IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The newly introduced smp_cond_acquire() was used to replace the
slowpath lock acquisition loop. Similarly, the new function can also
be applied to the pending bit locking loop. This patch uses the new
function in that loop.
Signed-off-by: Waiman Long <Waiman.Long@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Douglas Hatch <doug.hatch@hpe.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1449778666-13593-1-git-send-email-Waiman.Long@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In an overcommitted guest where some vCPUs have to be halted to make
forward progress in other areas, it is highly likely that a vCPU later
in the spinlock queue will be spinning while the ones earlier in the
queue would have been halted. The spinning in the later vCPUs is then
just a waste of precious CPU cycles because they are not going to
get the lock soon as the earlier ones have to be woken up and take
their turn to get the lock.
This patch implements an adaptive spinning mechanism where the vCPU
will call pv_wait() if the previous vCPU is not running.
Linux kernel builds were run in KVM guest on an 8-socket, 4
cores/socket Westmere-EX system and a 4-socket, 8 cores/socket
Haswell-EX system. Both systems are configured to have 32 physical
CPUs. The kernel build times before and after the patch were:
Westmere Haswell
Patch 32 vCPUs 48 vCPUs 32 vCPUs 48 vCPUs
----- -------- -------- -------- --------
Before patch 3m02.3s 5m00.2s 1m43.7s 3m03.5s
After patch 3m03.0s 4m37.5s 1m43.0s 2m47.2s
For 32 vCPUs, this patch doesn't cause any noticeable change in
performance. For 48 vCPUs (over-committed), there is about 8%
performance improvement.
Signed-off-by: Waiman Long <Waiman.Long@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Douglas Hatch <doug.hatch@hpe.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447114167-47185-8-git-send-email-Waiman.Long@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch allows one attempt for the lock waiter to steal the lock
when entering the PV slowpath. To prevent lock starvation, the pending
bit will be set by the queue head vCPU when it is in the active lock
spinning loop to disable any lock stealing attempt. This helps to
reduce the performance penalty caused by lock waiter preemption while
not having much of the downsides of a real unfair lock.
The pv_wait_head() function was renamed as pv_wait_head_or_lock()
as it was modified to acquire the lock before returning. This is
necessary because of possible lock stealing attempts from other tasks.
Linux kernel builds were run in KVM guest on an 8-socket, 4
cores/socket Westmere-EX system and a 4-socket, 8 cores/socket
Haswell-EX system. Both systems are configured to have 32 physical
CPUs. The kernel build times before and after the patch were:
Westmere Haswell
Patch 32 vCPUs 48 vCPUs 32 vCPUs 48 vCPUs
----- -------- -------- -------- --------
Before patch 3m15.6s 10m56.1s 1m44.1s 5m29.1s
After patch 3m02.3s 5m00.2s 1m43.7s 3m03.5s
For the overcommited case (48 vCPUs), this patch is able to reduce
kernel build time by more than 54% for Westmere and 44% for Haswell.
Signed-off-by: Waiman Long <Waiman.Long@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Douglas Hatch <doug.hatch@hpe.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447190336-53317-1-git-send-email-Waiman.Long@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Introduce smp_cond_acquire() which combines a control dependency and a
read barrier to form acquire semantics.
This primitive has two benefits:
- it documents control dependencies,
- its typically cheaper than using smp_load_acquire() in a loop.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With optimistic prefetch of the next node cacheline, the next pointer
may have been properly inititalized. As a result, the reading
of node->next in the contended path may be redundant. This patch
eliminates the redundant read if the next pointer value is not NULL.
Signed-off-by: Waiman Long <Waiman.Long@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Douglas Hatch <doug.hatch@hpe.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447114167-47185-4-git-send-email-Waiman.Long@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A queue head CPU, after acquiring the lock, will have to notify
the next CPU in the wait queue that it has became the new queue
head. This involves loading a new cacheline from the MCS node of the
next CPU. That operation can be expensive and add to the latency of
locking operation.
This patch addes code to optmistically prefetch the next MCS node
cacheline if the next pointer is defined and it has been spinning
for the MCS lock for a while. This reduces the locking latency and
improves the system throughput.
The performance change will depend on whether the prefetch overhead
can be hidden within the latency of the lock spin loop. On really
short critical section, there may not be performance gain at all. With
longer critical section, however, it was found to have a performance
boost of 5-10% over a range of different queue depths with a spinlock
loop microbenchmark.
Signed-off-by: Waiman Long <Waiman.Long@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Douglas Hatch <doug.hatch@hpe.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447114167-47185-3-git-send-email-Waiman.Long@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch replaces the cmpxchg() and xchg() calls in the native
qspinlock code with the more relaxed _acquire or _release versions of
those calls to enable other architectures to adopt queued spinlocks
with less memory barrier performance overhead.
Signed-off-by: Waiman Long <Waiman.Long@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Douglas Hatch <doug.hatch@hpe.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447114167-47185-2-git-send-email-Waiman.Long@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Dave ran into horrible performance on a VM without PARAVIRT_SPINLOCKS
set and Linus noted that the test-and-set implementation was retarded.
One should spin on the variable with a load, not a RMW.
While there, remove 'queued' from the name, as the lock isn't queued
at all, but a simple test-and-set.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Reported-by: Dave Chinner <david@fromorbit.com>
Tested-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <Waiman.Long@hp.com>
Cc: stable@vger.kernel.org # v4.2+
Link: http://lkml.kernel.org/r/20150904152523.GR18673@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For an over-committed guest with more vCPUs than physical CPUs
available, it is possible that a vCPU may be kicked twice before
getting the lock - once before it becomes queue head and once again
before it gets the lock. All these CPU kicking and halting (VMEXIT)
can be expensive and slow down system performance.
This patch adds a new vCPU state (vcpu_hashed) which enables the code
to delay CPU kicking until at unlock time. Once this state is set,
the new lock holder will set _Q_SLOW_VAL and fill in the hash table
on behalf of the halted queue head vCPU. The original vcpu_halted
state will be used by pv_wait_node() only to differentiate other
queue nodes from the qeue head.
Signed-off-by: Waiman Long <Waiman.Long@hp.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Douglas Hatch <doug.hatch@hp.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1436647018-49734-2-git-send-email-Waiman.Long@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Provide a separate (second) version of the spin_lock_slowpath for
paravirt along with a special unlock path.
The second slowpath is generated by adding a few pv hooks to the
normal slowpath, but where those will compile away for the native
case, they expand into special wait/wake code for the pv version.
The actual MCS queue can use extra storage in the mcs_nodes[] array to
keep track of state and therefore uses directed wakeups.
The head contender has no such storage directly visible to the
unlocker. So the unlocker searches a hash table with open addressing
using a simple binary Galois linear feedback shift register.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Waiman Long <Waiman.Long@hp.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Daniel J Blueman <daniel@numascale.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Douglas Hatch <doug.hatch@hp.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paolo Bonzini <paolo.bonzini@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1429901803-29771-9-git-send-email-Waiman.Long@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When we detect a hypervisor (!paravirt, see qspinlock paravirt support
patches), revert to a simple test-and-set lock to avoid the horrors
of queue preemption.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Waiman Long <Waiman.Long@hp.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Daniel J Blueman <daniel@numascale.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Douglas Hatch <doug.hatch@hp.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paolo Bonzini <paolo.bonzini@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: virtualization@lists.linux-foundation.org
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/1429901803-29771-8-git-send-email-Waiman.Long@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, atomic_cmpxchg() is used to get the lock. However, this
is not really necessary if there is more than one task in the queue
and the queue head don't need to reset the tail code. For that case,
a simple write to set the lock bit is enough as the queue head will
be the only one eligible to get the lock as long as it checks that
both the lock and pending bits are not set. The current pending bit
waiting code will ensure that the bit will not be set as soon as the
tail code in the lock is set.
With that change, the are some slight improvement in the performance
of the queued spinlock in the 5M loop micro-benchmark run on a 4-socket
Westere-EX machine as shown in the tables below.
[Standalone/Embedded - same node]
# of tasks Before patch After patch %Change
---------- ----------- ---------- -------
3 2324/2321 2248/2265 -3%/-2%
4 2890/2896 2819/2831 -2%/-2%
5 3611/3595 3522/3512 -2%/-2%
6 4281/4276 4173/4160 -3%/-3%
7 5018/5001 4875/4861 -3%/-3%
8 5759/5750 5563/5568 -3%/-3%
[Standalone/Embedded - different nodes]
# of tasks Before patch After patch %Change
---------- ----------- ---------- -------
3 12242/12237 12087/12093 -1%/-1%
4 10688/10696 10507/10521 -2%/-2%
It was also found that this change produced a much bigger performance
improvement in the newer IvyBridge-EX chip and was essentially to close
the performance gap between the ticket spinlock and queued spinlock.
The disk workload of the AIM7 benchmark was run on a 4-socket
Westmere-EX machine with both ext4 and xfs RAM disks at 3000 users
on a 3.14 based kernel. The results of the test runs were:
AIM7 XFS Disk Test
kernel JPM Real Time Sys Time Usr Time
----- --- --------- -------- --------
ticketlock 5678233 3.17 96.61 5.81
qspinlock 5750799 3.13 94.83 5.97
AIM7 EXT4 Disk Test
kernel JPM Real Time Sys Time Usr Time
----- --- --------- -------- --------
ticketlock 1114551 16.15 509.72 7.11
qspinlock 2184466 8.24 232.99 6.01
The ext4 filesystem run had a much higher spinlock contention than
the xfs filesystem run.
The "ebizzy -m" test was also run with the following results:
kernel records/s Real Time Sys Time Usr Time
----- --------- --------- -------- --------
ticketlock 2075 10.00 216.35 3.49
qspinlock 3023 10.00 198.20 4.80
Signed-off-by: Waiman Long <Waiman.Long@hp.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Daniel J Blueman <daniel@numascale.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Douglas Hatch <doug.hatch@hp.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paolo Bonzini <paolo.bonzini@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: virtualization@lists.linux-foundation.org
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/1429901803-29771-7-git-send-email-Waiman.Long@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When we allow for a max NR_CPUS < 2^14 we can optimize the pending
wait-acquire and the xchg_tail() operations.
By growing the pending bit to a byte, we reduce the tail to 16bit.
This means we can use xchg16 for the tail part and do away with all
the repeated compxchg() operations.
This in turn allows us to unconditionally acquire; the locked state
as observed by the wait loops cannot change. And because both locked
and pending are now a full byte we can use simple stores for the
state transition, obviating one atomic operation entirely.
This optimization is needed to make the qspinlock achieve performance
parity with ticket spinlock at light load.
All this is horribly broken on Alpha pre EV56 (and any other arch that
cannot do single-copy atomic byte stores).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Waiman Long <Waiman.Long@hp.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Daniel J Blueman <daniel@numascale.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Douglas Hatch <doug.hatch@hp.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paolo Bonzini <paolo.bonzini@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: virtualization@lists.linux-foundation.org
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/1429901803-29771-6-git-send-email-Waiman.Long@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This is a preparatory patch that extracts out the following 2 code
snippets to prepare for the next performance optimization patch.
1) the logic for the exchange of new and previous tail code words
into a new xchg_tail() function.
2) the logic for clearing the pending bit and setting the locked bit
into a new clear_pending_set_locked() function.
This patch also simplifies the trylock operation before queuing by
calling queued_spin_trylock() directly.
Signed-off-by: Waiman Long <Waiman.Long@hp.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Daniel J Blueman <daniel@numascale.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Douglas Hatch <doug.hatch@hp.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paolo Bonzini <paolo.bonzini@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: virtualization@lists.linux-foundation.org
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/1429901803-29771-5-git-send-email-Waiman.Long@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Because the qspinlock needs to touch a second cacheline (the per-cpu
mcs_nodes[]); add a pending bit and allow a single in-word spinner
before we punt to the second cacheline.
It is possible so observe the pending bit without the locked bit when
the last owner has just released but the pending owner has not yet
taken ownership.
In this case we would normally queue -- because the pending bit is
already taken. However, in this case the pending bit is guaranteed
to be released 'soon', therefore wait for it and avoid queueing.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Waiman Long <Waiman.Long@hp.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Daniel J Blueman <daniel@numascale.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Douglas Hatch <doug.hatch@hp.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paolo Bonzini <paolo.bonzini@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: virtualization@lists.linux-foundation.org
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/1429901803-29771-4-git-send-email-Waiman.Long@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch introduces a new generic queued spinlock implementation that
can serve as an alternative to the default ticket spinlock. Compared
with the ticket spinlock, this queued spinlock should be almost as fair
as the ticket spinlock. It has about the same speed in single-thread
and it can be much faster in high contention situations especially when
the spinlock is embedded within the data structure to be protected.
Only in light to moderate contention where the average queue depth
is around 1-3 will this queued spinlock be potentially a bit slower
due to the higher slowpath overhead.
This queued spinlock is especially suit to NUMA machines with a large
number of cores as the chance of spinlock contention is much higher
in those machines. The cost of contention is also higher because of
slower inter-node memory traffic.
Due to the fact that spinlocks are acquired with preemption disabled,
the process will not be migrated to another CPU while it is trying
to get a spinlock. Ignoring interrupt handling, a CPU can only be
contending in one spinlock at any one time. Counting soft IRQ, hard
IRQ and NMI, a CPU can only have a maximum of 4 concurrent lock waiting
activities. By allocating a set of per-cpu queue nodes and used them
to form a waiting queue, we can encode the queue node address into a
much smaller 24-bit size (including CPU number and queue node index)
leaving one byte for the lock.
Please note that the queue node is only needed when waiting for the
lock. Once the lock is acquired, the queue node can be released to
be used later.
Signed-off-by: Waiman Long <Waiman.Long@hp.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Daniel J Blueman <daniel@numascale.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Douglas Hatch <doug.hatch@hp.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paolo Bonzini <paolo.bonzini@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: virtualization@lists.linux-foundation.org
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/1429901803-29771-2-git-send-email-Waiman.Long@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>