IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
A css (cgroup_subsys_state) is how each cgroup is represented to a
controller. As such, it can be used in hot paths across the various
subsystems different controllers are associated with.
One of the common operations is reference counting, which up until now
has been implemented using a global atomic counter and can have
significant adverse impact on scalability. For example, css refcnt
can be gotten and put multiple times by blkcg for each IO request.
For highops configurations which try to do as much per-cpu as
possible, the global frequent refcnting can be very expensive.
In general, given the various and hugely diverse paths css's end up
being used from, we need to make it cheap and highly scalable. In its
usage, css refcnting isn't very different from module refcnting.
This patch converts css refcnting to use the recently added
percpu_ref. css_get/tryget/put() directly maps to the matching
percpu_ref operations and the deactivation logic is no longer
necessary as percpu_ref already has refcnt killing.
The only complication is that as the refcnt is per-cpu,
percpu_ref_kill() in itself doesn't ensure that further tryget
operations will fail, which we need to guarantee before invoking
->css_offline()'s. This is resolved collecting kill confirmation
using percpu_ref_kill_and_confirm() and initiating the offline phase
of destruction after all css refcnt's are confirmed to be seen as
killed on all CPUs. The previous patches already splitted destruction
into two phases, so percpu_ref_kill_and_confirm() can be hooked up
easily.
This patch removes css_refcnt() which is used for rcu dereference
sanity check in css_id(). While we can add a percpu refcnt API to ask
the same question, css_id() itself is scheduled to be removed fairly
soon, so let's not bother with it. Just drop the sanity check and use
rcu_dereference_raw() instead.
v2: - init_cgroup_css() was calling percpu_ref_init() without checking
the return value. This causes two problems - the obvious lack
of error handling and percpu_ref_init() being called from
cgroup_init_subsys() before the allocators are up, which
triggers warnings but doesn't cause actual problems as the
refcnt isn't used for roots anyway. Fix both by moving
percpu_ref_init() to cgroup_create().
- The base references were put too early by
percpu_ref_kill_and_confirm() and cgroup_offline_fn() put the
refs one extra time. This wasn't noticeable because css's go
through another RCU grace period before being freed. Update
cgroup_destroy_locked() to grab an extra reference before
killing the refcnts. This problem was noticed by Kent.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Kent Overstreet <koverstreet@google.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Mike Snitzer <snitzer@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: "Alasdair G. Kergon" <agk@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Mikulas Patocka <mpatocka@redhat.com>
Cc: Glauber Costa <glommer@gmail.com>
Split cgroup_destroy_locked() into two steps and put the latter half
into cgroup_offline_fn() which is executed from a work item. The
latter half is responsible for offlining the css's, removing the
cgroup from internal lists, and propagating release notification to
the parent. The separation is to allow using percpu refcnt for css.
Note that this allows for other cgroup operations to happen between
the first and second halves of destruction, including creating a new
cgroup with the same name. As the target cgroup is marked DEAD in the
first half and cgroup internals don't care about the names of cgroups,
this should be fine. A comment explaining this will be added by the
next patch which implements the actual percpu refcnting.
As RCU freeing is guaranteed to happen after the second step of
destruction, we can use the same work item for both. This patch
renames cgroup->free_work to ->destroy_work and uses it for both
purposes. INIT_WORK() is now performed right before queueing the work
item.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
This patch reorders the operations in cgroup_destroy_locked() such
that the userland visible parts happen before css offlining and
removal from the ->sibling list. This will be used to make css use
percpu refcnt.
While at it, split out CGRP_DEAD related comment from the refcnt
deactivation one and correct / clarify how different guarantees are
met.
While this patch changes the specific order of operations, it
shouldn't cause any noticeable behavior difference.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
cgroup->count tracks the number of css_sets associated with the cgroup
and used only to verify that no css_set is associated when the cgroup
is being destroyed. It's superflous as the destruction path can
simply check whether cgroup->cset_links is empty instead.
Drop cgroup->count and check ->cset_links directly from
cgroup_destroy_locked().
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
__put_css_set() does RCU read access on @cgrp across dropping
@cgrp->count so that it can continue accessing @cgrp even if the count
reached zero and destruction of the cgroup commenced. Given that both
sides - __css_put() and cgroup_destroy_locked() - are cold paths, this
is unnecessary. Just making cgroup_destroy_locked() grab css_set_lock
while checking @cgrp->count is enough.
Remove the RCU read locking from __put_css_set() and make
cgroup_destroy_locked() read-lock css_set_lock when checking
@cgrp->count. This will also allow removing @cgrp->count.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
We will add another flag indicating that the cgroup is in the process
of being killed. REMOVING / REMOVED is more difficult to distinguish
and cgroup_is_removing()/cgroup_is_removed() are a bit awkward. Also,
later percpu_ref usage will involve "kill"ing the refcnt.
s/CGRP_REMOVED/CGRP_DEAD/
s/cgroup_is_removed()/cgroup_is_dead()
This patch is purely cosmetic.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
There's no point in using kmalloc() instead of the clearing variant
for trivial stuff. We can live dangerously elsewhere. Use kzalloc()
instead and drop 0 inits.
While at it, do trivial code reorganization in cgroup_file_open().
This patch doesn't introduce any functional changes.
v2: I was caught in the very distant past where list_del() didn't
poison and the initial version converted list_del()s to
list_del_init()s too. Li and Kent took me out of the stasis
chamber.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Kent Overstreet <koverstreet@google.com>
Acked-by: Li Zefan <lizefan@huawei.com>
cgroups and css_sets are mapped M:N and this M:N mapping is
represented by struct cg_cgroup_link which forms linked lists on both
sides. The naming around this mapping is already confusing and struct
cg_cgroup_link exacerbates the situation quite a bit.
>From cgroup side, it starts off ->css_sets and runs through
->cgrp_link_list. From css_set side, it starts off ->cg_links and
runs through ->cg_link_list. This is rather reversed as
cgrp_link_list is used to iterate css_sets and cg_link_list cgroups.
Also, this is the only place which is still using the confusing "cg"
for css_sets. This patch cleans it up a bit.
* s/cgroup->css_sets/cgroup->cset_links/
s/css_set->cg_links/css_set->cgrp_links/
s/cgroup_iter->cg_link/cgroup_iter->cset_link/
* s/cg_cgroup_link/cgrp_cset_link/
* s/cgrp_cset_link->cg/cgrp_cset_link->cset/
s/cgrp_cset_link->cgrp_link_list/cgrp_cset_link->cset_link/
s/cgrp_cset_link->cg_link_list/cgrp_cset_link->cgrp_link/
* s/init_css_set_link/init_cgrp_cset_link/
s/free_cg_links/free_cgrp_cset_links/
s/allocate_cg_links/allocate_cgrp_cset_links/
* s/cgl[12]/link[12]/ in compare_css_sets()
* s/saved_link/tmp_link/ s/tmp/tmp_links/ and a couple similar
adustments.
* Comment and whiteline adjustments.
After the changes, we have
list_for_each_entry(link, &cont->cset_links, cset_link) {
struct css_set *cset = link->cset;
instead of
list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
struct css_set *cset = link->cg;
This patch is purely cosmetic.
v2: Fix broken sentences in the patch description.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
cgroup.c uses @cg for most struct css_set variables, which in itself
could be a bit confusing, but made much worse by the fact that there
are places which use @cg for struct cgroup variables.
compare_css_sets() epitomizes this confusion - @[old_]cg are struct
css_set while @cg[12] are struct cgroup.
It's not like the whole deal with cgroup, css_set and cg_cgroup_link
isn't already confusing enough. Let's give it some sanity by
uniformly using @cset for all struct css_set variables.
* s/cg/cset/ for all css_set variables.
* s/oldcg/old_cset/ s/oldcgrp/old_cgrp/. The same for the ones
prefixed with "new".
* s/cg/cgrp/ for cgroup variables in compare_css_sets().
* s/css/cset/ for the cgroup variable in task_cgroup_from_root().
* Whiteline adjustments.
This patch is purely cosmetic.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
* Rename it from files[] (really?) to cgroup_base_files[].
* Drop CGROUP_FILE_GENERIC_PREFIX which was defined as "cgroup." and
used inconsistently. Just use "cgroup." directly.
* Collect insane files at the end. Note that only the insane ones are
missing "cgroup." prefix.
This patch doesn't introduce any functional changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
The empty cgroup notification mechanism currently implemented in
cgroup is tragically outdated. Forking and execing userland process
stopped being a viable notification mechanism more than a decade ago.
We're gonna have a saner mechanism. Let's make it clear that this
abomination is going away.
Mark "notify_on_release" and "release_agent" with CFTYPE_INSANE.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Some resources controlled by cgroup aren't per-task and cgroup core
allowing threads of a single thread_group to be in different cgroups
forced memcg do explicitly find the group leader and use it. This is
gonna be nasty when transitioning to unified hierarchy and in general
we don't want and won't support granularity finer than processes.
Mark "tasks" with CFTYPE_INSANE.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: cgroups@vger.kernel.org
Cc: Vivek Goyal <vgoyal@redhat.com>
With the new __DEVEL__sane_behavior mount option was introduced,
if the root cgroup is alive with no xattr function, to mount a
new cgroup with xattr will be rejected in terms of design which
just fine. However, if the root cgroup does not mounted with
__DEVEL__sane_hehavior, to create a new cgroup with xattr option
will succeed although after that the EA function does not works
as expected but will get ENOTSUPP for setting up attributes under
either cgroup. e.g.
setfattr: /cgroup2/test: Operation not supported
Instead of keeping silence in this case, it's better to drop a log
entry in warning level. That would be helpful to understand the
reason behind the scene from the user's perspective, and this is
essentially an improvement does not break the backward compatibilities.
With this fix, above mount attemption will keep up works as usual but
the following line cound be found at the system log:
[ ...] cgroup: new mount options do not match the existing superblock
tj: minor formatting / message updates.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Reported-by: Alexey Kodanev <alexey.kodanev@oracle.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@vger.kernel.org
This patch converts cgroup_for_each_child(),
cgroup_next_descendant_pre/post() and thus
cgroup_for_each_descendant_pre/post() to use cgroup_next_sibling()
instead of manually dereferencing ->sibling.next.
The only reason the iterators couldn't allow dropping RCU read lock
while iteration is in progress was because they couldn't determine the
next sibling safely once RCU read lock is dropped. Using
cgroup_next_sibling() removes that problem and enables all iterators
to allow dropping RCU read lock in the middle. Comments are updated
accordingly.
This makes the iterators easier to use and will simplify controllers.
Note that @cgroup argument is renamed to @cgrp in
cgroup_for_each_child() because it conflicts with "struct cgroup" used
in the new macro body.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Currently, there's no easy way to find out the next sibling cgroup
unless it's known that the current cgroup is accessed from the
parent's children list in a single RCU critical section. This in turn
forces all iterators to require whole iteration to be enclosed in a
single RCU critical section, which sometimes is too restrictive. This
patch implements cgroup_next_sibling() which can reliably determine
the next sibling regardless of the state of the current cgroup as long
as it's accessible.
It currently is impossible to determine the next sibling after
dropping RCU read lock because the cgroup being iterated could be
removed anytime and if RCU read lock is dropped, nothing guarantess
its ->sibling.next pointer is accessible. A removed cgroup would
continue to point to its next sibling for RCU accesses but stop
receiving updates from the sibling. IOW, the next sibling could be
removed and then complete its grace period while RCU read lock is
dropped, making it unsafe to dereference ->sibling.next after dropping
and re-acquiring RCU read lock.
This can be solved by adding a way to traverse to the next sibling
without dereferencing ->sibling.next. This patch adds a monotonically
increasing cgroup serial number, cgroup->serial_nr, which guarantees
that all cgroup->children lists are kept in increasing serial_nr
order. A new function, cgroup_next_sibling(), is implemented, which,
if CGRP_REMOVED is not set on the current cgroup, follows
->sibling.next; otherwise, traverses the parent's ->children list
until it sees a sibling with higher ->serial_nr.
This allows the function to always return the next sibling regardless
of the state of the current cgroup without adding overhead in the fast
path.
Further patches will update the iterators to use cgroup_next_sibling()
so that they allow dropping RCU read lock and blocking while iteration
is in progress which in turn will be used to simplify controllers.
v2: Typo fix as per Serge.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com>
cgroup_is_removed() no longer has external users and it shouldn't grow
any - controllers should deal with cgroup_subsys_state on/offline
state instead of cgroup removal state. Make it static.
While at it, make it return bool.
Signed-off-by: Tejun Heo <tj@kernel.org>
Merging to receive 7805d000db ("cgroup: fix a subtle bug in descendant
pre-order walk") so that further iterator updates can build upon it.
Signed-off-by: Tejun Heo <tj@kernel.org>
When cgroup_next_descendant_pre() initiates a walk, it checks whether
the subtree root doesn't have any children and if not returns NULL.
Later code assumes that the subtree isn't empty. This is broken
because the subtree may become empty inbetween, which can lead to the
traversal escaping the subtree by walking to the sibling of the
subtree root.
There's no reason to have the early exit path. Remove it along with
the later assumption that the subtree isn't empty. This simplifies
the code a bit and fixes the subtle bug.
While at it, fix the comment of cgroup_for_each_descendant_pre() which
was incorrectly referring to ->css_offline() instead of
->css_online().
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: stable@vger.kernel.org
kdbus folks want a sane way to determine the cgroup path that a given
task belongs to on a given hierarchy, which is a reasonble thing to
expect from cgroup core.
Implement task_cgroup_path_from_hierarchy().
v2: Dropped unnecessary NULL check on the return value of
task_cgroup_from_root() as suggested by Li Zefan.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Greg Kroah-Hartman <greg@kroah.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Kay Sievers <kay@vrfy.org>
Cc: Lennart Poettering <lennart@poettering.net>
Cc: Daniel Mack <daniel@zonque.org>
We want to be able to lookup a hierarchy from its id and cyclic
allocation is a whole lot simpler with idr. Convert to idr and use
idr_alloc_cyclc().
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Now that hierarchy_id alloc / free are protected by the cgroup
mutexes, there's no need for this separate lock. Drop it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
We're planning to converting hierarchy_ida to an idr and use it to
look up hierarchy from its id. As we want the mapping to happen
atomically with cgroupfs_root registration, this patch refactors
hierarchy_id init / exit so that ida operations happen inside
cgroup_[root_]mutex.
* s/init_root_id()/cgroup_init_root_id()/ and make it return 0 or
-errno like a normal function.
* Move hierarchy_id initialization from cgroup_root_from_opts() into
cgroup_mount() block where the root is confirmed to be used and
being registered while holding both mutexes.
* Split cgroup_drop_id() into cgroup_exit_root_id() and
cgroup_free_root(), so that ID release can happen before dropping
the mutexes in cgroup_kill_sb(). The latter expects hierarchy_id to
be exited before being invoked.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
cgroup_create_file() calls d_instantiate(), which may decide to look
at the xattrs on the file. Smack always does this and SELinux can be
configured to do so.
But cgroup_add_file() didn't initialize xattrs before calling
cgroup_create_file(), which finally leads to dereferencing NULL
dentry->d_fsdata.
This bug has been there since cgroup xattr was introduced.
Cc: <stable@vger.kernel.org> # 3.8.x
Reported-by: Ivan Bulatovic <combuster@archlinux.us>
Reported-by: Casey Schaufler <casey@schaufler-ca.com>
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Pull VFS updates from Al Viro,
Misc cleanups all over the place, mainly wrt /proc interfaces (switch
create_proc_entry to proc_create(), get rid of the deprecated
create_proc_read_entry() in favor of using proc_create_data() and
seq_file etc).
7kloc removed.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (204 commits)
don't bother with deferred freeing of fdtables
proc: Move non-public stuff from linux/proc_fs.h to fs/proc/internal.h
proc: Make the PROC_I() and PDE() macros internal to procfs
proc: Supply a function to remove a proc entry by PDE
take cgroup_open() and cpuset_open() to fs/proc/base.c
ppc: Clean up scanlog
ppc: Clean up rtas_flash driver somewhat
hostap: proc: Use remove_proc_subtree()
drm: proc: Use remove_proc_subtree()
drm: proc: Use minor->index to label things, not PDE->name
drm: Constify drm_proc_list[]
zoran: Don't print proc_dir_entry data in debug
reiserfs: Don't access the proc_dir_entry in r_open(), r_start() r_show()
proc: Supply an accessor for getting the data from a PDE's parent
airo: Use remove_proc_subtree()
rtl8192u: Don't need to save device proc dir PDE
rtl8187se: Use a dir under /proc/net/r8180/
proc: Add proc_mkdir_data()
proc: Move some bits from linux/proc_fs.h to linux/{of.h,signal.h,tty.h}
proc: Move PDE_NET() to fs/proc/proc_net.c
...
Pull scheduler changes from Ingo Molnar:
"The main changes in this development cycle were:
- full dynticks preparatory work by Frederic Weisbecker
- factor out the cpu time accounting code better, by Li Zefan
- multi-CPU load balancer cleanups and improvements by Joonsoo Kim
- various smaller fixes and cleanups"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (45 commits)
sched: Fix init NOHZ_IDLE flag
sched: Prevent to re-select dst-cpu in load_balance()
sched: Rename load_balance_tmpmask to load_balance_mask
sched: Move up affinity check to mitigate useless redoing overhead
sched: Don't consider other cpus in our group in case of NEWLY_IDLE
sched: Explicitly cpu_idle_type checking in rebalance_domains()
sched: Change position of resched_cpu() in load_balance()
sched: Fix wrong rq's runnable_avg update with rt tasks
sched: Document task_struct::personality field
sched/cpuacct/UML: Fix header file dependency bug on the UML build
cgroup: Kill subsys.active flag
sched/cpuacct: No need to check subsys active state
sched/cpuacct: Initialize cpuacct subsystem earlier
sched/cpuacct: Initialize root cpuacct earlier
sched/cpuacct: Allocate per_cpu cpuusage for root cpuacct statically
sched/cpuacct: Clean up cpuacct.h
sched/cpuacct: Remove redundant NULL checks in cpuacct_acount_field()
sched/cpuacct: Remove redundant NULL checks in cpuacct_charge()
sched/cpuacct: Add cpuacct_acount_field()
sched/cpuacct: Add cpuacct_init()
...
Pull cgroup updates from Tejun Heo:
- Fixes and a lot of cleanups. Locking cleanup is finally complete.
cgroup_mutex is no longer exposed to individual controlelrs which
used to cause nasty deadlock issues. Li fixed and cleaned up quite a
bit including long standing ones like racy cgroup_path().
- device cgroup now supports proper hierarchy thanks to Aristeu.
- perf_event cgroup now supports proper hierarchy.
- A new mount option "__DEVEL__sane_behavior" is added. As indicated
by the name, this option is to be used for development only at this
point and generates a warning message when used. Unfortunately,
cgroup interface currently has too many brekages and inconsistencies
to implement a consistent and unified hierarchy on top. The new flag
is used to collect the behavior changes which are necessary to
implement consistent unified hierarchy. It's likely that this flag
won't be used verbatim when it becomes ready but will be enabled
implicitly along with unified hierarchy.
The option currently disables some of broken behaviors in cgroup core
and also .use_hierarchy switch in memcg (will be routed through -mm),
which can be used to make very unusual hierarchy where nesting is
partially honored. It will also be used to implement hierarchy
support for blk-throttle which would be impossible otherwise without
introducing a full separate set of control knobs.
This is essentially versioning of interface which isn't very nice but
at this point I can't see any other options which would allow keeping
the interface the same while moving towards hierarchy behavior which
is at least somewhat sane. The planned unified hierarchy is likely
to require some level of adaptation from userland anyway, so I think
it'd be best to take the chance and update the interface such that
it's supportable in the long term.
Maintaining the existing interface does complicate cgroup core but
shouldn't put too much strain on individual controllers and I think
it'd be manageable for the foreseeable future. Maybe we'll be able
to drop it in a decade.
Fix up conflicts (including a semantic one adding a new #include to ppc
that was uncovered by header the file changes) as per Tejun.
* 'for-3.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (45 commits)
cpuset: fix compile warning when CONFIG_SMP=n
cpuset: fix cpu hotplug vs rebuild_sched_domains() race
cpuset: use rebuild_sched_domains() in cpuset_hotplug_workfn()
cgroup: restore the call to eventfd->poll()
cgroup: fix use-after-free when umounting cgroupfs
cgroup: fix broken file xattrs
devcg: remove parent_cgroup.
memcg: force use_hierarchy if sane_behavior
cgroup: remove cgrp->top_cgroup
cgroup: introduce sane_behavior mount option
move cgroupfs_root to include/linux/cgroup.h
cgroup: convert cgroupfs_root flag bits to masks and add CGRP_ prefix
cgroup: make cgroup_path() not print double slashes
Revert "cgroup: remove bind() method from cgroup_subsys."
perf: make perf_event cgroup hierarchical
cgroup: implement cgroup_is_descendant()
cgroup: make sure parent won't be destroyed before its children
cgroup: remove bind() method from cgroup_subsys.
devcg: remove broken_hierarchy tag
cgroup: remove cgroup_lock_is_held()
...
Pull workqueue updates from Tejun Heo:
"A lot of activities on workqueue side this time. The changes achieve
the followings.
- WQ_UNBOUND workqueues - the workqueues which are per-cpu - are
updated to be able to interface with multiple backend worker pools.
This involved a lot of churning but the end result seems actually
neater as unbound workqueues are now a lot closer to per-cpu ones.
- The ability to interface with multiple backend worker pools are
used to implement unbound workqueues with custom attributes.
Currently the supported attributes are the nice level and CPU
affinity. It may be expanded to include cgroup association in
future. The attributes can be specified either by calling
apply_workqueue_attrs() or through /sys/bus/workqueue/WQ_NAME/* if
the workqueue in question is exported through sysfs.
The backend worker pools are keyed by the actual attributes and
shared by any workqueues which share the same attributes. When
attributes of a workqueue are changed, the workqueue binds to the
worker pool with the specified attributes while leaving the work
items which are already executing in its previous worker pools
alone.
This allows converting custom worker pool implementations which
want worker attribute tuning to use workqueues. The writeback pool
is already converted in block tree and there are a couple others
are likely to follow including btrfs io workers.
- WQ_UNBOUND's ability to bind to multiple worker pools is also used
to make it NUMA-aware. Because there's no association between work
item issuer and the specific worker assigned to execute it, before
this change, using unbound workqueue led to unnecessary cross-node
bouncing and it couldn't be helped by autonuma as it requires tasks
to have implicit node affinity and workers are assigned randomly.
After these changes, an unbound workqueue now binds to multiple
NUMA-affine worker pools so that queued work items are executed in
the same node. This is turned on by default but can be disabled
system-wide or for individual workqueues.
Crypto was requesting NUMA affinity as encrypting data across
different nodes can contribute noticeable overhead and doing it
per-cpu was too limiting for certain cases and IO throughput could
be bottlenecked by one CPU being fully occupied while others have
idle cycles.
While the new features required a lot of changes including
restructuring locking, it didn't complicate the execution paths much.
The unbound workqueue handling is now closer to per-cpu ones and the
new features are implemented by simply associating a workqueue with
different sets of backend worker pools without changing queue,
execution or flush paths.
As such, even though the amount of change is very high, I feel
relatively safe in that it isn't likely to cause subtle issues with
basic correctness of work item execution and handling. If something
is wrong, it's likely to show up as being associated with worker pools
with the wrong attributes or OOPS while workqueue attributes are being
changed or during CPU hotplug.
While this creates more backend worker pools, it doesn't add too many
more workers unless, of course, there are many workqueues with unique
combinations of attributes. Assuming everything else is the same,
NUMA awareness costs an extra worker pool per NUMA node with online
CPUs.
There are also a couple things which are being routed outside the
workqueue tree.
- block tree pulled in workqueue for-3.10 so that writeback worker
pool can be converted to unbound workqueue with sysfs control
exposed. This simplifies the code, makes writeback workers
NUMA-aware and allows tuning nice level and CPU affinity via sysfs.
- The conversion to workqueue means that there's no 1:1 association
between a specific worker, which makes writeback folks unhappy as
they want to be able to tell which filesystem caused a problem from
backtrace on systems with many filesystems mounted. This is
resolved by allowing work items to set debug info string which is
printed when the task is dumped. As this change involves unifying
implementations of dump_stack() and friends in arch codes, it's
being routed through Andrew's -mm tree."
* 'for-3.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq: (84 commits)
workqueue: use kmem_cache_free() instead of kfree()
workqueue: avoid false negative WARN_ON() in destroy_workqueue()
workqueue: update sysfs interface to reflect NUMA awareness and a kernel param to disable NUMA affinity
workqueue: implement NUMA affinity for unbound workqueues
workqueue: introduce put_pwq_unlocked()
workqueue: introduce numa_pwq_tbl_install()
workqueue: use NUMA-aware allocation for pool_workqueues
workqueue: break init_and_link_pwq() into two functions and introduce alloc_unbound_pwq()
workqueue: map an unbound workqueues to multiple per-node pool_workqueues
workqueue: move hot fields of workqueue_struct to the end
workqueue: make workqueue->name[] fixed len
workqueue: add workqueue->unbound_attrs
workqueue: determine NUMA node of workers accourding to the allowed cpumask
workqueue: drop 'H' from kworker names of unbound worker pools
workqueue: add wq_numa_tbl_len and wq_numa_possible_cpumask[]
workqueue: move pwq_pool_locking outside of get/put_unbound_pool()
workqueue: fix memory leak in apply_workqueue_attrs()
workqueue: fix unbound workqueue attrs hashing / comparison
workqueue: fix race condition in unbound workqueue free path
workqueue: remove pwq_lock which is no longer used
...
Now that we have generic and well ordered cgroup tree walkers there is
no need to keep css_get_next in the place.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Ying Han <yinghan@google.com>
Cc: Tejun Heo <htejun@gmail.com>
Cc: Glauber Costa <glommer@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I mistakenly removed the call to eventfd->poll() while I was actually
intending to remove the return value...
Calling evenfd->poll() will hook cgroup_event_wake() to the poll
waitqueue, which will be called to unregister eventfd when rmdir a
cgroup or close eventfd.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Try:
# mount -t cgroup xxx /cgroup
# mkdir /cgroup/sub && rmdir /cgroup/sub && umount /cgroup
And you might see this:
ida_remove called for id=1 which is not allocated.
It's because cgroup_kill_sb() is called to destroy root->cgroup_ida
and free cgrp->root before ida_simple_removed() is called. What's
worse is we're accessing cgrp->root while it has been freed.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
We should store file xattrs in struct cfent instead of struct cftype,
because cftype is a type while cfent is object instance of cftype.
For example each cgroup has a tasks file, and each tasks file is
associated with a uniq cfent, but all those files share the same
struct cftype.
Alexey Kodanev reported a crash, which can be reproduced:
# mount -t cgroup -o xattr /sys/fs/cgroup
# mkdir /sys/fs/cgroup/test
# setfattr -n trusted.value -v test_value /sys/fs/cgroup/tasks
# rmdir /sys/fs/cgroup/test
# umount /sys/fs/cgroup
oops!
In this case, simple_xattrs_free() will free the same struct simple_xattrs
twice.
tj: Dropped unused local variable @cft from cgroup_diput().
Cc: <stable@vger.kernel.org> # 3.8.x
Reported-by: Alexey Kodanev <alexey.kodanev@oracle.com>
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
It's not used, and it can be retrieved via cgrp->root->top_cgroup.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
It's a sad fact that at this point various cgroup controllers are
carrying so many idiosyncrasies and pure insanities that it simply
isn't possible to reach any sort of sane consistent behavior while
maintaining staying fully compatible with what already has been
exposed to userland.
As we can't break exposed userland interface, transitioning to sane
behaviors can only be done in steps while maintaining backwards
compatibility. This patch introduces a new mount option -
__DEVEL__sane_behavior - which disables crazy features and enforces
consistent behaviors in cgroup core proper and various controllers.
As exactly which behaviors it changes are still being determined, the
mount option, at this point, is useful only for development of the new
behaviors. As such, the mount option is prefixed with __DEVEL__ and
generates a warning message when used.
Eventually, once we get to the point where all controller's behaviors
are consistent enough to implement unified hierarchy, the __DEVEL__
prefix will be dropped, and more importantly, unified-hierarchy will
enforce sane_behavior by default. Maybe we'll able to completely drop
the crazy stuff after a while, maybe not, but we at least have a
strategy to move on to saner behaviors.
This patch introduces the mount option and changes the following
behaviors in cgroup core.
* Mount options "noprefix" and "clone_children" are disallowed. Also,
cgroupfs file cgroup.clone_children is not created.
* When mounting an existing superblock, mount options should match.
This is currently pretty crazy. If one mounts a cgroup, creates a
subdirectory, unmounts it and then mount it again with different
option, it looks like the new options are applied but they aren't.
* Remount is disallowed.
The behaviors changes are documented in the comment above
CGRP_ROOT_SANE_BEHAVIOR enum and will be expanded as different
controllers are converted and planned improvements progress.
v2: Dropped unnecessary explicit file permission setting sane_behavior
cftype entry as suggested by Li Zefan.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vivek Goyal <vgoyal@redhat.com>
While controllers shouldn't be accessing cgroupfs_root directly, it
being hidden inside kern/cgroup.c makes somethings pretty silly. This
makes routing hierarchy-wide settings which need to be visible to
controllers cumbersome.
We're gonna add another hierarchy-wide setting which needs to be
accessed from controllers. Move cgroupfs_root and its flags to the
header file so that we can access root settings with inline helpers.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com>
Acked-by: Li Zefan <lizefan@huawei.com>
There's no reason to be using bitops, which tends to be more
cumbersome, to handle root flags. Convert them to masks. Also, as
they'll be moved to include/linux/cgroup.h and it's generally a good
idea, add CGRP_ prefix.
Note that flags are assigned from (1 << 1). The first bit will be
used by a flag which will be added soon.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com>
Acked-by: Li Zefan <lizefan@huawei.com>
While reimplementing cgroup_path(), 65dff759d2 ("cgroup: fix
cgroup_path() vs rename() race") introduced a bug where the path of a
non-root cgroup would have two slahses at the beginning, which is
caused by treating the root cgroup which has the name '/' like
non-root cgroups.
$ grep systemd /proc/self/cgroup
1:name=systemd://user/root/1
Fix it by special casing root cgroup case and not looping over it in
the normal path.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Li Zefan <lizefan@huawei.com>
This reverts commit 84cfb6ab484b442d5115eb3baf9db7d74a3ea626. There
are scheduled changes which make use of the removed callback.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Rami Rosen <ramirose@gmail.com>
Cc: Li Zefan <lizefan@huawei.com>
A couple controllers want to determine whether two cgroups are in
ancestor/descendant relationship. As it's more likely that the
descendant is the primary subject of interest and there are other
operations focusing on the descendants, let's ask is_descendent rather
than is_ancestor.
Implementation is trivial as the previous patch guarantees that all
ancestors of a cgroup stay accessible as long as the cgroup is
accessible.
tj: Removed depth optimization, renamed from cgroup_is_ancestor(),
rewrote descriptions.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Suppose we rmdir a cgroup and there're still css refs, this cgroup won't
be freed. Then we rmdir the parent cgroup, and the parent is freed
immediately due to css ref draining to 0. Now it would be a disaster if
the still-alive child cgroup tries to access its parent.
Make sure this won't happen.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
The bind() method of cgroup_subsys is not used in any of the
controllers (cpuset, freezer, blkio, net_cls, memcg, net_prio,
devices, perf, hugetlb, cpu and cpuacct)
tj: Removed the entry on ->bind() from
Documentation/cgroups/cgroups.txt. Also updated a couple
paragraphs which were suggesting that dynamic re-binding may be
implemented. It's not gonna.
Signed-off-by: Rami Rosen <ramirose@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
The only user was cpuacct.
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Li Zefan <lizefan@huawei.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/5155385A.4040207@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We don't want controllers to assume that the information is officially
available and do funky things with it.
The only user is task_subsys_state_check() which uses it to verify RCU
access context. We can move cgroup_lock_is_held() inside
CONFIG_PROVE_RCU but that doesn't add meaningful protection compared
to conditionally exposing cgroup_mutex.
Remove cgroup_lock_is_held(), export cgroup_mutex iff CONFIG_PROVE_RCU
and use lockdep_is_held() directly on the mutex in
task_subsys_state_check().
While at it, add parentheses around macro arguments in
task_subsys_state_check().
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Now that locking interface is unexported, there's no reason to keep
around these thin wrappers. Kill them and use mutex operations
directly.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Now that all external cgroup_lock() users are gone, we can finally
unexport the locking interface and prevent future abuse of
cgroup_mutex.
Make cgroup_[un]lock() and cgroup_lock_live_group() static. Also,
cgroup_attach_task() doesn't have any user left and can't be used
without locking interface anyway. Make it static too.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
cgroup_lock_live_group() and cgroup_attach_task() are scheduled to be
made static. Relocate the former and cgroup_attach_task_all() so that
we don't need forward declarations.
This patch is pure relocation.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
When a cpuset becomes empty (no CPU or memory), its tasks are
transferred with the nearest ancestor with execution resources. This
is implemented using cgroup_scan_tasks() with a callback which grabs
cgroup_mutex and invokes cgroup_attach_task() on each task.
Both cgroup_mutex and cgroup_attach_task() are scheduled to be
unexported. Implement cgroup_transfer_tasks() in cgroup proper which
is essentially the same as move_member_tasks_to_cpuset() except that
it takes cgroups instead of cpusets and @to comes before @from like
normal functions with those arguments, and replace
move_member_tasks_to_cpuset() with it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
This patch removes unused parameter from cgroup_task_migrate().
Signed-off-by: Kevin Wilson <wkevils@gmail.com>
Acked-by: Acked-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>