SW timer only when vcpu is blocking
- Do not restart SW timer when it is expired
- Remove unnecessary CSR register saving during enter guest
- Misc cleanups and fixes as usual
Generic:
- Clean up Kconfig by removing CONFIG_HAVE_KVM, which was basically
always true on all architectures except MIPS (where Kconfig
determines the available depending on CPU capabilities). It is
replaced either by an architecture-dependent symbol for MIPS, and
IS_ENABLED(CONFIG_KVM) everywhere else
- Factor common "select" statements in common code instead of
requiring each architecture to specify it
- Remove thoroughly obsolete APIs from the uapi headers
- Move architecture-dependent stuff to uapi/asm/kvm.h
- Always flush the async page fault workqueue when a work item is
being removed, especially during vCPU destruction, to ensure that
there are no workers running in KVM code when all references to
KVM-the-module are gone, i.e. to prevent a very unlikely
use-after-free if kvm.ko is unloaded
- Grab a reference to the VM's mm_struct in the async #PF worker
itself instead of gifting the worker a reference, so that there's
no need to remember to *conditionally* clean up after the worker
Selftests:
- Reduce boilerplate especially when utilize selftest TAP
infrastructure
- Add basic smoke tests for SEV and SEV-ES, along with a pile of
library support for handling private/encrypted/protected memory
- Fix benign bugs where tests neglect to close() guest_memfd files"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (246 commits)
selftests: kvm: remove meaningless assignments in Makefiles
KVM: riscv: selftests: Add Zacas extension to get-reg-list test
RISC-V: KVM: Allow Zacas extension for Guest/VM
KVM: riscv: selftests: Add Ztso extension to get-reg-list test
RISC-V: KVM: Allow Ztso extension for Guest/VM
RISC-V: KVM: Forward SEED CSR access to user space
KVM: riscv: selftests: Add sstc timer test
KVM: riscv: selftests: Change vcpu_has_ext to a common function
KVM: riscv: selftests: Add guest helper to get vcpu id
KVM: riscv: selftests: Add exception handling support
LoongArch: KVM: Remove unnecessary CSR register saving during enter guest
LoongArch: KVM: Do not restart SW timer when it is expired
LoongArch: KVM: Start SW timer only when vcpu is blocking
LoongArch: KVM: Set reserved bits as zero in CPUCFG
KVM: selftests: Explicitly close guest_memfd files in some gmem tests
KVM: x86/xen: fix recursive deadlock in timer injection
KVM: pfncache: simplify locking and make more self-contained
KVM: x86/xen: remove WARN_ON_ONCE() with false positives in evtchn delivery
KVM: x86/xen: inject vCPU upcall vector when local APIC is enabled
KVM: x86/xen: improve accuracy of Xen timers
...
Pull non-MM updates from Andrew Morton:
- Kuan-Wei Chiu has developed the well-named series "lib min_heap: Min
heap optimizations".
- Kuan-Wei Chiu has also sped up the library sorting code in the series
"lib/sort: Optimize the number of swaps and comparisons".
- Alexey Gladkov has added the ability for code running within an IPC
namespace to alter its IPC and MQ limits. The series is "Allow to
change ipc/mq sysctls inside ipc namespace".
- Geert Uytterhoeven has contributed some dhrystone maintenance work in
the series "lib: dhry: miscellaneous cleanups".
- Ryusuke Konishi continues nilfs2 maintenance work in the series
"nilfs2: eliminate kmap and kmap_atomic calls"
"nilfs2: fix kernel bug at submit_bh_wbc()"
- Nathan Chancellor has updated our build tools requirements in the
series "Bump the minimum supported version of LLVM to 13.0.1".
- Muhammad Usama Anjum continues with the selftests maintenance work in
the series "selftests/mm: Improve run_vmtests.sh".
- Oleg Nesterov has done some maintenance work against the signal code
in the series "get_signal: minor cleanups and fix".
Plus the usual shower of singleton patches in various parts of the tree.
Please see the individual changelogs for details.
* tag 'mm-nonmm-stable-2024-03-14-09-36' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (77 commits)
nilfs2: prevent kernel bug at submit_bh_wbc()
nilfs2: fix failure to detect DAT corruption in btree and direct mappings
ocfs2: enable ocfs2_listxattr for special files
ocfs2: remove SLAB_MEM_SPREAD flag usage
assoc_array: fix the return value in assoc_array_insert_mid_shortcut()
buildid: use kmap_local_page()
watchdog/core: remove sysctl handlers from public header
nilfs2: use div64_ul() instead of do_div()
mul_u64_u64_div_u64: increase precision by conditionally swapping a and b
kexec: copy only happens before uchunk goes to zero
get_signal: don't initialize ksig->info if SIGNAL_GROUP_EXIT/group_exec_task
get_signal: hide_si_addr_tag_bits: fix the usage of uninitialized ksig
get_signal: don't abuse ksig->info.si_signo and ksig->sig
const_structs.checkpatch: add device_type
Normalise "name (ad@dr)" MODULE_AUTHORs to "name <ad@dr>"
dyndbg: replace kstrdup() + strchr() with kstrdup_and_replace()
list: leverage list_is_head() for list_entry_is_head()
nilfs2: MAINTAINERS: drop unreachable project mirror site
smp: make __smp_processor_id() 0-argument macro
fat: fix uninitialized field in nostale filehandles
...
Pull MM updates from Andrew Morton:
- Sumanth Korikkar has taught s390 to allocate hotplug-time page frames
from hotplugged memory rather than only from main memory. Series
"implement "memmap on memory" feature on s390".
- More folio conversions from Matthew Wilcox in the series
"Convert memcontrol charge moving to use folios"
"mm: convert mm counter to take a folio"
- Chengming Zhou has optimized zswap's rbtree locking, providing
significant reductions in system time and modest but measurable
reductions in overall runtimes. The series is "mm/zswap: optimize the
scalability of zswap rb-tree".
- Chengming Zhou has also provided the series "mm/zswap: optimize zswap
lru list" which provides measurable runtime benefits in some
swap-intensive situations.
- And Chengming Zhou further optimizes zswap in the series "mm/zswap:
optimize for dynamic zswap_pools". Measured improvements are modest.
- zswap cleanups and simplifications from Yosry Ahmed in the series
"mm: zswap: simplify zswap_swapoff()".
- In the series "Add DAX ABI for memmap_on_memory", Vishal Verma has
contributed several DAX cleanups as well as adding a sysfs tunable to
control the memmap_on_memory setting when the dax device is
hotplugged as system memory.
- Johannes Weiner has added the large series "mm: zswap: cleanups",
which does that.
- More DAMON work from SeongJae Park in the series
"mm/damon: make DAMON debugfs interface deprecation unignorable"
"selftests/damon: add more tests for core functionalities and corner cases"
"Docs/mm/damon: misc readability improvements"
"mm/damon: let DAMOS feeds and tame/auto-tune itself"
- In the series "mm/mempolicy: weighted interleave mempolicy and sysfs
extension" Rakie Kim has developed a new mempolicy interleaving
policy wherein we allocate memory across nodes in a weighted fashion
rather than uniformly. This is beneficial in heterogeneous memory
environments appearing with CXL.
- Christophe Leroy has contributed some cleanup and consolidation work
against the ARM pagetable dumping code in the series "mm: ptdump:
Refactor CONFIG_DEBUG_WX and check_wx_pages debugfs attribute".
- Luis Chamberlain has added some additional xarray selftesting in the
series "test_xarray: advanced API multi-index tests".
- Muhammad Usama Anjum has reworked the selftest code to make its
human-readable output conform to the TAP ("Test Anything Protocol")
format. Amongst other things, this opens up the use of third-party
tools to parse and process out selftesting results.
- Ryan Roberts has added fork()-time PTE batching of THP ptes in the
series "mm/memory: optimize fork() with PTE-mapped THP". Mainly
targeted at arm64, this significantly speeds up fork() when the
process has a large number of pte-mapped folios.
- David Hildenbrand also gets in on the THP pte batching game in his
series "mm/memory: optimize unmap/zap with PTE-mapped THP". It
implements batching during munmap() and other pte teardown
situations. The microbenchmark improvements are nice.
- And in the series "Transparent Contiguous PTEs for User Mappings"
Ryan Roberts further utilizes arm's pte's contiguous bit ("contpte
mappings"). Kernel build times on arm64 improved nicely. Ryan's
series "Address some contpte nits" provides some followup work.
- In the series "mm/hugetlb: Restore the reservation" Breno Leitao has
fixed an obscure hugetlb race which was causing unnecessary page
faults. He has also added a reproducer under the selftest code.
- In the series "selftests/mm: Output cleanups for the compaction
test", Mark Brown did what the title claims.
- Kinsey Ho has added the series "mm/mglru: code cleanup and
refactoring".
- Even more zswap material from Nhat Pham. The series "fix and extend
zswap kselftests" does as claimed.
- In the series "Introduce cpu_dcache_is_aliasing() to fix DAX
regression" Mathieu Desnoyers has cleaned up and fixed rather a mess
in our handling of DAX on archiecctures which have virtually aliasing
data caches. The arm architecture is the main beneficiary.
- Lokesh Gidra's series "per-vma locks in userfaultfd" provides
dramatic improvements in worst-case mmap_lock hold times during
certain userfaultfd operations.
- Some page_owner enhancements and maintenance work from Oscar Salvador
in his series
"page_owner: print stacks and their outstanding allocations"
"page_owner: Fixup and cleanup"
- Uladzislau Rezki has contributed some vmalloc scalability
improvements in his series "Mitigate a vmap lock contention". It
realizes a 12x improvement for a certain microbenchmark.
- Some kexec/crash cleanup work from Baoquan He in the series "Split
crash out from kexec and clean up related config items".
- Some zsmalloc maintenance work from Chengming Zhou in the series
"mm/zsmalloc: fix and optimize objects/page migration"
"mm/zsmalloc: some cleanup for get/set_zspage_mapping()"
- Zi Yan has taught the MM to perform compaction on folios larger than
order=0. This a step along the path to implementaton of the merging
of large anonymous folios. The series is named "Enable >0 order folio
memory compaction".
- Christoph Hellwig has done quite a lot of cleanup work in the
pagecache writeback code in his series "convert write_cache_pages()
to an iterator".
- Some modest hugetlb cleanups and speedups in Vishal Moola's series
"Handle hugetlb faults under the VMA lock".
- Zi Yan has changed the page splitting code so we can split huge pages
into sizes other than order-0 to better utilize large folios. The
series is named "Split a folio to any lower order folios".
- David Hildenbrand has contributed the series "mm: remove
total_mapcount()", a cleanup.
- Matthew Wilcox has sought to improve the performance of bulk memory
freeing in his series "Rearrange batched folio freeing".
- Gang Li's series "hugetlb: parallelize hugetlb page init on boot"
provides large improvements in bootup times on large machines which
are configured to use large numbers of hugetlb pages.
- Matthew Wilcox's series "PageFlags cleanups" does that.
- Qi Zheng's series "minor fixes and supplement for ptdesc" does that
also. S390 is affected.
- Cleanups to our pagemap utility functions from Peter Xu in his series
"mm/treewide: Replace pXd_large() with pXd_leaf()".
- Nico Pache has fixed a few things with our hugepage selftests in his
series "selftests/mm: Improve Hugepage Test Handling in MM
Selftests".
- Also, of course, many singleton patches to many things. Please see
the individual changelogs for details.
* tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (435 commits)
mm/zswap: remove the memcpy if acomp is not sleepable
crypto: introduce: acomp_is_async to expose if comp drivers might sleep
memtest: use {READ,WRITE}_ONCE in memory scanning
mm: prohibit the last subpage from reusing the entire large folio
mm: recover pud_leaf() definitions in nopmd case
selftests/mm: skip the hugetlb-madvise tests on unmet hugepage requirements
selftests/mm: skip uffd hugetlb tests with insufficient hugepages
selftests/mm: dont fail testsuite due to a lack of hugepages
mm/huge_memory: skip invalid debugfs new_order input for folio split
mm/huge_memory: check new folio order when split a folio
mm, vmscan: retry kswapd's priority loop with cache_trim_mode off on failure
mm: add an explicit smp_wmb() to UFFDIO_CONTINUE
mm: fix list corruption in put_pages_list
mm: remove folio from deferred split list before uncharging it
filemap: avoid unnecessary major faults in filemap_fault()
mm,page_owner: drop unnecessary check
mm,page_owner: check for null stack_record before bumping its refcount
mm: swap: fix race between free_swap_and_cache() and swapoff()
mm/treewide: align up pXd_leaf() retval across archs
mm/treewide: drop pXd_large()
...
Provide a very simple ARCH_HAS_DEBUG_VIRTUAL implementation.
For now errors are only reported for the following cases:
- Trying to translate a vmalloc or module address to a physical address
- Translating a supposed to be ZONE_DMA virtual address into a physical
address, and the resulting physical address is larger than two GiB
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Fix virtual vs physical address confusion. This does not fix a bug since
virtual and physical address spaces are currently the same.
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Only the last 12 bits of virtual / physical addresses are used when masking
with IDA_BLOCK_SIZE - 1. Given that the bits are the same regardless of
virtual or physical address, remove the virtual to physical address
conversion.
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>