60 Commits

Author SHA1 Message Date
Megha Dey
8c603ff286 crypto: sha512-mb - SHA512 multibuffer job manager and glue code
This patch introduces the multi-buffer job manager which is responsible
for submitting scatter-gather buffers from several SHA512 jobs to the
multi-buffer algorithm. It also contains the flush routine that's called
by the crypto daemon to complete the job when no new jobs arrive before
the deadline of maximum latency of a SHA512 crypto job.

The SHA512 multi-buffer crypto algorithm is defined and initialized in this
patch.

Signed-off-by: Megha Dey <megha.dey@linux.intel.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2016-06-28 16:06:35 +08:00
Megha Dey
4c79f6f81a crypto: sha1-mb - rename sha-mb to sha1-mb
Until now, there was only support for the SHA1 multibuffer algorithm.
Hence, there was just one sha-mb folder. Now, with the introduction of
the SHA256 multi-buffer algorithm , it is logical to name the existing
folder as sha1-mb.

Signed-off-by: Megha Dey <megha.dey@linux.intel.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2016-06-27 16:57:47 +08:00
Megha Dey
f876f440df crypto: sha256-mb - SHA256 multibuffer job manager and glue code
This patch introduces the multi-buffer job manager which is responsible for
submitting scatter-gather buffers from several SHA256 jobs to the
multi-buffer algorithm. It also contains the flush routine to that's
called by the crypto daemon to complete the job when no new jobs arrive
before the deadline of maximum latency of a SHA256 crypto job.

The SHA256 multi-buffer crypto algorithm is defined and initialized in
this patch.

Signed-off-by: Megha Dey <megha.dey@linux.intel.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2016-06-27 16:57:41 +08:00
tim
e38b6b7fcf crypto: x86/sha - Add build support for Intel SHA Extensions optimized SHA1 and SHA256
This patch provides the configuration and build support to
include and build the optimized SHA1 and SHA256 update transforms
for the kernel's crypto library.

Originally-by: Chandramouli Narayanan <mouli_7982@yahoo.com>
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-09-21 22:01:06 +08:00
Martin Willi
b1ccc8f4b6 crypto: poly1305 - Add a four block AVX2 variant for x86_64
Extends the x86_64 Poly1305 authenticator by a function processing four
consecutive Poly1305 blocks in parallel using AVX2 instructions.

For large messages, throughput increases by ~15-45% compared to two
block SSE2:

testing speed of poly1305 (poly1305-simd)
test  0 (   96 byte blocks,   16 bytes per update,   6 updates): 3809514 opers/sec,  365713411 bytes/sec
test  1 (   96 byte blocks,   32 bytes per update,   3 updates): 5973423 opers/sec,  573448627 bytes/sec
test  2 (   96 byte blocks,   96 bytes per update,   1 updates): 9446779 opers/sec,  906890803 bytes/sec
test  3 (  288 byte blocks,   16 bytes per update,  18 updates): 1364814 opers/sec,  393066691 bytes/sec
test  4 (  288 byte blocks,   32 bytes per update,   9 updates): 2045780 opers/sec,  589184697 bytes/sec
test  5 (  288 byte blocks,  288 bytes per update,   1 updates): 3711946 opers/sec, 1069040592 bytes/sec
test  6 ( 1056 byte blocks,   32 bytes per update,  33 updates):  573686 opers/sec,  605812732 bytes/sec
test  7 ( 1056 byte blocks, 1056 bytes per update,   1 updates): 1647802 opers/sec, 1740079440 bytes/sec
test  8 ( 2080 byte blocks,   32 bytes per update,  65 updates):  292970 opers/sec,  609378224 bytes/sec
test  9 ( 2080 byte blocks, 2080 bytes per update,   1 updates):  943229 opers/sec, 1961916528 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update,   1 updates):  494623 opers/sec, 2041804569 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update,   1 updates):  254045 opers/sec, 2089271014 bytes/sec

testing speed of poly1305 (poly1305-simd)
test  0 (   96 byte blocks,   16 bytes per update,   6 updates): 3826224 opers/sec,  367317552 bytes/sec
test  1 (   96 byte blocks,   32 bytes per update,   3 updates): 5948638 opers/sec,  571069267 bytes/sec
test  2 (   96 byte blocks,   96 bytes per update,   1 updates): 9439110 opers/sec,  906154627 bytes/sec
test  3 (  288 byte blocks,   16 bytes per update,  18 updates): 1367756 opers/sec,  393913872 bytes/sec
test  4 (  288 byte blocks,   32 bytes per update,   9 updates): 2056881 opers/sec,  592381958 bytes/sec
test  5 (  288 byte blocks,  288 bytes per update,   1 updates): 3711153 opers/sec, 1068812179 bytes/sec
test  6 ( 1056 byte blocks,   32 bytes per update,  33 updates):  574940 opers/sec,  607136745 bytes/sec
test  7 ( 1056 byte blocks, 1056 bytes per update,   1 updates): 1948830 opers/sec, 2057964585 bytes/sec
test  8 ( 2080 byte blocks,   32 bytes per update,  65 updates):  293308 opers/sec,  610082096 bytes/sec
test  9 ( 2080 byte blocks, 2080 bytes per update,   1 updates): 1235224 opers/sec, 2569267792 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update,   1 updates):  684405 opers/sec, 2825226316 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update,   1 updates):  367101 opers/sec, 3019039446 bytes/sec

Benchmark results from a Core i5-4670T.

Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 21:20:29 +08:00
Martin Willi
c70f4abef0 crypto: poly1305 - Add a SSE2 SIMD variant for x86_64
Implements an x86_64 assembler driver for the Poly1305 authenticator. This
single block variant holds the 130-bit integer in 5 32-bit words, but uses
SSE to do two multiplications/additions in parallel.

When calling updates with small blocks, the overhead for kernel_fpu_begin/
kernel_fpu_end() negates the perfmance gain. We therefore use the
poly1305-generic fallback for small updates.

For large messages, throughput increases by ~5-10% compared to
poly1305-generic:

testing speed of poly1305 (poly1305-generic)
test  0 (   96 byte blocks,   16 bytes per update,   6 updates): 4080026 opers/sec,  391682496 bytes/sec
test  1 (   96 byte blocks,   32 bytes per update,   3 updates): 6221094 opers/sec,  597225024 bytes/sec
test  2 (   96 byte blocks,   96 bytes per update,   1 updates): 9609750 opers/sec,  922536057 bytes/sec
test  3 (  288 byte blocks,   16 bytes per update,  18 updates): 1459379 opers/sec,  420301267 bytes/sec
test  4 (  288 byte blocks,   32 bytes per update,   9 updates): 2115179 opers/sec,  609171609 bytes/sec
test  5 (  288 byte blocks,  288 bytes per update,   1 updates): 3729874 opers/sec, 1074203856 bytes/sec
test  6 ( 1056 byte blocks,   32 bytes per update,  33 updates):  593000 opers/sec,  626208000 bytes/sec
test  7 ( 1056 byte blocks, 1056 bytes per update,   1 updates): 1081536 opers/sec, 1142102332 bytes/sec
test  8 ( 2080 byte blocks,   32 bytes per update,  65 updates):  302077 opers/sec,  628320576 bytes/sec
test  9 ( 2080 byte blocks, 2080 bytes per update,   1 updates):  554384 opers/sec, 1153120176 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update,   1 updates):  278715 opers/sec, 1150536345 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update,   1 updates):  140202 opers/sec, 1153022070 bytes/sec

testing speed of poly1305 (poly1305-simd)
test  0 (   96 byte blocks,   16 bytes per update,   6 updates): 3790063 opers/sec,  363846076 bytes/sec
test  1 (   96 byte blocks,   32 bytes per update,   3 updates): 5913378 opers/sec,  567684355 bytes/sec
test  2 (   96 byte blocks,   96 bytes per update,   1 updates): 9352574 opers/sec,  897847104 bytes/sec
test  3 (  288 byte blocks,   16 bytes per update,  18 updates): 1362145 opers/sec,  392297990 bytes/sec
test  4 (  288 byte blocks,   32 bytes per update,   9 updates): 2007075 opers/sec,  578037628 bytes/sec
test  5 (  288 byte blocks,  288 bytes per update,   1 updates): 3709811 opers/sec, 1068425798 bytes/sec
test  6 ( 1056 byte blocks,   32 bytes per update,  33 updates):  566272 opers/sec,  597984182 bytes/sec
test  7 ( 1056 byte blocks, 1056 bytes per update,   1 updates): 1111657 opers/sec, 1173910108 bytes/sec
test  8 ( 2080 byte blocks,   32 bytes per update,  65 updates):  288857 opers/sec,  600823808 bytes/sec
test  9 ( 2080 byte blocks, 2080 bytes per update,   1 updates):  590746 opers/sec, 1228751888 bytes/sec
test 10 ( 4128 byte blocks, 4128 bytes per update,   1 updates):  301825 opers/sec, 1245936902 bytes/sec
test 11 ( 8224 byte blocks, 8224 bytes per update,   1 updates):  153075 opers/sec, 1258896201 bytes/sec

Benchmark results from a Core i5-4670T.

Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 21:20:27 +08:00
Martin Willi
3d1e93cdf1 crypto: chacha20 - Add an eight block AVX2 variant for x86_64
Extends the x86_64 ChaCha20 implementation by a function processing eight
ChaCha20 blocks in parallel using AVX2.

For large messages, throughput increases by ~55-70% compared to four block
SSSE3:

testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)

testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 41999675 operations in 10 seconds (671994800 bytes)
test 1 (256 bit key, 64 byte blocks): 45805908 operations in 10 seconds (2931578112 bytes)
test 2 (256 bit key, 256 byte blocks): 32814947 operations in 10 seconds (8400626432 bytes)
test 3 (256 bit key, 1024 byte blocks): 19777167 operations in 10 seconds (20251819008 bytes)
test 4 (256 bit key, 8192 byte blocks): 2279321 operations in 10 seconds (18672197632 bytes)

Benchmark results from a Core i5-4670T.

Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 21:20:25 +08:00
Martin Willi
c9320b6dcb crypto: chacha20 - Add a SSSE3 SIMD variant for x86_64
Implements an x86_64 assembler driver for the ChaCha20 stream cipher. This
single block variant works on a single state matrix using SSE instructions.
It requires SSSE3 due the use of pshufb for efficient 8/16-bit rotate
operations.

For large messages, throughput increases by ~65% compared to
chacha20-generic:

testing speed of chacha20 (chacha20-generic) encryption
test 0 (256 bit key, 16 byte blocks): 45089207 operations in 10 seconds (721427312 bytes)
test 1 (256 bit key, 64 byte blocks): 43839521 operations in 10 seconds (2805729344 bytes)
test 2 (256 bit key, 256 byte blocks): 12702056 operations in 10 seconds (3251726336 bytes)
test 3 (256 bit key, 1024 byte blocks): 3371173 operations in 10 seconds (3452081152 bytes)
test 4 (256 bit key, 8192 byte blocks): 422468 operations in 10 seconds (3460857856 bytes)

testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)

Benchmark results from a Core i5-4670T.

Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-17 21:20:24 +08:00
Vinson Lee
0b8c960cf6 crypto: sha-mb - Add avx2_supported check.
This patch fixes this allyesconfig target build error with older
binutils.

  LD      arch/x86/crypto/built-in.o
ld: arch/x86/crypto/sha-mb/built-in.o: No such file: No such file or directory

Cc: stable@vger.kernel.org # 3.18+
Signed-off-by: Vinson Lee <vlee@twitter.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-01-05 21:35:02 +11:00
Tim Chen
ad61e042e9 crypto: sha-mb - SHA1 multibuffer job manager and glue code
This patch introduces the multi-buffer job manager which is responsible
for submitting scatter-gather buffers from several SHA1 jobs to the
multi-buffer algorithm.  It also contains the flush routine to that's
called by the crypto daemon to complete the job when no new jobs arrive
before the deadline of maximum latency of a SHA1 crypto job.

The SHA1 multi-buffer crypto algorithm is defined and initialized in
this patch.

Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-08-25 20:32:30 +08:00
chandramouli narayanan
22cddcc7df crypto: aes - AES CTR x86_64 "by8" AVX optimization
This patch introduces "by8" AES CTR mode AVX optimization inspired by
Intel Optimized IPSEC Cryptograhpic library. For additional information,
please see:
http://downloadcenter.intel.com/Detail_Desc.aspx?agr=Y&DwnldID=22972

The functions aes_ctr_enc_128_avx_by8(), aes_ctr_enc_192_avx_by8() and
aes_ctr_enc_256_avx_by8() are adapted from
Intel Optimized IPSEC Cryptographic library. When both AES and AVX features
are enabled in a platform, the glue code in AESNI module overrieds the
existing "by4" CTR mode en/decryption with the "by8"
AES CTR mode en/decryption.

On a Haswell desktop, with turbo disabled and all cpus running
at maximum frequency, the "by8" CTR mode optimization
shows better performance results across data & key sizes
as measured by tcrypt.

The average performance improvement of the "by8" version over the "by4"
version is as follows:

For 128 bit key and data sizes >= 256 bytes, there is a 10-16% improvement.
For 192 bit key and data sizes >= 256 bytes, there is a 20-22% improvement.
For 256 bit key and data sizes >= 256 bytes, there is a 20-25% improvement.

A typical run of tcrypt with AES CTR mode encryption of the "by4" and "by8"
optimization shows the following results:

tcrypt with "by4" AES CTR mode encryption optimization on a Haswell Desktop:
---------------------------------------------------------------------------

testing speed of __ctr-aes-aesni encryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 343 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 336 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 491 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1130 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 7309 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 346 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 361 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 543 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 1321 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 9649 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 369 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 366 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 595 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 1531 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 10522 cycles (8192 bytes)

testing speed of __ctr-aes-aesni decryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 336 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 350 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 487 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1129 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 7287 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 350 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 359 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 635 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 1324 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 9595 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 364 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 377 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 604 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 1527 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 10549 cycles (8192 bytes)

tcrypt with "by8" AES CTR mode encryption optimization on a Haswell Desktop:
---------------------------------------------------------------------------

testing speed of __ctr-aes-aesni encryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 340 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 330 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 450 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1043 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 6597 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 339 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 352 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 539 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 1153 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 8458 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 353 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 360 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 512 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 1277 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 8745 cycles (8192 bytes)

testing speed of __ctr-aes-aesni decryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 348 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 335 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 451 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1030 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 6611 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 354 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 346 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 488 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 1154 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 8390 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 357 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 362 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 515 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 1284 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 8681 cycles (8192 bytes)

crypto: Incorporate feed back to AES CTR mode optimization patch

Specifically, the following:
a) alignment around main loop in aes_ctrby8_avx_x86_64.S
b) .rodata around data constants used in the assembely code.
c) the use of CONFIG_AVX in the glue code.
d) fix up white space.
e) informational message for "by8" AES CTR mode optimization
f) "by8" AES CTR mode optimization can be simply enabled
if the platform supports both AES and AVX features. The
optimization works superbly on Sandybridge as well.

Testing on Haswell shows no performance change since the last.

Testing on Sandybridge shows that the "by8" AES CTR mode optimization
greatly improves performance.

tcrypt log with "by4" AES CTR mode optimization on Sandybridge
--------------------------------------------------------------

testing speed of __ctr-aes-aesni encryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 383 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 408 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 707 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1864 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 12813 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 395 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 432 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 780 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 2132 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 15765 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 416 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 438 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 842 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 2383 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 16945 cycles (8192 bytes)

testing speed of __ctr-aes-aesni decryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 389 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 409 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 704 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1865 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 12783 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 409 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 434 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 792 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 2151 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 15804 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 421 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 444 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 840 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 2394 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 16928 cycles (8192 bytes)

tcrypt log with "by8" AES CTR mode optimization on Sandybridge
--------------------------------------------------------------

testing speed of __ctr-aes-aesni encryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 383 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 401 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 522 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1136 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 7046 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 394 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 418 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 559 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 1263 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 9072 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 408 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 428 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 595 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 1385 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 9224 cycles (8192 bytes)

testing speed of __ctr-aes-aesni decryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 390 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 402 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 530 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 1135 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 7079 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 414 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 417 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 572 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 1312 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 9073 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 415 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 454 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 598 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 1407 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 9288 cycles (8192 bytes)

crypto: Fix redundant checks

a) Fix the redundant check for cpu_has_aes
b) Fix the key length check when invoking the CTR mode "by8"
encryptor/decryptor.

crypto: fix typo in AES ctr mode transform

Signed-off-by: Chandramouli Narayanan <mouli@linux.intel.com>
Reviewed-by: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-06-20 21:27:58 +08:00
Jussi Kivilinna
6574e6c64e crypto: des_3des - add x86-64 assembly implementation
Patch adds x86_64 assembly implementation of Triple DES EDE cipher algorithm.
Two assembly implementations are provided. First is regular 'one-block at
time' encrypt/decrypt function. Second is 'three-blocks at time' function that
gains performance increase on out-of-order CPUs.

tcrypt test results:

Intel Core i5-4570:

des3_ede-asm vs des3_ede-generic:
size    ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec
16B     1.21x   1.22x   1.27x   1.36x   1.25x   1.25x
64B     1.98x   1.96x   1.23x   2.04x   2.01x   2.00x
256B    2.34x   2.37x   1.21x   2.40x   2.38x   2.39x
1024B   2.50x   2.47x   1.22x   2.51x   2.52x   2.51x
8192B   2.51x   2.53x   1.21x   2.56x   2.54x   2.55x

Signed-off-by: Jussi Kivilinna <jussi.kivilinna@iki.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-06-20 21:27:58 +08:00
chandramouli narayanan
7c1da8d0d0 crypto: sha - SHA1 transform x86_64 AVX2
This git patch adds x86_64 AVX2 optimization of SHA1
transform to crypto support. The patch has been tested with 3.14.0-rc1
kernel.

On a Haswell desktop, with turbo disabled and all cpus running
at maximum frequency, tcrypt shows AVX2 performance improvement
from 3% for 256 bytes update to 16% for 1024 bytes update over
AVX implementation.

This patch adds sha1_avx2_transform(), the glue, build and
configuration changes needed for AVX2 optimization of
SHA1 transform to crypto support.

sha1-ssse3 is one module which adds the necessary optimization
support (SSSE3/AVX/AVX2) for the low-level SHA1 transform function.
With better optimization support, transform function is overridden
as the case may be. In the case of AVX2, due to performance reasons
across datablock sizes, the AVX or AVX2 transform function is used
at run-time as it suits best. The Makefile change therefore appends
the necessary objects to the linkage. Due to this, the patch merely
appends AVX2 transform to the existing build mix and Kconfig support
and leaves the configuration build support as is.

Signed-off-by: Chandramouli Narayanan <mouli@linux.intel.com>
Reviewed-by: Marek Vasut <marex@denx.de>
Acked-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-03-21 21:54:30 +08:00
Tim Chen
79ba451d66 crypto: aesni - fix build on x86 (32bit)
We rename aesni-intel_avx.S to aesni-intel_avx-x86_64.S to indicate
that it is only used by x86_64 architecture.

Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-01-15 11:36:34 +08:00
Andy Shevchenko
8610d7bf60 crypto: aesni - fix build on x86 (32bit)
It seems commit d764593a "crypto: aesni - AVX and AVX2 version of AESNI-GCM
encode and decode" breaks a build on x86_32 since it's designed only for
x86_64. This patch makes a compilation unit conditional to CONFIG_64BIT and
functions usage to CONFIG_X86_64.

Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2013-12-31 19:47:46 +08:00
Tim Chen
d764593af9 crypto: aesni - AVX and AVX2 version of AESNI-GCM encode and decode
We have added AVX and AVX2 routines that optimize AESNI-GCM encode/decode.
These routines are optimized for encrypt and decrypt of large buffers.
In tests we have seen up to 6% speedup for 1K, 11% speedup for 2K and
18% speedup for 8K buffer over the existing SSE version.  These routines
should provide even better speedup for future Intel x86_64 cpus.

Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2013-12-20 20:06:24 +08:00
Ard Biesheuvel
801201aa25 crypto: move x86 to the generic version of ablk_helper
Move all users of ablk_helper under x86/ to the generic version
and delete the x86 specific version.

Acked-by: Jussi Kivilinna <jussi.kivilinna@iki.fi>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2013-09-24 06:02:24 +10:00
Jussi Kivilinna
58497204aa crypto: x86 - restore avx2_supported check
Commit 3d387ef08c4 (Revert "crypto: blowfish - add AVX2/x86_64 implementation
of blowfish cipher") reverted too much as it removed the 'assembler supports
AVX2' check and therefore disabled remaining AVX2 implementations of Camellia
and Serpent. Patch restores the check and enables these implementations.

Signed-off-by: Jussi Kivilinna <jussi.kivilinna@iki.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2013-09-13 21:43:52 +10:00
Herbert Xu
68411521cc Reinstate "crypto: crct10dif - Wrap crc_t10dif function all to use crypto transform framework"
This patch reinstates commits
	67822649d7305caf3dd50ed46c27b99c94eff996
	39761214eefc6b070f29402aa1165f24d789b3f7
	0b95a7f85718adcbba36407ef88bba0a7379ed03
	31d939625a9a20b1badd2d4e6bf6fd39fa523405
	2d31e518a42828df7877bca23a958627d60408bc

Now that module softdeps are in the kernel we can use that to resolve
the boot issue which cause the revert.

Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2013-09-07 12:56:26 +10:00
Herbert Xu
e70308ec0e Revert "crypto: crct10dif - Wrap crc_t10dif function all to use crypto transform framework"
This reverts commits
    67822649d7305caf3dd50ed46c27b99c94eff996
    39761214eefc6b070f29402aa1165f24d789b3f7
    0b95a7f85718adcbba36407ef88bba0a7379ed03
    31d939625a9a20b1badd2d4e6bf6fd39fa523405
    2d31e518a42828df7877bca23a958627d60408bc

Unfortunately this change broke boot on some systems that used an
initrd which does not include the newly created crct10dif modules.
As these modules are required by sd_mod under certain configurations
this is a serious problem.

Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2013-07-24 17:04:16 +10:00
Jussi Kivilinna
99f42f937a Revert "crypto: twofish - add AVX2/x86_64 assembler implementation of twofish cipher"
This reverts commit cf1521a1a5e21fd1e79a458605c4282fbfbbeee2.

Instruction (vpgatherdd) that this implementation relied on turned out to be
slow performer on real hardware (i5-4570). The previous 8-way twofish/AVX
implementation is therefore faster and this implementation should be removed.

Converting this implementation to use the same method as in twofish/AVX for
table look-ups would give additional ~3% speed up vs twofish/AVX, but would
hardly be worth of the added code and binary size.

Signed-off-by: Jussi Kivilinna <jussi.kivilinna@iki.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2013-06-21 14:44:29 +08:00
Jussi Kivilinna
3d387ef08c Revert "crypto: blowfish - add AVX2/x86_64 implementation of blowfish cipher"
This reverts commit 604880107010a1e5794552d184cd5471ea31b973.

Instruction (vpgatherdd) that this implementation relied on turned out to be
slow performer on real hardware (i5-4570). The previous 4-way blowfish
implementation is therefore faster and this implementation should be removed.

Signed-off-by: Jussi Kivilinna <jussi.kivilinna@iki.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2013-06-21 14:44:28 +08:00
Tim Chen
0b95a7f857 crypto: crct10dif - Glue code to cast accelerated CRCT10DIF assembly as a crypto transform
Glue code that plugs the PCLMULQDQ accelerated CRC T10 DIF hash into the
crypto framework.  The config CRYPTO_CRCT10DIF_PCLMUL should be turned
on to enable the feature.  The crc_t10dif crypto library function will
use this faster algorithm when crct10dif_pclmul module is loaded.

Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2013-05-24 17:55:27 +08:00
Jussi Kivilinna
f3f935a76a crypto: camellia - add AVX2/AES-NI/x86_64 assembler implementation of camellia cipher
Patch adds AVX2/AES-NI/x86-64 implementation of Camellia cipher, requiring
32 parallel blocks for input (512 bytes). Compared to AVX implementation, this
version is extended to use the 256-bit wide YMM registers. For AES-NI
instructions data is split to two 128-bit registers and merged afterwards.
Even with this additional handling, performance should be higher compared
to the AES-NI/AVX implementation.

Signed-off-by: Jussi Kivilinna <jussi.kivilinna@iki.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2013-04-25 21:09:07 +08:00
Jussi Kivilinna
56d76c96a9 crypto: serpent - add AVX2/x86_64 assembler implementation of serpent cipher
Patch adds AVX2/x86-64 implementation of Serpent cipher, requiring 16 parallel
blocks for input (256 bytes). Implementation is based on the AVX implementation
and extends to use the 256-bit wide YMM registers. Since serpent does not use
table look-ups, this implementation should be close to two times faster than
the AVX implementation.

Signed-off-by: Jussi Kivilinna <jussi.kivilinna@iki.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2013-04-25 21:09:07 +08:00
Jussi Kivilinna
cf1521a1a5 crypto: twofish - add AVX2/x86_64 assembler implementation of twofish cipher
Patch adds AVX2/x86-64 implementation of Twofish cipher, requiring 16 parallel
blocks for input (256 bytes). Table look-ups are performed using vpgatherdd
instruction directly from vector registers and thus should be faster than
earlier implementations. Implementation also uses 256-bit wide YMM registers,
which should give additional speed up compared to the AVX implementation.

Signed-off-by: Jussi Kivilinna <jussi.kivilinna@iki.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2013-04-25 21:09:05 +08:00
Jussi Kivilinna
6048801070 crypto: blowfish - add AVX2/x86_64 implementation of blowfish cipher
Patch adds AVX2/x86-64 implementation of Blowfish cipher, requiring 32 parallel
blocks for input (256 bytes). Table look-ups are performed using vpgatherdd
instruction directly from vector registers and thus should be faster than
earlier implementations.

Signed-off-by: Jussi Kivilinna <jussi.kivilinna@iki.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2013-04-25 21:09:04 +08:00
Tim Chen
87de4579f9 crypto: sha512 - Create module providing optimized SHA512 routines using SSSE3, AVX or AVX2 instructions.
We added glue code and config options to create crypto
module that uses SSE/AVX/AVX2 optimized SHA512 x86_64 assembly routines.

Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2013-04-25 21:01:42 +08:00
Tim Chen
8275d1aa64 crypto: sha256 - Create module providing optimized SHA256 routines using SSSE3, AVX or AVX2 instructions.
We added glue code and config options to create crypto
module that uses SSE/AVX/AVX2 optimized SHA256 x86_64 assembly routines.

Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2013-04-25 21:00:57 +08:00
Jussi Kivilinna
873b9cafa8 crypto: x86 - build AVX block cipher implementations only if assembler supports AVX instructions
These modules require AVX support in assembler, so add new check to Makefile
for this.

Other option would be to use CONFIG_AS_AVX inside source files, but that would
result dummy/empty/no-fuctionality modules being created.

Signed-off-by: Jussi Kivilinna <jussi.kivilinna@iki.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2013-04-03 09:06:30 +08:00
Herbert Xu
ca81a1a1b8 crypto: crc32c - Kill pointless CRYPTO_CRC32C_X86_64 option
This bool option can never be set to anything other than y.  So
let's just kill it.

Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2013-02-26 17:52:15 +08:00
Alexander Boyko
78c37d191d crypto: crc32 - add crc32 pclmulqdq implementation and wrappers for table implementation
This patch adds crc32 algorithms to shash crypto api. One is wrapper to
gerneric crc32_le function. Second is crc32 pclmulqdq implementation. It
use hardware provided PCLMULQDQ instruction to accelerate the CRC32 disposal.
This instruction present from Intel Westmere and AMD Bulldozer CPUs.

For intel core i5 I got 450MB/s for table implementation and 2100MB/s
for pclmulqdq implementation.

Signed-off-by: Alexander Boyko <alexander_boyko@xyratex.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2013-01-20 10:16:45 +11:00
Jussi Kivilinna
d9b1d2e7e1 crypto: camellia - add AES-NI/AVX/x86_64 assembler implementation of camellia cipher
This patch adds AES-NI/AVX/x86_64 assembler implementation of Camellia block
cipher. Implementation process data in sixteen block chunks, which are
byte-sliced and AES SubBytes is reused for Camellia s-box with help of pre-
and post-filtering.

Patch has been tested with tcrypt and automated filesystem tests.

tcrypt test results:

Intel Core i5-2450M:

camellia-aesni-avx vs camellia-asm-x86_64-2way:
128bit key:                                             (lrw:256bit)    (xts:256bit)
size    ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec lrw-enc lrw-dec xts-enc xts-dec
16B     0.98x   0.96x   0.99x   0.96x   0.96x   0.95x   0.95x   0.94x   0.97x   0.98x
64B     0.99x   0.98x   1.00x   0.98x   0.98x   0.99x   0.98x   0.93x   0.99x   0.98x
256B    2.28x   2.28x   1.01x   2.29x   2.25x   2.24x   1.96x   1.97x   1.91x   1.90x
1024B   2.57x   2.56x   1.00x   2.57x   2.51x   2.53x   2.19x   2.17x   2.19x   2.22x
8192B   2.49x   2.49x   1.00x   2.53x   2.48x   2.49x   2.17x   2.17x   2.22x   2.22x

256bit key:                                             (lrw:384bit)    (xts:512bit)
size    ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec lrw-enc lrw-dec xts-enc xts-dec
16B     0.97x   0.98x   0.99x   0.97x   0.97x   0.96x   0.97x   0.98x   0.98x   0.99x
64B     1.00x   1.00x   1.01x   0.99x   0.98x   0.99x   0.99x   0.99x   0.99x   0.99x
256B    2.37x   2.37x   1.01x   2.39x   2.35x   2.33x   2.10x   2.11x   1.99x   2.02x
1024B   2.58x   2.60x   1.00x   2.58x   2.56x   2.56x   2.28x   2.29x   2.28x   2.29x
8192B   2.50x   2.52x   1.00x   2.56x   2.51x   2.51x   2.24x   2.25x   2.26x   2.29x

Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2012-11-09 17:32:32 +08:00
Tim Chen
6a8ce1ef39 crypto: crc32c - Optimize CRC32C calculation with PCLMULQDQ instruction
This patch adds the crc_pcl function that calculates CRC32C checksum using the
PCLMULQDQ instruction on processors that support this feature. This will
provide speedup over using CRC32 instruction only.
The usage of PCLMULQDQ necessitate the invocation of kernel_fpu_begin and
kernel_fpu_end and incur some overhead.  So the new crc_pcl function is only
invoked for buffer size of 512 bytes or more.  Larger sized
buffers will expect to see greater speedup.  This feature is best used coupled
with eager_fpu which reduces the kernel_fpu_begin/end overhead.  For
buffer size of 1K the speedup is around 1.6x and for buffer size greater than
4K, the speedup is around 3x compared to original implementation in crc32c-intel
module. Test was performed on Sandy Bridge based platform with constant frequency
set for cpu.

A white paper detailing the algorithm can be found here:
http://download.intel.com/design/intarch/papers/323405.pdf

Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2012-10-15 22:18:24 +08:00
Tim Chen
35b80920d4 crypto: crc32c - Rename crc32c-intel.c to crc32c-intel_glue.c
This patch renames the crc32c-intel.c file to crc32c-intel_glue.c file
in preparation for linking with the new crc32c-pcl-intel-asm.S file,
which contains optimized crc32c calculation based on PCLMULQDQ
instruction.

Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2012-10-15 22:18:22 +08:00
Johannes Goetzfried
4ea1277d30 crypto: cast6 - add x86_64/avx assembler implementation
This patch adds a x86_64/avx assembler implementation of the Cast6 block
cipher. The implementation processes eight blocks in parallel (two 4 block
chunk AVX operations). The table-lookups are done in general-purpose registers.
For small blocksizes the functions from the generic module are called. A good
performance increase is provided for blocksizes greater or equal to 128B.

Patch has been tested with tcrypt and automated filesystem tests.

Tcrypt benchmark results:

Intel Core i5-2500 CPU (fam:6, model:42, step:7)

cast6-avx-x86_64 vs. cast6-generic
128bit key:                                             (lrw:256bit)    (xts:256bit)
size    ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec lrw-enc lrw-dec xts-enc xts-dec
16B     0.97x   1.00x   1.01x   1.01x   0.99x   0.97x   0.98x   1.01x   0.96x   0.98x
64B     0.98x   0.99x   1.02x   1.01x   0.99x   1.00x   1.01x   0.99x   1.00x   0.99x
256B    1.77x   1.84x   0.99x   1.85x   1.77x   1.77x   1.70x   1.74x   1.69x   1.72x
1024B   1.93x   1.95x   0.99x   1.96x   1.93x   1.93x   1.84x   1.85x   1.89x   1.87x
8192B   1.91x   1.95x   0.99x   1.97x   1.95x   1.91x   1.86x   1.87x   1.93x   1.90x

256bit key:                                             (lrw:384bit)    (xts:512bit)
size    ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec lrw-enc lrw-dec xts-enc xts-dec
16B     0.97x   0.99x   1.02x   1.01x   0.98x   0.99x   1.00x   1.00x   0.98x   0.98x
64B     0.98x   0.99x   1.01x   1.00x   1.00x   1.00x   1.01x   1.01x   0.97x   1.00x
256B    1.77x   1.83x   1.00x   1.86x   1.79x   1.78x   1.70x   1.76x   1.71x   1.69x
1024B   1.92x   1.95x   0.99x   1.96x   1.93x   1.93x   1.83x   1.86x   1.89x   1.87x
8192B   1.94x   1.95x   0.99x   1.97x   1.95x   1.95x   1.87x   1.87x   1.93x   1.91x

Signed-off-by: Johannes Goetzfried <Johannes.Goetzfried@informatik.stud.uni-erlangen.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2012-08-01 17:47:30 +08:00
Johannes Goetzfried
4d6d6a2c85 crypto: cast5 - add x86_64/avx assembler implementation
This patch adds a x86_64/avx assembler implementation of the Cast5 block
cipher. The implementation processes sixteen blocks in parallel (four 4 block
chunk AVX operations). The table-lookups are done in general-purpose registers.
For small blocksizes the functions from the generic module are called. A good
performance increase is provided for blocksizes greater or equal to 128B.

Patch has been tested with tcrypt and automated filesystem tests.

Tcrypt benchmark results:

Intel Core i5-2500 CPU (fam:6, model:42, step:7)

cast5-avx-x86_64 vs. cast5-generic
64bit key:
size    ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec
16B     0.99x   0.99x   1.00x   1.00x   1.02x   1.01x
64B     1.00x   1.00x   0.98x   1.00x   1.01x   1.02x
256B    2.03x   2.01x   0.95x   2.11x   2.12x   2.13x
1024B   2.30x   2.24x   0.95x   2.29x   2.35x   2.35x
8192B   2.31x   2.27x   0.95x   2.31x   2.39x   2.39x

128bit key:
size    ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec
16B     0.99x   0.99x   1.00x   1.00x   1.01x   1.01x
64B     1.00x   1.00x   0.98x   1.01x   1.02x   1.01x
256B    2.17x   2.13x   0.96x   2.19x   2.19x   2.19x
1024B   2.29x   2.32x   0.95x   2.34x   2.37x   2.38x
8192B   2.35x   2.32x   0.95x   2.35x   2.39x   2.39x

Signed-off-by: Johannes Goetzfried <Johannes.Goetzfried@informatik.stud.uni-erlangen.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2012-08-01 17:47:30 +08:00
Jussi Kivilinna
596d875052 crypto: serpent-sse2 - split generic glue code to new helper module
Now that serpent-sse2 glue code has been made generic, it can be split to
separate module.

Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2012-06-27 14:42:01 +08:00
Jussi Kivilinna
ffaf915632 crypto: ablk_helper - move ablk_* functions from serpent-sse2/avx glue code to shared module
Move ablk-* functions to separate module to share common code between cipher
implementations.

Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2012-06-27 14:42:00 +08:00
Johannes Goetzfried
7efe407672 crypto: serpent - add x86_64/avx assembler implementation
This patch adds a x86_64/avx assembler implementation of the Serpent block
cipher. The implementation is very similar to the sse2 implementation and
processes eight blocks in parallel. Because of the new non-destructive three
operand syntax all move-instructions can be removed and therefore a little
performance increase is provided.

Patch has been tested with tcrypt and automated filesystem tests.

Tcrypt benchmark results:

Intel Core i5-2500 CPU (fam:6, model:42, step:7)

serpent-avx-x86_64 vs. serpent-sse2-x86_64
128bit key:                                             (lrw:256bit)    (xts:256bit)
size    ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec lrw-enc lrw-dec xts-enc xts-dec
16B     1.03x   1.01x   1.01x   1.01x   1.00x   1.00x   1.00x   1.00x   1.00x   1.01x
64B     1.00x   1.00x   1.00x   1.00x   1.00x   0.99x   1.00x   1.01x   1.00x   1.00x
256B    1.05x   1.03x   1.00x   1.02x   1.05x   1.06x   1.05x   1.02x   1.05x   1.02x
1024B   1.05x   1.02x   1.00x   1.02x   1.05x   1.06x   1.05x   1.03x   1.05x   1.02x
8192B   1.05x   1.02x   1.00x   1.02x   1.06x   1.06x   1.04x   1.03x   1.04x   1.02x

256bit key:                                             (lrw:384bit)    (xts:512bit)
size    ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec lrw-enc lrw-dec xts-enc xts-dec
16B     1.01x   1.00x   1.01x   1.01x   1.00x   1.00x   0.99x   1.03x   1.01x   1.01x
64B     1.00x   1.00x   1.00x   1.00x   1.00x   1.00x   1.00x   1.01x   1.00x   1.02x
256B    1.05x   1.02x   1.00x   1.02x   1.05x   1.02x   1.04x   1.05x   1.05x   1.02x
1024B   1.06x   1.02x   1.00x   1.02x   1.07x   1.06x   1.05x   1.04x   1.05x   1.02x
8192B   1.05x   1.02x   1.00x   1.02x   1.06x   1.06x   1.04x   1.05x   1.05x   1.02x

serpent-avx-x86_64 vs aes-asm (8kB block):
         128bit  256bit
ecb-enc  1.26x   1.73x
ecb-dec  1.20x   1.64x
cbc-enc  0.33x   0.45x
cbc-dec  1.24x   1.67x
ctr-enc  1.32x   1.76x
ctr-dec  1.32x   1.76x
lrw-enc  1.20x   1.60x
lrw-dec  1.15x   1.54x
xts-enc  1.22x   1.64x
xts-dec  1.17x   1.57x

Signed-off-by: Johannes Goetzfried <Johannes.Goetzfried@informatik.stud.uni-erlangen.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2012-06-12 16:47:43 +08:00
Johannes Goetzfried
107778b592 crypto: twofish - add x86_64/avx assembler implementation
This patch adds a x86_64/avx assembler implementation of the Twofish block
cipher. The implementation processes eight blocks in parallel (two 4 block
chunk AVX operations). The table-lookups are done in general-purpose registers.
For small blocksizes the 3way-parallel functions from the twofish-x86_64-3way
module are called. A good performance increase is provided for blocksizes
greater or equal to 128B.

Patch has been tested with tcrypt and automated filesystem tests.

Tcrypt benchmark results:

Intel Core i5-2500 CPU (fam:6, model:42, step:7)

twofish-avx-x86_64 vs. twofish-x86_64-3way
128bit key:                                             (lrw:256bit)    (xts:256bit)
size    ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec lrw-enc lrw-dec xts-enc xts-dec
16B     0.96x   0.97x   1.00x   0.95x   0.97x   0.97x   0.96x   0.95x   0.95x   0.98x
64B     0.99x   0.99x   1.00x   0.99x   0.98x   0.98x   0.99x   0.98x   0.99x   0.98x
256B    1.20x   1.21x   1.00x   1.19x   1.15x   1.14x   1.19x   1.20x   1.18x   1.19x
1024B   1.29x   1.30x   1.00x   1.28x   1.23x   1.24x   1.26x   1.28x   1.26x   1.27x
8192B   1.31x   1.32x   1.00x   1.31x   1.25x   1.25x   1.28x   1.29x   1.28x   1.30x

256bit key:                                             (lrw:384bit)    (xts:512bit)
size    ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec lrw-enc lrw-dec xts-enc xts-dec
16B     0.96x   0.96x   1.00x   0.96x   0.97x   0.98x   0.95x   0.95x   0.95x   0.96x
64B     1.00x   0.99x   1.00x   0.98x   0.98x   1.01x   0.98x   0.98x   0.98x   0.98x
256B    1.20x   1.21x   1.00x   1.21x   1.15x   1.15x   1.19x   1.20x   1.18x   1.19x
1024B   1.29x   1.30x   1.00x   1.28x   1.23x   1.23x   1.26x   1.27x   1.26x   1.27x
8192B   1.31x   1.33x   1.00x   1.31x   1.26x   1.26x   1.29x   1.29x   1.28x   1.30x

twofish-avx-x86_64 vs aes-asm (8kB block):
         128bit  256bit
ecb-enc  1.19x   1.63x
ecb-dec  1.18x   1.62x
cbc-enc  0.75x   1.03x
cbc-dec  1.23x   1.67x
ctr-enc  1.24x   1.65x
ctr-dec  1.24x   1.65x
lrw-enc  1.15x   1.53x
lrw-dec  1.14x   1.52x
xts-enc  1.16x   1.56x
xts-dec  1.16x   1.56x

Signed-off-by: Johannes Goetzfried <Johannes.Goetzfried@informatik.stud.uni-erlangen.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2012-06-12 16:46:07 +08:00
Mathias Krause
65df577439 crypto: sha1 - use Kbuild supplied flags for AVX test
Commit ea4d26ae ("raid5: add AVX optimized RAID5 checksumming")
introduced x86/ arch wide defines for AFLAGS and CFLAGS indicating AVX
support in binutils based on the same test we have in x86/crypto/ right
now. To minimize duplication drop our implementation in favour to the
one in x86/.

Signed-off-by: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2012-06-12 16:37:16 +08:00
Jussi Kivilinna
0b95ec56ae crypto: camellia - add assembler implementation for x86_64
Patch adds x86_64 assembler implementation of Camellia block cipher. Two set of
functions are provided. First set is regular 'one-block at time' encrypt/decrypt
functions. Second is 'two-block at time' functions that gain performance increase
on out-of-order CPUs. Performance of 2-way functions should be equal to 1-way
functions with in-order CPUs.

Patch has been tested with tcrypt and automated filesystem tests.

Tcrypt benchmark results:

AMD Phenom II 1055T (fam:16, model:10):

camellia-asm vs camellia_generic:
128bit key:                                             (lrw:256bit)    (xts:256bit)
size    ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec lrw-enc lrw-dec xts-enc xts-dec
16B     1.27x   1.22x   1.30x   1.42x   1.30x   1.34x   1.19x   1.05x   1.23x   1.24x
64B     1.74x   1.79x   1.43x   1.87x   1.81x   1.87x   1.48x   1.38x   1.55x   1.62x
256B    1.90x   1.87x   1.43x   1.94x   1.94x   1.95x   1.63x   1.62x   1.67x   1.70x
1024B   1.96x   1.93x   1.43x   1.95x   1.98x   2.01x   1.67x   1.69x   1.74x   1.80x
8192B   1.96x   1.96x   1.39x   1.93x   2.01x   2.03x   1.72x   1.64x   1.71x   1.76x

256bit key:                                             (lrw:384bit)    (xts:512bit)
size    ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec lrw-enc lrw-dec xts-enc xts-dec
16B     1.23x   1.23x   1.33x   1.39x   1.34x   1.38x   1.04x   1.18x   1.21x   1.29x
64B     1.72x   1.69x   1.42x   1.78x   1.81x   1.89x   1.57x   1.52x   1.56x   1.65x
256B    1.85x   1.88x   1.42x   1.86x   1.93x   1.96x   1.69x   1.65x   1.70x   1.75x
1024B   1.88x   1.86x   1.45x   1.95x   1.96x   1.95x   1.77x   1.71x   1.77x   1.78x
8192B   1.91x   1.86x   1.42x   1.91x   2.03x   1.98x   1.73x   1.71x   1.78x   1.76x

camellia-asm vs aes-asm (8kB block):
         128bit  256bit
ecb-enc  1.15x   1.22x
ecb-dec  1.16x   1.16x
cbc-enc  0.85x   0.90x
cbc-dec  1.20x   1.23x
ctr-enc  1.28x   1.30x
ctr-dec  1.27x   1.28x
lrw-enc  1.12x   1.16x
lrw-dec  1.08x   1.10x
xts-enc  1.11x   1.15x
xts-dec  1.14x   1.15x

Intel Core2 T8100 (fam:6, model:23, step:6):

camellia-asm vs camellia_generic:
128bit key:                                             (lrw:256bit)    (xts:256bit)
size    ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec lrw-enc lrw-dec xts-enc xts-dec
16B     1.10x   1.12x   1.14x   1.16x   1.16x   1.15x   1.02x   1.02x   1.08x   1.08x
64B     1.61x   1.60x   1.17x   1.68x   1.67x   1.66x   1.43x   1.42x   1.44x   1.42x
256B    1.65x   1.73x   1.17x   1.77x   1.81x   1.80x   1.54x   1.53x   1.58x   1.54x
1024B   1.76x   1.74x   1.18x   1.80x   1.85x   1.85x   1.60x   1.59x   1.65x   1.60x
8192B   1.77x   1.75x   1.19x   1.81x   1.85x   1.86x   1.63x   1.61x   1.66x   1.62x

256bit key:                                             (lrw:384bit)    (xts:512bit)
size    ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec lrw-enc lrw-dec xts-enc xts-dec
16B     1.10x   1.07x   1.13x   1.16x   1.11x   1.16x   1.03x   1.02x   1.08x   1.07x
64B     1.61x   1.62x   1.15x   1.66x   1.63x   1.68x   1.47x   1.46x   1.47x   1.44x
256B    1.71x   1.70x   1.16x   1.75x   1.69x   1.79x   1.58x   1.57x   1.59x   1.55x
1024B   1.78x   1.72x   1.17x   1.75x   1.80x   1.80x   1.63x   1.62x   1.65x   1.62x
8192B   1.76x   1.73x   1.17x   1.78x   1.80x   1.81x   1.64x   1.62x   1.68x   1.64x

camellia-asm vs aes-asm (8kB block):
         128bit  256bit
ecb-enc  1.17x   1.21x
ecb-dec  1.17x   1.20x
cbc-enc  0.80x   0.82x
cbc-dec  1.22x   1.24x
ctr-enc  1.25x   1.26x
ctr-dec  1.25x   1.26x
lrw-enc  1.14x   1.18x
lrw-dec  1.13x   1.17x
xts-enc  1.14x   1.18x
xts-dec  1.14x   1.17x

Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2012-03-14 17:25:56 +08:00
Jussi Kivilinna
251496dbfc crypto: serpent - add 4-way parallel i586/SSE2 assembler implementation
Patch adds i586/SSE2 assembler implementation of serpent cipher. Assembler
functions crypt data in four block chunks.

Patch has been tested with tcrypt and automated filesystem tests.

Tcrypt benchmarks results (serpent-sse2/serpent_generic speed ratios):

Intel Atom N270:

size    ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec
16      0.95x   1.12x   1.02x   1.07x   0.97x   0.98x
64      1.73x   1.82x   1.08x   1.82x   1.72x   1.73x
256     2.08x   2.00x   1.04x   2.07x   1.99x   2.01x
1024    2.28x   2.18x   1.05x   2.23x   2.17x   2.20x
8192    2.28x   2.13x   1.05x   2.23x   2.18x   2.20x

Full output:
 http://koti.mbnet.fi/axh/kernel/crypto/atom-n270/serpent-generic.txt
 http://koti.mbnet.fi/axh/kernel/crypto/atom-n270/serpent-sse2.txt

Userspace test results:

Encryption/decryption of sse2-i586 vs generic on Intel Atom N270:
 encrypt: 2.35x
 decrypt: 2.54x

Encryption/decryption of sse2-i586 vs generic on AMD Phenom II:
 encrypt: 1.82x
 decrypt: 2.51x

Encryption/decryption of sse2-i586 vs generic on Intel Xeon E7330:
 encrypt: 2.99x
 decrypt: 3.48x

Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-11-21 16:13:23 +08:00
Jussi Kivilinna
937c30d7f5 crypto: serpent - add 8-way parallel x86_64/SSE2 assembler implementation
Patch adds x86_64/SSE2 assembler implementation of serpent cipher. Assembler
functions crypt data in eigth block chunks (two 4 block chunk SSE2 operations
in parallel to improve performance on out-of-order CPUs). Glue code is based
on one from AES-NI implementation, so requests from irq context are redirected
to cryptd.

v2:
 - add missing include of linux/module.h
   (appearently crypto.h used to include module.h, which changed for 3.2 by
    commit 7c926402a7e8c9b279968fd94efec8700ba3859e)

Patch has been tested with tcrypt and automated filesystem tests.

Tcrypt benchmarks results (serpent-sse2/serpent_generic speed ratios):

AMD Phenom II 1055T (fam:16, model:10):

size    ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec
16B     1.03x   1.01x   1.03x   1.05x   1.00x   0.99x
64B     1.00x   1.01x   1.02x   1.04x   1.02x   1.01x
256B    2.34x   2.41x   0.99x   2.43x   2.39x   2.40x
1024B   2.51x   2.57x   1.00x   2.59x   2.56x   2.56x
8192B   2.50x   2.54x   1.00x   2.55x   2.57x   2.57x

Intel Celeron T1600 (fam:6, model:15, step:13):

size    ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec
16B     0.97x   0.97x   1.01x   1.01x   1.01x   1.02x
64B     1.00x   1.00x   1.00x   1.02x   1.01x   1.01x
256B    3.41x   3.35x   1.00x   3.39x   3.42x   3.44x
1024B   3.75x   3.72x   0.99x   3.74x   3.75x   3.75x
8192B   3.70x   3.68x   0.99x   3.68x   3.69x   3.69x

Full output:
 http://koti.mbnet.fi/axh/kernel/crypto/phenom-ii-1055t/serpent-generic.txt
 http://koti.mbnet.fi/axh/kernel/crypto/phenom-ii-1055t/serpent-sse2.txt
 http://koti.mbnet.fi/axh/kernel/crypto/celeron-t1600/serpent-generic.txt
 http://koti.mbnet.fi/axh/kernel/crypto/celeron-t1600/serpent-sse2.txt

Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-11-21 16:13:23 +08:00
Jussi Kivilinna
8280daad43 crypto: twofish - add 3-way parallel x86_64 assembler implemention
Patch adds 3-way parallel x86_64 assembly implementation of twofish as new
module. New assembler functions crypt data in three blocks chunks, improving
cipher performance on out-of-order CPUs.

Patch has been tested with tcrypt and automated filesystem tests.

Summary of the tcrypt benchmarks:

Twofish 3-way-asm vs twofish asm (128bit 8kb block ECB)
 encrypt: 1.3x speed
 decrypt: 1.3x speed

Twofish 3-way-asm vs twofish asm (128bit 8kb block CBC)
 encrypt: 1.07x speed
 decrypt: 1.4x speed

Twofish 3-way-asm vs twofish asm (128bit 8kb block CTR)
 encrypt: 1.4x speed

Twofish 3-way-asm vs AES asm (128bit 8kb block ECB)
 encrypt: 1.0x speed
 decrypt: 1.0x speed

Twofish 3-way-asm vs AES asm (128bit 8kb block CBC)
 encrypt: 0.84x speed
 decrypt: 1.09x speed

Twofish 3-way-asm vs AES asm (128bit 8kb block CTR)
 encrypt: 1.15x speed

Full output:
 http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-twofish-3way-asm-x86_64.txt
 http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-twofish-asm-x86_64.txt
 http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-aes-asm-x86_64.txt

Tests were run on:
 vendor_id  : AuthenticAMD
 cpu family : 16
 model      : 10
 model name : AMD Phenom(tm) II X6 1055T Processor

Also userspace test were run on:
 vendor_id  : GenuineIntel
 cpu family : 6
 model      : 15
 model name : Intel(R) Xeon(R) CPU           E7330  @ 2.40GHz
 stepping   : 11

Userspace test results:

Encryption/decryption of twofish 3-way vs x86_64-asm on AMD Phenom II:
 encrypt: 1.27x
 decrypt: 1.25x

Encryption/decryption of twofish 3-way vs x86_64-asm on Intel Xeon E7330:
 encrypt: 1.36x
 decrypt: 1.36x

Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-10-21 14:23:08 +02:00
Jussi Kivilinna
64b94ceae8 crypto: blowfish - add x86_64 assembly implementation
Patch adds x86_64 assembly implementation of blowfish. Two set of assembler
functions are provided. First set is regular 'one-block at time'
encrypt/decrypt functions. Second is 'four-block at time' functions that
gain performance increase on out-of-order CPUs. Performance of 4-way
functions should be equal to 1-way functions with in-order CPUs.

Summary of the tcrypt benchmarks:

Blowfish assembler vs blowfish C (256bit 8kb block ECB)
encrypt: 2.2x speed
decrypt: 2.3x speed

Blowfish assembler vs blowfish C (256bit 8kb block CBC)
encrypt: 1.12x speed
decrypt: 2.5x speed

Blowfish assembler vs blowfish C (256bit 8kb block CTR)
encrypt: 2.5x speed

Full output:
http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-blowfish-asm-x86_64.txt
http://koti.mbnet.fi/axh/kernel/crypto/tcrypt-speed-blowfish-c-x86_64.txt

Tests were run on:
 vendor_id	: AuthenticAMD
 cpu family	: 16
 model		: 10
 model name	: AMD Phenom(tm) II X6 1055T Processor
 stepping	: 0

Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-09-22 21:25:26 +10:00
Mathias Krause
66be895158 crypto: sha1 - SSSE3 based SHA1 implementation for x86-64
This is an assembler implementation of the SHA1 algorithm using the
Supplemental SSE3 (SSSE3) instructions or, when available, the
Advanced Vector Extensions (AVX).

Testing with the tcrypt module shows the raw hash performance is up to
2.3 times faster than the C implementation, using 8k data blocks on a
Core 2 Duo T5500. For the smalest data set (16 byte) it is still 25%
faster.

Since this implementation uses SSE/YMM registers it cannot safely be
used in every situation, e.g. while an IRQ interrupts a kernel thread.
The implementation falls back to the generic SHA1 variant, if using
the SSE/YMM registers is not possible.

With this algorithm I was able to increase the throughput of a single
IPsec link from 344 Mbit/s to 464 Mbit/s on a Core 2 Quad CPU using
the SSSE3 variant -- a speedup of +34.8%.

Saving and restoring SSE/YMM state might make the actual throughput
fluctuate when there are FPU intensive userland applications running.
For example, meassuring the performance using iperf2 directly on the
machine under test gives wobbling numbers because iperf2 uses the FPU
for each packet to check if the reporting interval has expired (in the
above test I got min/max/avg: 402/484/464 MBit/s).

Using this algorithm on a IPsec gateway gives much more reasonable and
stable numbers, albeit not as high as in the directly connected case.
Here is the result from an RFC 2544 test run with a EXFO Packet Blazer
FTB-8510:

 frame size    sha1-generic     sha1-ssse3    delta
    64 byte     37.5 MBit/s    37.5 MBit/s     0.0%
   128 byte     56.3 MBit/s    62.5 MBit/s   +11.0%
   256 byte     87.5 MBit/s   100.0 MBit/s   +14.3%
   512 byte    131.3 MBit/s   150.0 MBit/s   +14.2%
  1024 byte    162.5 MBit/s   193.8 MBit/s   +19.3%
  1280 byte    175.0 MBit/s   212.5 MBit/s   +21.4%
  1420 byte    175.0 MBit/s   218.7 MBit/s   +25.0%
  1518 byte    150.0 MBit/s   181.2 MBit/s   +20.8%

The throughput for the largest frame size is lower than for the
previous size because the IP packets need to be fragmented in this
case to make there way through the IPsec tunnel.

Signed-off-by: Mathias Krause <minipli@googlemail.com>
Cc: Maxim Locktyukhin <maxim.locktyukhin@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-08-10 19:00:29 +08:00
Andy Lutomirski
b23b645165 crypto: aesni-intel - Merge with fpu.ko
Loading fpu without aesni-intel does nothing.  Loading aesni-intel
without fpu causes modes like xts to fail.  (Unloading
aesni-intel will restore those modes.)

One solution would be to make aesni-intel depend on fpu, but it
seems cleaner to just combine the modules.

This is probably responsible for bugs like:
https://bugzilla.redhat.com/show_bug.cgi?id=589390

Signed-off-by: Andy Lutomirski <luto@mit.edu>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-05-16 15:12:47 +10:00
Huang Ying
0e1227d356 crypto: ghash - Add PCLMULQDQ accelerated implementation
PCLMULQDQ is used to accelerate the most time-consuming part of GHASH,
carry-less multiplication. More information about PCLMULQDQ can be
found at:

http://software.intel.com/en-us/articles/carry-less-multiplication-and-its-usage-for-computing-the-gcm-mode/

Because PCLMULQDQ changes XMM state, its usage must be enclosed with
kernel_fpu_begin/end, which can be used only in process context, the
acceleration is implemented as crypto_ahash. That is, request in soft
IRQ context will be defered to the cryptd kernel thread.

Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2009-10-19 11:53:06 +09:00