IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
There's a lot of duplicated code between gcc and clang implementations,
move it over to fs.c to simplify the code, there's no reason to believe
that for small data like this one would not just implement the simple
convert_to_gcda() function.
Link: https://lkml.kernel.org/r/20210315235453.e3fbb86e99a0.I08a3ee6dbe47ea3e8024956083f162884a958e40@changeid
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Acked-by: Peter Oberparleiter <oberpar@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix the following kernel-doc issue in gcov:
kernel/gcov/gcc_4_7.c:238: warning: Function parameter or member 'dst' not described in 'gcov_info_add'
kernel/gcov/gcc_4_7.c:238: warning: Function parameter or member 'src' not described in 'gcov_info_add'
kernel/gcov/gcc_4_7.c:238: warning: Excess function parameter 'dest' description in 'gcov_info_add'
kernel/gcov/gcc_4_7.c:238: warning: Excess function parameter 'source' description in 'gcov_info_add'
Link: https://lkml.kernel.org/r/1605252352-63983-1-git-send-email-alex.shi@linux.alibaba.com
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Acked-by: Peter Oberparleiter <oberpar@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 0bddd227f3 ("Documentation: update for gcc 4.9
requirement") the minimum supported version of GCC is gcc-4.9. It's now
safe to remove this code.
Similar to commit 10415533a9 ("gcov: Remove old GCC 3.4 support") but
that was for GCC 4.8 and this is for GCC 4.9.
Link: https://github.com/ClangBuiltLinux/linux/issues/427
Link: https://lkml.kernel.org/r/20201111030557.2015680-1-ndesaulniers@google.com
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Peter Oberparleiter <oberpar@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Using gcov to collect coverage data for kernels compiled with GCC 10.1
causes random malfunctions and kernel crashes. This is the result of a
changed GCOV_COUNTERS value in GCC 10.1 that causes a mismatch between
the layout of the gcov_info structure created by GCC profiling code and
the related structure used by the kernel.
Fix this by updating the in-kernel GCOV_COUNTERS value. Also re-enable
config GCOV_KERNEL for use with GCC 10.
Reported-by: Colin Ian King <colin.king@canonical.com>
Reported-by: Leon Romanovsky <leonro@nvidia.com>
Signed-off-by: Peter Oberparleiter <oberpar@linux.ibm.com>
Tested-by: Leon Romanovsky <leonro@nvidia.com>
Tested-and-Acked-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current codebase makes use of the zero-length array language extension
to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning in
case the flexible array does not occur last in the structure, which will
help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by this
change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Peter Oberparleiter <oberpar@linux.ibm.com>
Link: http://lkml.kernel.org/r/20200213152241.GA877@embeddedor
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
LLVM uses profiling data that's deliberately similar to GCC, but has a
very different way of exporting that data. LLVM calls llvm_gcov_init()
once per module, and provides a couple of callbacks that we can use to
ask for more data.
We care about the "writeout" callback, which in turn calls back into
compiler-rt/this module to dump all the gathered coverage data to disk:
llvm_gcda_start_file()
llvm_gcda_emit_function()
llvm_gcda_emit_arcs()
llvm_gcda_emit_function()
llvm_gcda_emit_arcs()
[... repeats for each function ...]
llvm_gcda_summary_info()
llvm_gcda_end_file()
This design is much more stateless and unstructured than gcc's, and is
intended to run at process exit. This forces us to keep some local
state about which module we're dealing with at the moment. On the other
hand, it also means we don't depend as much on how LLVM represents
profiling data internally.
See LLVM's lib/Transforms/Instrumentation/GCOVProfiling.cpp for more
details on how this works, particularly GCOVProfiler::emitProfileArcs(),
GCOVProfiler::insertCounterWriteout(), and GCOVProfiler::insertFlush().
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20190417225328.208129-1-trong@android.com
Signed-off-by: Greg Hackmann <ghackmann@android.com>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Tri Vo <trong@android.com>
Co-developed-by: Nick Desaulniers <ndesaulniers@google.com>
Co-developed-by: Tri Vo <trong@android.com>
Tested-by: Trilok Soni <tsoni@quicinc.com>
Tested-by: Prasad Sodagudi <psodagud@quicinc.com>
Tested-by: Tri Vo <trong@android.com>
Tested-by: Daniel Mentz <danielmentz@google.com>
Tested-by: Petri Gynther <pgynther@google.com>
Reviewed-by: Peter Oberparleiter <oberpar@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Fix kernel gcov support for GCC 5.1. Similar to commit a992bf836f
("gcov: add support for GCC 4.9"), this patch takes into account the
existence of a new gcov counter (see gcc's gcc/gcov-counter.def.)
Firstly, it increments GCOV_COUNTERS (to 10), which makes the data
structure struct gcov_info compatible with GCC 5.1.
Secondly, a corresponding counter function __gcov_merge_icall_topn (Top N
value tracking for indirect calls) is included in base.c with the other
gcov counters unused for kernel profiling.
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Yuan Pengfei <coolypf@qq.com>
Tested-by: Peter Oberparleiter <oberpar@linux.vnet.ibm.com>
Reviewed-by: Peter Oberparleiter <oberpar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch handles the gcov-related changes in GCC 4.9:
A new counter (time profile) is added. The total number is 9 now.
A new profile merge function __gcov_merge_time_profile is added.
See gcc/gcov-io.h and libgcc/libgcov-merge.c
For the first change, the layout of struct gcov_info is affected.
For the second one, a dummy function is added to kernel/gcov/base.c
similarly.
Signed-off-by: Yuan Pengfei <coolypf@qq.com>
Acked-by: Peter Oberparleiter <oberpar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The gcov in-memory format changed in gcc 4.7. The biggest change, which
requires this special implementation, is that gcov_info no longer contains
array of counters for each counter type for all functions and gcov_fn_info
is not used for mapping of function's counters to these arrays(offset).
Now each gcov_fn_info contans it's counters, which makes things a little
bit easier.
This is heavily based on the previous gcc_3_4.c implementation and patches
provided by Peter Oberparleiter. Specially the buffer gcda implementation
for iterator.
[akpm@linux-foundation.org: use kmemdup() and kcalloc()]
[oberpar@linux.vnet.ibm.com: gcc_4_7.c needs vmalloc.h]
Signed-off-by: Frantisek Hrbata <fhrbata@redhat.com>
Cc: Jan Stancek <jstancek@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Reviewed-by: Peter Oberparleiter <peter.oberparleiter@de.ibm.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Andy Gospodarek <agospoda@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>