IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The xfs_inactive() return value is meaningless. Turn xfs_inactive()
into a void function and clean up the error handling appropriately.
Kill the VN_INACTIVE_[NO]CACHE directives as they are not relevant
to Linux.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Push the inode free work performed during xfs_inactive() down into
a new xfs_inactive_ifree() helper. This clears xfs_inactive() from
all inode locking and transaction management more directly
associated with freeing the inode xattrs, extents and the inode
itself.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Create the new xfs_inactive_truncate() function to handle the
truncate portion of xfs_inactive(). Push the locking and
transaction management into the new function.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Push down the transaction management for remote symlinks from
xfs_inactive() down to xfs_inactive_symlink_rmt(). The latter is
cleaned up to avoid transaction management intended for the
calling context (i.e., trans duplication, reservation, item
attachment).
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
XFS never calls mark_inode_bad or iget_failed, so it will never see a
bad inode. Remove all checks for is_bad_inode because they are
unnecessary.
Signed-off-by: Ben Myers <bpm@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Use uint32 from init_user_ns for xfs internal uid/gid
representation in xfs_icdinode, xfs_dqid_t.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Gao feng <gaofeng@cn.fujitsu.com>
Signed-off-by: Dwight Engen <dwight.engen@oracle.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
With the new xfs_trans_res structure has been introduced, the log
reservation size, log count as well as log flags are pre-initialized
at mount time. So it's time to refine xfs_trans_reserve() interface
to be more neat.
Also, introduce a new helper M_RES() to return a pointer to the
mp->m_resv structure to simplify the input.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
There are a few small helper functions in xfs_util, all related to
xfs_inode modifications. Move them all to xfs_inode.c so all
xfs_inode operations are consiolidated in the one place.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Move the rename code to xfs_inode.c to continue consolidating
all the kernel xfs_inode operations in the one place.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Now we have xfs_inode.c for holding kernel-only XFS inode
operations, move all the inode operations from xfs_vnodeops.c to
this new file as it holds another set of kernel-only inode
operations. The name of this file traces back to the days of Irix
and it's vnodes which we don't have anymore.
Essentially this move consolidates the inode locking functions
and a bunch of XFS inode operations into the one file. Eventually
the high level functions will be merged into the VFS interface
functions in xfs_iops.c.
This leaves only internal preallocation, EOF block manipulation and
hole punching functions in vnodeops.c. Move these to xfs_bmap_util.c
where we are already consolidating various in-kernel physical extent
manipulation and querying functions.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
There is a bunch of code in xfs_bmap.c that is kernel specific and
not shared with userspace. To minimise the difference between the
kernel and userspace code, shift this unshared code to
xfs_bmap_util.c, and the declarations to xfs_bmap_util.h.
The biggest issue here is xfs_bmap_finish() - userspace has it's own
definition of this function, and so we need to move it out of
xfs_bmap.[ch]. This means several other files need to include
xfs_bmap_util.h as well.
It also introduces and interesting dance for the stack switching
code in xfs_bmapi_allocate(). The stack switching/workqueue code is
actually moved to xfs_bmap_util.c, so that userspace can simply use
a #define in a header file to connect the dots without needing to
know about the stack switch code at all.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The only thing remaining in xfs_inode.[ch] are the operations that
read, write or verify physical inodes in their underlying buffers.
Move all this code to xfs_inode_buf.[ch] and so we can stop sharing
xfs_inode.[ch] with userspace.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The inode fork definitions are a combination of on-disk format
definition and in-memory tracking and manipulation. They are both
shared with userspace, so move them all into their own file so
sharing is easy to do and track. This removes all inode fork
related information from xfs_inode.h.
Do the same for the all the C code that currently resides in
xfs_inode.c for the same reason.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The on disk format definitions of the on-disk dquot, log formats and
quota off log formats are all intertwined with other definitions for
quotas. Separate them out into their own header file so they can
easily be shared with userspace.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
When we made all inode updates transactional, we no longer needed
the log recovery detection for inodes being newer on disk than the
transaction being replayed - it was redundant as replay of the log
would always result in the latest version of the inode would be on
disk. It was redundant, but left in place because it wasn't
considered to be a problem.
However, with the new "don't read inodes on create" optimisation,
flushiter has come back to bite us. Essentially, the optimisation
made always initialises flushiter to zero in the create transaction,
and so if we then crash and run recovery and the inode already on
disk has a non-zero flushiter it will skip recovery of that inode.
As a result, log recovery does the wrong thing and we end up with a
corrupt filesystem.
Because we have to support old kernel to new kernel upgrades, we
can't just get rid of the flushiter support in log recovery as we
might be upgrading from a kernel that doesn't have fully transactional
inode updates. Unfortunately, for v4 superblocks there is no way to
guarantee that log recovery knows about this fact.
We cannot add a new inode format flag to say it's a "special inode
create" because it won't be understood by older kernels and so
recovery could do the wrong thing on downgrade. We cannot specially
detect the combination of zero mode/non-zero flushiter on disk to
non-zero mode, zero flushiter in the log item during recovery
because wrapping of the flushiter can result in false detection.
Hence that makes this "don't use flushiter" optimisation limited to
a disk format that guarantees that we don't need it. And that means
the only fix here is to limit the "no read IO on create"
optimisation to version 5 superblocks....
Reported-by: Markus Trippelsdorf <markus@trippelsdorf.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
XFS_BROOT_SIZE_ADJ is an undocumented macro which accounts for
the difference in size between the on-disk and in-core btree
root. It's much clearer to just use the newly-added
XFS_BMAP_BMDR_SPACE macro which gives us the on-disk size
directly.
In one case, we must test that the if_broot exists before
applying the macro, however.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Long ago, bulkstat used to read inodes directly from the backing
buffer for speed. This had the unfortunate problem of being cache
incoherent with unlinks, and so xfs_ifree() had to mark the inode
as free directly in the backing buffer. bulkstat was changed some
time ago to use inode cache coherent lookups, and so will never see
unlinked inodes in it's lookups. Hence xfs_ifree() does not need to
touch the inode backing buffer anymore.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
When we are allocating a new inode, we read the inode cluster off
disk to increment the generation number. We are already using a
random generation number for newly allocated inodes, so if we are not
using the ikeep mode, we can just generate a new generation number
when we initialise the newly allocated inode.
This avoids the need for reading the inode buffer during inode
creation. This will speed up allocation of inodes in cold, partially
allocated clusters as they will no longer need to be read from disk
during allocation. It will also reduce the CPU overhead of inode
allocation by not having the process the buffer read, even on cache
hits.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The inode unlinked list manipulations operate directly on the inode
buffer, and so bypass the inode CRC calculation mechanisms. Hence an
inode on the unlinked list has an invalid CRC. Fix this by
recalculating the CRC whenever we modify an unlinked list pointer in
an inode, ncluding during log recovery. This is trivial to do and
results in unlinked list operations always leaving a consistent
inode in the buffer.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Running a CONFIG_XFS_DEBUG kernel in production environments is not
the best idea as it introduces significant overhead, can change
the behaviour of algorithms (such as allocation) to improve test
coverage, and (most importantly) panic the machine on non-fatal
errors.
There are many cases where all we want to do is run a
kernel with more bounds checking enabled, such as is provided by the
ASSERT() statements throughout the code, but without all the
potential overhead and drawbacks.
This patch converts all the ASSERT statements to evaluate as
WARN_ON(1) statements and hence if they fail dump a warning and a
stack trace to the log. This has minimal overhead and does not
change any algorithms, and will allow us to find strange "out of
bounds" problems more easily on production machines.
There are a few places where assert statements contain debug only
code. These are converted to be debug-or-warn only code so that we
still get all the assert checks in the code.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Add a new inode version with a larger core. The primary objective is
to allow for a crc of the inode, and location information (uuid and ino)
to verify it was written in the right place. We also extend it by:
a creation time (for Samba);
a changecount (for NFSv4);
a flush sequence (in LSN format for recovery);
an additional inode flags field; and
some additional padding.
These additional fields are not implemented yet, but already laid
out in the structure.
[dchinner@redhat.com] Added LSN and flags field, some factoring and rework to
capture all the necessary information in the crc calculation.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Add support for larger btree blocks that contains a CRC32C checksum,
a filesystem uuid and block number for detecting filesystem
consistency and out of place writes.
[dchinner@redhat.com] Also include an owner field to allow reverse
mappings to be implemented for improved repairability and a LSN
field to so that log recovery can easily determine the last
modification that made it to disk for each buffer.
[dchinner@redhat.com] Add buffer log format flags to indicate the
type of buffer to recovery so that we don't have to do blind magic
number tests to determine what the buffer is.
[dchinner@redhat.com] Modified to fit into the verifier structure.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Remove the XFS_TRANS_DEBUG routines. They are no longer appropriate
and have not been used in years
Signed-off-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
To separate the verifiers from iodone functions and associate read
and write verifiers at the same time, introduce a buffer verifier
operations structure to the xfs_buf.
This avoids the need for assigning the write verifier, clearing the
iodone function and re-running ioend processing in the read
verifier, and gets rid of the nasty "b_pre_io" name for the write
verifier function pointer. If we ever need to, it will also be
easier to add further content specific callbacks to a buffer with an
ops structure in place.
We also avoid needing to export verifier functions, instead we
can simply export the ops structures for those that are needed
outside the function they are defined in.
This patch also fixes a directory block readahead verifier issue
it exposed.
This patch also adds ops callbacks to the inode/alloc btree blocks
initialised by growfs. These will need more work before they will
work with CRCs.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Phil White <pwhite@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Metadata buffers that are read from disk have write verifiers
already attached to them, but newly allocated buffers do not. Add
appropriate write verifiers to all new metadata buffers.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
These verifiers are essentially the same code as the read verifiers,
but do not require ioend processing. Hence factor the read verifier
functions and add a new write verifier wrapper that is used as the
callback.
This is done as one large patch for all verifiers rather than one
patch per verifier as the change is largely mechanical. This
includes hooking up the write verifier via the read verifier
function.
Hooking up the write verifier for buffers obtained via
xfs_trans_get_buf() will be done in a separate patch as that touches
code in many different places rather than just the verifier
functions.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Add an btree block verify callback function and pass it into the
buffer read functions. Because each different btree block type
requires different verification, add a function to the ops structure
that is called from the generic code.
Also, propagate the verification callback functions through the
readahead functions, and into the external bmap and bulkstat inode
readahead code that uses the generic btree buffer read functions.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Phil White <pwhite@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Add an inode buffer verify callback function and pass it into the
buffer read functions. Inodes are special in that the verbose checks
will be done when reading the inode, but we still need to sanity
check the buffer when that is first read. Always verify the magic
numbers in all inodes in the buffer, rather than jus ton debug
kernels.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Phil White <pwhite@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Add a verifier function callback capability to the buffer read
interfaces. This will be used by the callers to supply a function
that verifies the contents of the buffer when it is read from disk.
This patch does not provide callback functions, but simply modifies
the interfaces to allow them to be called.
The reason for adding this to the read interfaces is that it is very
difficult to tell fom the outside is a buffer was just read from
disk or whether we just pulled it out of cache. Supplying a callbck
allows the buffer cache to use it's internal knowledge of the buffer
to execute it only when the buffer is read from disk.
It is intended that the verifier functions will mark the buffer with
an EFSCORRUPTED error when verification fails. This allows the
reading context to distinguish a verification error from an IO
error, and potentially take further actions on the buffer (e.g.
attempt repair) based on the error reported.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Phil White <pwhite@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
This check is used in multiple places to determine whether we
should check for (and potentially free) post EOF blocks on an
inode. Add a helper to consolidate the check.
Note that when we remove an inode from the cache (xfs_inactive()),
we are required to trim post-EOF blocks even if the inode is marked
preallocated or append-only to maintain correct space accounting.
The 'force' parameter to xfs_can_free_eofblocks() specifies whether
we should ignore the prealloc/append-only status of the inode.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Inode buffers do not need to be mapped as inodes are read or written
directly from/to the pages underlying the buffer. This fixes a
regression introduced by commit 611c994 ("xfs: make XBF_MAPPED the
default behaviour").
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
I found some out of date comments while studying the inode allocation
code, so I believe it's worth to have these comments updated.
It basically rewrites the comment regarding to "call_again" variable,
which is not used anymore, but instead, callers of xfs_ialloc() decides
if it needs to be called again relying only if ialloc_context is NULL or
not.
Also did some small changes in another comment that I thought to be
pertinent to the current behaviour of these functions and some alignment
on both comments.
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
The inode cache functions remaining in xfs_iget.c can be moved to xfs_icache.c
along with the other inode cache functions. This removes all functionality from
xfs_iget.c, so the file can simply be removed.
This move results in various functions now only having the scope of a single
file (e.g. xfs_inode_free()), so clean up all the definitions and exported
prototypes in xfs_icache.[ch] and xfs_inode.h appropriately.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
xfs_ilock() and friends really aren't related to the inode cache in
any way, so move them to xfs_inode.c with all the other inode
related functionality.
While doing this move, move the xfs_ilock() tracepoints to *before*
the lock is taken so that when a hang on a lock occurs we have
events to indicate which process and what inode we were trying to
lock when the hang occurred. This is much better than the current
silence we get on a hang...
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
An inode that enters xfs_inactive has been removed from all global
lists but the inode hash, and can't be recycled in xfs_iget before
it has been marked reclaimable. Thus taking the iolock in here
is not nessecary at all, and given the amount of lockdep false
positives it has triggered already I'd rather remove the locking.
The only change outside of xfs_inactive is relaxing an assert in
xfs_itruncate_extents.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Rich Johnston <rjohnston@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
We can simplify check the IO_agbp pointer for being non-NULL instead of
passing another argument through two layers of function calls.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
There is no need to keep this helper around, opencoding it in the only
caller is just as clear.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
All callers of xfs_imap_to_bp want the dinode pointer, so let's calculate it
inside xfs_imap_to_bp. Once that is done xfs_itobp becomes a fairly pointless
wrapper which can be replaced with direct calls to xfs_imap_to_bp.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
XFS_MAXIOFFSET() is just a simple macro that resolves to
mp->m_maxioffset. It doesn't need to exist, and it just makes the
code unnecessarily loud and shouty.
Make it quiet and easy to read.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Rather than specifying XBF_MAPPED for almost all buffers, introduce
XBF_UNMAPPED for the couple of users that use unmapped buffers.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
With the removal of xfs_rw.h and other changes over time, xfs_bit.h
is being included in many files that don't actually need it. Clean
up the includes as necessary.
Also move the only-used-once xfs_ialloc_find_free() static inline
function out of a header file that is widely included to reduce
the number of needless dependencies on xfs_bit.h.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The only thing left in xfs_rw.h is a function prototype for an inode
function. Move that to xfs_inode.h, and kill xfs_rw.h.
Also move the function implementing the prototype from xfs_rw.c to
xfs_inode.c so we only have one function left in xfs_rw.c
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
Buffers are always returned locked from the lookup routines. Hence
we don't need to tell the lookup routines to return locked buffers,
on to try and lock them. Remove XBF_LOCK from all the callers and
from internal buffer cache usage.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
xfs_trans_ail_delete_bulk() can be called from different contexts so
if the item is not in the AIL we need different shutdown for each
context. Pass in the shutdown method needed so the correct action
can be taken.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Queue delwri buffers on a local on-stack list instead of a per-buftarg one,
and write back the buffers per-process instead of by waking up xfsbufd.
This is now easily doable given that we have very few places left that write
delwri buffers:
- log recovery:
Only done at mount time, and already forcing out the buffers
synchronously using xfs_flush_buftarg
- quotacheck:
Same story.
- dquot reclaim:
Writes out dirty dquots on the LRU under memory pressure. We might
want to look into doing more of this via xfsaild, but it's already
more optimal than the synchronous inode reclaim that writes each
buffer synchronously.
- xfsaild:
This is the main beneficiary of the change. By keeping a local list
of buffers to write we reduce latency of writing out buffers, and
more importably we can remove all the delwri list promotions which
were hitting the buffer cache hard under sustained metadata loads.
The implementation is very straight forward - xfs_buf_delwri_queue now gets
a new list_head pointer that it adds the delwri buffers to, and all callers
need to eventually submit the list using xfs_buf_delwi_submit or
xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are
skipped in xfs_buf_delwri_queue, assuming they already are on another delwri
list. The biggest change to pass down the buffer list was done to the AIL
pushing. Now that we operate on buffers the trylock, push and pushbuf log
item methods are merged into a single push routine, which tries to lock the
item, and if possible add the buffer that needs writeback to the buffer list.
This leads to much simpler code than the previous split but requires the
individual IOP_PUSH instances to unlock and reacquire the AIL around calls
to blocking routines.
Given that xfsailds now also handle writing out buffers, the conditions for
log forcing and the sleep times needed some small changes. The most
important one is that we consider an AIL busy as long we still have buffers
to push, and the other one is that we do increment the pushed LSN for
buffers that are under flushing at this moment, but still count them towards
the stuck items for restart purposes. Without this we could hammer on stuck
items without ever forcing the log and not make progress under heavy random
delete workloads on fast flash storage devices.
[ Dave Chinner:
- rebase on previous patches.
- improved comments for XBF_DELWRI_Q handling
- fix XBF_ASYNC handling in queue submission (test 106 failure)
- rename delwri submit function buffer list parameters for clarity
- xfs_efd_item_push() should return XFS_ITEM_PINNED ]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Instead of writing the buffer directly from inside xfs_iflush return it to
the caller and let the caller decide what to do with the buffer. Also
remove the pincount check in xfs_iflush that all non-blocking callers already
implement and the now unused flags parameter.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
If a filesystem has been forced shutdown we are never going to write inodes
to disk, which means the inode items will stay in the AIL until we free
the inode. Currently that is not a problem, but a pending change requires us
to empty the AIL before shutting down the filesystem. In that case leaving
the inode in the AIL is lethal. Make sure to remove the log item from the AIL
to allow emptying the AIL on shutdown filesystems.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Add a new ili_fields member to the inode log item to isolate the in-memory
flags from the ones that actually go to the log. This will allow tracking
timestamp-only updates for fdatasync and O_DSYNC in the next patch and
prepares for divorcing the on-disk log format from the in-memory log item
a little further down the road.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Timestamps on regular files are the last metadata that XFS does not update
transactionally. Now that we use the delaylog mode exclusively and made
the log scode scale extremly well there is no need to bypass that code for
timestamp updates. Logging all updates allows to drop a lot of code, and
will allow for further performance improvements later on.
Note that this patch drops optimized handling of fdatasync - it will be
added back in a separate commit.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>