babbbdd08a
38494 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Muchun Song
|
e9fdff87e8 |
mm: hugetlb: add a kernel parameter hugetlb_free_vmemmap
Add a kernel parameter hugetlb_free_vmemmap to enable the feature of freeing unused vmemmap pages associated with each hugetlb page on boot. We disable PMD mapping of vmemmap pages for x86-64 arch when this feature is enabled. Because vmemmap_remap_free() depends on vmemmap being base page mapped. Link: https://lkml.kernel.org/r/20210510030027.56044-8-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Barry Song <song.bao.hua@hisilicon.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Tested-by: Chen Huang <chenhuang5@huawei.com> Tested-by: Bodeddula Balasubramaniam <bodeddub@amazon.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Neukum <oneukum@suse.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Muchun Song
|
6be24bed9d |
mm: hugetlb: introduce a new config HUGETLB_PAGE_FREE_VMEMMAP
The option HUGETLB_PAGE_FREE_VMEMMAP allows for the freeing of some vmemmap pages associated with pre-allocated HugeTLB pages. For example, on X86_64 6 vmemmap pages of size 4KB each can be saved for each 2MB HugeTLB page. 4094 vmemmap pages of size 4KB each can be saved for each 1GB HugeTLB page. When a HugeTLB page is allocated or freed, the vmemmap array representing the range associated with the page will need to be remapped. When a page is allocated, vmemmap pages are freed after remapping. When a page is freed, previously discarded vmemmap pages must be allocated before remapping. The config option is introduced early so that supporting code can be written to depend on the option. The initial version of the code only provides support for x86-64. If config HAVE_BOOTMEM_INFO_NODE is enabled, the freeing vmemmap page code denpend on it to free vmemmap pages. Otherwise, just use free_reserved_page() to free vmemmmap pages. The routine register_page_bootmem_info() is used to register bootmem info. Therefore, make sure register_page_bootmem_info is enabled if HUGETLB_PAGE_FREE_VMEMMAP is defined. Link: https://lkml.kernel.org/r/20210510030027.56044-3-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Acked-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Tested-by: Chen Huang <chenhuang5@huawei.com> Tested-by: Bodeddula Balasubramaniam <bodeddub@amazon.com> Reviewed-by: Balbir Singh <bsingharora@gmail.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Neukum <oneukum@suse.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Muchun Song
|
426e5c429d |
mm: memory_hotplug: factor out bootmem core functions to bootmem_info.c
Patch series "Free some vmemmap pages of HugeTLB page", v23. This patch series will free some vmemmap pages(struct page structures) associated with each HugeTLB page when preallocated to save memory. In order to reduce the difficulty of the first version of code review. In this version, we disable PMD/huge page mapping of vmemmap if this feature was enabled. This acutely eliminates a bunch of the complex code doing page table manipulation. When this patch series is solid, we cam add the code of vmemmap page table manipulation in the future. The struct page structures (page structs) are used to describe a physical page frame. By default, there is an one-to-one mapping from a page frame to it's corresponding page struct. The HugeTLB pages consist of multiple base page size pages and is supported by many architectures. See hugetlbpage.rst in the Documentation directory for more details. On the x86 architecture, HugeTLB pages of size 2MB and 1GB are currently supported. Since the base page size on x86 is 4KB, a 2MB HugeTLB page consists of 512 base pages and a 1GB HugeTLB page consists of 4096 base pages. For each base page, there is a corresponding page struct. Within the HugeTLB subsystem, only the first 4 page structs are used to contain unique information about a HugeTLB page. HUGETLB_CGROUP_MIN_ORDER provides this upper limit. The only 'useful' information in the remaining page structs is the compound_head field, and this field is the same for all tail pages. By removing redundant page structs for HugeTLB pages, memory can returned to the buddy allocator for other uses. When the system boot up, every 2M HugeTLB has 512 struct page structs which size is 8 pages(sizeof(struct page) * 512 / PAGE_SIZE). HugeTLB struct pages(8 pages) page frame(8 pages) +-----------+ ---virt_to_page---> +-----------+ mapping to +-----------+ | | | 0 | -------------> | 0 | | | +-----------+ +-----------+ | | | 1 | -------------> | 1 | | | +-----------+ +-----------+ | | | 2 | -------------> | 2 | | | +-----------+ +-----------+ | | | 3 | -------------> | 3 | | | +-----------+ +-----------+ | | | 4 | -------------> | 4 | | 2MB | +-----------+ +-----------+ | | | 5 | -------------> | 5 | | | +-----------+ +-----------+ | | | 6 | -------------> | 6 | | | +-----------+ +-----------+ | | | 7 | -------------> | 7 | | | +-----------+ +-----------+ | | | | | | +-----------+ The value of page->compound_head is the same for all tail pages. The first page of page structs (page 0) associated with the HugeTLB page contains the 4 page structs necessary to describe the HugeTLB. The only use of the remaining pages of page structs (page 1 to page 7) is to point to page->compound_head. Therefore, we can remap pages 2 to 7 to page 1. Only 2 pages of page structs will be used for each HugeTLB page. This will allow us to free the remaining 6 pages to the buddy allocator. Here is how things look after remapping. HugeTLB struct pages(8 pages) page frame(8 pages) +-----------+ ---virt_to_page---> +-----------+ mapping to +-----------+ | | | 0 | -------------> | 0 | | | +-----------+ +-----------+ | | | 1 | -------------> | 1 | | | +-----------+ +-----------+ | | | 2 | ----------------^ ^ ^ ^ ^ ^ | | +-----------+ | | | | | | | | 3 | ------------------+ | | | | | | +-----------+ | | | | | | | 4 | --------------------+ | | | | 2MB | +-----------+ | | | | | | 5 | ----------------------+ | | | | +-----------+ | | | | | 6 | ------------------------+ | | | +-----------+ | | | | 7 | --------------------------+ | | +-----------+ | | | | | | +-----------+ When a HugeTLB is freed to the buddy system, we should allocate 6 pages for vmemmap pages and restore the previous mapping relationship. Apart from 2MB HugeTLB page, we also have 1GB HugeTLB page. It is similar to the 2MB HugeTLB page. We also can use this approach to free the vmemmap pages. In this case, for the 1GB HugeTLB page, we can save 4094 pages. This is a very substantial gain. On our server, run some SPDK/QEMU applications which will use 1024GB HugeTLB page. With this feature enabled, we can save ~16GB (1G hugepage)/~12GB (2MB hugepage) memory. Because there are vmemmap page tables reconstruction on the freeing/allocating path, it increases some overhead. Here are some overhead analysis. 1) Allocating 10240 2MB HugeTLB pages. a) With this patch series applied: # time echo 10240 > /proc/sys/vm/nr_hugepages real 0m0.166s user 0m0.000s sys 0m0.166s # bpftrace -e 'kprobe:alloc_fresh_huge_page { @start[tid] = nsecs; } kretprobe:alloc_fresh_huge_page /@start[tid]/ { @latency = hist(nsecs - @start[tid]); delete(@start[tid]); }' Attaching 2 probes... @latency: [8K, 16K) 5476 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@| [16K, 32K) 4760 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ | [32K, 64K) 4 | | b) Without this patch series: # time echo 10240 > /proc/sys/vm/nr_hugepages real 0m0.067s user 0m0.000s sys 0m0.067s # bpftrace -e 'kprobe:alloc_fresh_huge_page { @start[tid] = nsecs; } kretprobe:alloc_fresh_huge_page /@start[tid]/ { @latency = hist(nsecs - @start[tid]); delete(@start[tid]); }' Attaching 2 probes... @latency: [4K, 8K) 10147 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@| [8K, 16K) 93 | | Summarize: this feature is about ~2x slower than before. 2) Freeing 10240 2MB HugeTLB pages. a) With this patch series applied: # time echo 0 > /proc/sys/vm/nr_hugepages real 0m0.213s user 0m0.000s sys 0m0.213s # bpftrace -e 'kprobe:free_pool_huge_page { @start[tid] = nsecs; } kretprobe:free_pool_huge_page /@start[tid]/ { @latency = hist(nsecs - @start[tid]); delete(@start[tid]); }' Attaching 2 probes... @latency: [8K, 16K) 6 | | [16K, 32K) 10227 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@| [32K, 64K) 7 | | b) Without this patch series: # time echo 0 > /proc/sys/vm/nr_hugepages real 0m0.081s user 0m0.000s sys 0m0.081s # bpftrace -e 'kprobe:free_pool_huge_page { @start[tid] = nsecs; } kretprobe:free_pool_huge_page /@start[tid]/ { @latency = hist(nsecs - @start[tid]); delete(@start[tid]); }' Attaching 2 probes... @latency: [4K, 8K) 6805 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@| [8K, 16K) 3427 |@@@@@@@@@@@@@@@@@@@@@@@@@@ | [16K, 32K) 8 | | Summary: The overhead of __free_hugepage is about ~2-3x slower than before. Although the overhead has increased, the overhead is not significant. Like Mike said, "However, remember that the majority of use cases create HugeTLB pages at or shortly after boot time and add them to the pool. So, additional overhead is at pool creation time. There is no change to 'normal run time' operations of getting a page from or returning a page to the pool (think page fault/unmap)". Despite the overhead and in addition to the memory gains from this series. The following data is obtained by Joao Martins. Very thanks to his effort. There's an additional benefit which is page (un)pinners will see an improvement and Joao presumes because there are fewer memmap pages and thus the tail/head pages are staying in cache more often. Out of the box Joao saw (when comparing linux-next against linux-next + this series) with gup_test and pinning a 16G HugeTLB file (with 1G pages): get_user_pages(): ~32k -> ~9k unpin_user_pages(): ~75k -> ~70k Usually any tight loop fetching compound_head(), or reading tail pages data (e.g. compound_head) benefit a lot. There's some unpinning inefficiencies Joao was fixing[2], but with that in added it shows even more: unpin_user_pages(): ~27k -> ~3.8k [1] https://lore.kernel.org/linux-mm/20210409205254.242291-1-mike.kravetz@oracle.com/ [2] https://lore.kernel.org/linux-mm/20210204202500.26474-1-joao.m.martins@oracle.com/ This patch (of 9): Move bootmem info registration common API to individual bootmem_info.c. And we will use {get,put}_page_bootmem() to initialize the page for the vmemmap pages or free the vmemmap pages to buddy in the later patch. So move them out of CONFIG_MEMORY_HOTPLUG_SPARSE. This is just code movement without any functional change. Link: https://lkml.kernel.org/r/20210510030027.56044-1-songmuchun@bytedance.com Link: https://lkml.kernel.org/r/20210510030027.56044-2-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Acked-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Tested-by: Chen Huang <chenhuang5@huawei.com> Tested-by: Bodeddula Balasubramaniam <bodeddub@amazon.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: x86@kernel.org Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Oliver Neukum <oneukum@suse.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Mina Almasry <almasrymina@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Cc: Balbir Singh <bsingharora@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Naoya Horiguchi
|
a3f5d80ea4 |
mm,hwpoison: send SIGBUS with error virutal address
Now an action required MCE in already hwpoisoned address surely sends a SIGBUS to current process, but the SIGBUS doesn't convey error virtual address. That's not optimal for hwpoison-aware applications. To fix the issue, make memory_failure() call kill_accessing_process(), that does pagetable walk to find the error virtual address. It could find multiple virtual addresses for the same error page, and it seems hard to tell which virtual address is correct one. But that's rare and sending incorrect virtual address could be better than no address. So let's report the first found virtual address for now. [naoya.horiguchi@nec.com: fix walk_page_range() return] Link: https://lkml.kernel.org/r/20210603051055.GA244241@hori.linux.bs1.fc.nec.co.jp Link: https://lkml.kernel.org/r/20210521030156.2612074-4-nao.horiguchi@gmail.com Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Aili Yao <yaoaili@kingsoft.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: David Hildenbrand <david@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Jue Wang <juew@google.com> Cc: Borislav Petkov <bp@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mike Rapoport
|
a9ee6cf5c6 |
mm: replace CONFIG_NEED_MULTIPLE_NODES with CONFIG_NUMA
After removal of DISCINTIGMEM the NEED_MULTIPLE_NODES and NUMA configuration options are equivalent. Drop CONFIG_NEED_MULTIPLE_NODES and use CONFIG_NUMA instead. Done with $ sed -i 's/CONFIG_NEED_MULTIPLE_NODES/CONFIG_NUMA/' \ $(git grep -wl CONFIG_NEED_MULTIPLE_NODES) $ sed -i 's/NEED_MULTIPLE_NODES/NUMA/' \ $(git grep -wl NEED_MULTIPLE_NODES) with manual tweaks afterwards. [rppt@linux.ibm.com: fix arm boot crash] Link: https://lkml.kernel.org/r/YMj9vHhHOiCVN4BF@linux.ibm.com Link: https://lkml.kernel.org/r/20210608091316.3622-9-rppt@kernel.org Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: David Hildenbrand <david@redhat.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matt Turner <mattst88@gmail.com> Cc: Richard Henderson <rth@twiddle.net> Cc: Vineet Gupta <vgupta@synopsys.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Liam Howlett
|
9ce2c3fc0b |
x86/sgx: use vma_lookup() in sgx_encl_find()
Use vma_lookup() to find the VMA at a specific address. As vma_lookup() will return NULL if the address is not within any VMA, the start address no longer needs to be validated. Link: https://lkml.kernel.org/r/20210521174745.2219620-10-Liam.Howlett@Oracle.com Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com> Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com> Acked-by: David Hildenbrand <david@redhat.com> Acked-by: Davidlohr Bueso <dbueso@suse.de> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Hildenbrand
|
a4eec6a3df |
binfmt: remove in-tree usage of MAP_EXECUTABLE
Ever since commit
|
||
Linus Torvalds
|
94ca94bbbb |
Two more urgent FPU fixes:
- prevent unprivileged userspace from reinitializing supervisor states - Prepare init_fpstate, which is the buffer used when initializing FPU state, properly in case the skip-writing-state-components XSAVE* variants are used. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmDVltYACgkQEsHwGGHe VUqY9Q//c4MhJP2E15cqTWupxYk41k0UMjqPIwGmt6hRoDNKeFQm0xSgeOwe2mgk bbzGDJOfAi2Hxza2fw6No4wIiaB3sZIqK451aI1SM9HTDB/B/dMGBPXAp9qRlnbT kU/rDqQVqi7wlwunSunFoSLTwmQw0Lispmzwz9yirdQ+jVsnuTLWtPbUZM8RL/j8 XAhVwhDNc+Wuw0OBvRsyP5Mp6k9+2ic6z2ObIgSfgp4GeDG2F/+ZQ5W5ZeHVGQda 5QqKIdWCmAinzdz3N0iksthT3RJwLmYZ0K/qvLMrYNCvZiuUBdgrUn1Yrjo1c3lx W+SUMtgehlylfyBbyGn5zBbJtZJtflx+kYLHLzw58lWC+ekRfxqx2F+e7S4facXr Xn9IpnIAhru1/SAItSvScxXzjVW4DwZKO3tLr+/KsrRsTnS15pD6rx6OK88HHP/y ofjCeS0P8STb7/Gzzqj7c+7bJvSZo/h7jmF+H2y5tRhUXZogSoh1z/QGYpvcFrwP GOZeACREBv+D1PQNp/DN/ZiZHg6+csEg+3abtRaZSbdnfsCSpU/imXcX9GPco5vu XS+Gxle2aqvRmQNuJEbNr7YDfocZWWXmXnkPSKCtvqSgNdxjFjZ2v3TRTAgvHEoS Otpsv5Hk9g0FCep4oHG3zv8cb+Nk7Ycl2ZLZXQwE2Egane6U4K8= =uqQE -----END PGP SIGNATURE----- Merge tag 'x86_urgent_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 fixes from Borislav Petkov: "Two more urgent FPU fixes: - prevent unprivileged userspace from reinitializing supervisor states - prepare init_fpstate, which is the buffer used when initializing FPU state, properly in case the skip-writing-state-components XSAVE* variants are used" * tag 'x86_urgent_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/fpu: Make init_fpstate correct with optimized XSAVE x86/fpu: Preserve supervisor states in sanitize_restored_user_xstate() |
||
Linus Torvalds
|
df50110004 |
An LBR buffer fix for code that probably only worked accidentally.
Signed-off-by: Ingo Molnar <mingo@kernel.org> -----BEGIN PGP SIGNATURE----- iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmDULYwRHG1pbmdvQGtl cm5lbC5vcmcACgkQEnMQ0APhK1gLZRAAhGPpPwb59c38IfGkXivuSf4bCmNeJzru YuyNsbvhc4bYPXAvOEdpaa6fVGEzwYD5MEaU3JjNfTnX9sREJVN2fwipAA8h5enL zAOm1ZTZ/0J9mSUpJpL+1kq3Ae7BHc/yJo/wvHlVuzz/HAp1y1O5FWo4An10vOf3 qiKDvj0e7VGXTWh0S8z0+iv7SuMa3+I/9yqcQ5DaxJKZTlQPuK4H6Fge8KDenO0z fj0IfEemXb75lQkq/eaQ5Fj5UFLqRFWTihuVRyH93V7dKAIq8aybdyaqQPp8NtdT YdMYPNeCG8uRNwtIoDQHsVpfkkhF1y/Y8Klg0LpNQCAdrcKy0wvkaVMWCcP7ELsD Nyi/wJEaM3vLYHjxGpk1HTYEC50Vi4Dz6+tFD9LubVW7PCAMasZqkKkvvslO/Xtc ZjPIju4u7bIzxTUBpBbxuPKJXUPt70OR6SZtGxMXDosOqI8a8yOuAaO+FEX51kp/ MxcJPSBfZlt+GPpa6LzA6Uskev1HW2+wLxhM87b6Eqt7pYFGVy7UErvmxV5q6nTu tUaL+5Zt7/DKWwtXHKRMgZBYQbKYt1Y9s1JKYEeMEwlIP95x7x1cY/p+pw5pwlIm uVT8evJAdLR+3faqhGlNtYdczZXaI/CwyHDnvIuSdScdc/bZ9zjEw/vQFVaYP1Db uhyQpjR3qlI= =HVxR -----END PGP SIGNATURE----- Merge tag 'perf-urgent-2021-06-24' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 perf fix from Ingo Molnar: "An LBR buffer fix for code that probably only worked accidentally" * tag 'perf-urgent-2021-06-24' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: perf/x86/intel/lbr: Zero the xstate buffer on allocation |
||
Thomas Gleixner
|
7f049fbdd5 |
perf/x86/intel/lbr: Zero the xstate buffer on allocation
XRSTORS requires a valid xstate buffer to work correctly. XSAVES does not
guarantee to write a fully valid buffer according to the SDM:
"XSAVES does not write to any parts of the XSAVE header other than the
XSTATE_BV and XCOMP_BV fields."
XRSTORS triggers a #GP:
"If bytes 63:16 of the XSAVE header are not all zero."
It's dubious at best how this can work at all when the buffer is not zeroed
before use.
Allocate the buffers with __GFP_ZERO to prevent XRSTORS failure.
Fixes:
|
||
Peter Zijlstra
|
1f008d46f1 |
x86: Always inline task_size_max()
Fix:
vmlinux.o: warning: objtool: handle_bug()+0x10: call to task_size_max() leaves .noinstr.text section
When #UD isn't a BUG, we shouldn't violate noinstr (we'll still
probably die, but that's another story).
Fixes:
|
||
Peter Zijlstra
|
4c9c26f1e6 |
x86/xen: Fix noinstr fail in exc_xen_unknown_trap()
Fix:
vmlinux.o: warning: objtool: exc_xen_unknown_trap()+0x7: call to printk() leaves .noinstr.text section
Fixes:
|
||
Peter Zijlstra
|
84e60065df |
x86/xen: Fix noinstr fail in xen_pv_evtchn_do_upcall()
Fix:
vmlinux.o: warning: objtool: xen_pv_evtchn_do_upcall()+0x23: call to irq_enter_rcu() leaves .noinstr.text section
Fixes:
|
||
Peter Zijlstra
|
240001d4e3 |
x86/entry: Fix noinstr fail in __do_fast_syscall_32()
Fix:
vmlinux.o: warning: objtool: __do_fast_syscall_32()+0xf5: call to trace_hardirqs_off() leaves .noinstr.text section
Fixes:
|
||
Thomas Gleixner
|
f9dfb5e390 |
x86/fpu: Make init_fpstate correct with optimized XSAVE
The XSAVE init code initializes all enabled and supported components with
XRSTOR(S) to init state. Then it XSAVEs the state of the components back
into init_fpstate which is used in several places to fill in the init state
of components.
This works correctly with XSAVE, but not with XSAVEOPT and XSAVES because
those use the init optimization and skip writing state of components which
are in init state. So init_fpstate.xsave still contains all zeroes after
this operation.
There are two ways to solve that:
1) Use XSAVE unconditionally, but that requires to reshuffle the buffer when
XSAVES is enabled because XSAVES uses compacted format.
2) Save the components which are known to have a non-zero init state by other
means.
Looking deeper, #2 is the right thing to do because all components the
kernel supports have all-zeroes init state except the legacy features (FP,
SSE). Those cannot be hard coded because the states are not identical on all
CPUs, but they can be saved with FXSAVE which avoids all conditionals.
Use FXSAVE to save the legacy FP/SSE components in init_fpstate along with
a BUILD_BUG_ON() which reminds developers to validate that a newly added
component has all zeroes init state. As a bonus remove the now unused
copy_xregs_to_kernel_booting() crutch.
The XSAVE and reshuffle method can still be implemented in the unlikely
case that components are added which have a non-zero init state and no
other means to save them. For now, FXSAVE is just simple and good enough.
[ bp: Fix a typo or two in the text. ]
Fixes:
|
||
Thomas Gleixner
|
9301982c42 |
x86/fpu: Preserve supervisor states in sanitize_restored_user_xstate()
sanitize_restored_user_xstate() preserves the supervisor states only
when the fx_only argument is zero, which allows unprivileged user space
to put supervisor states back into init state.
Preserve them unconditionally.
[ bp: Fix a typo or two in the text. ]
Fixes:
|
||
Peter Zijlstra
|
31197d3a0f |
objtool/x86: Ignore __x86_indirect_alt_* symbols
Because the __x86_indirect_alt* symbols are just that, objtool will
try and validate them as regular symbols, instead of the alternative
replacements that they are.
This goes sideways for FRAME_POINTER=y builds; which generate a fair
amount of warnings.
Fixes:
|
||
Linus Torvalds
|
8363e795eb |
A first set of urgent fixes to the FPU/XSTATE handling mess^W code.
(There's a lot more in the pipe): - Prevent corruption of the XSTATE buffer in signal handling by validating what is being copied from userspace first. - Invalidate other task's preserved FPU registers on XRSTOR failure (#PF) because latter can still modify some of them. - Restore the proper PKRU value in case userspace modified it - Reset FPU state when signal restoring fails Other: - Map EFI boot services data memory as encrypted in a SEV guest so that the guest can access it and actually boot properly - Two SGX correctness fixes: proper resources freeing and a NUMA fix -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmDO5vQACgkQEsHwGGHe VUrUjw//fRU8BPZ3/SWNQO188QhHdFpm3jqtjRJsZD1FfnnLdxIg2SCP4RjFxv+Y eFyN0nYLekG8a3CMV081H9Rhr5tt3bflk0oTcGAar7m2qQiCiqaAH0wptIlQonSu nQCSs+PeaaK4nRCtW+TUJnwG0ZU/y7fEXa3pxJ6hSMnxZjz3lj70zKhpA1nQtqRZ OOStvBNtaWcDdTTE4r8XuFIxuMUUEuwHlQQmkAVHQYUf6vxGYfnDYEg83Wddvq1E 1leSRNFlLcCAbPUV/fax3KGvaekeJ1U411uWqXlain6m105+mk+irmrLxtur/lJ5 cWTVb5CbIHFZnJvC5jzNPv/03GbIIQaVm4jPI2qB1AZbjcVlAPKj1Ne+U1fzvmDT wNUob/rnIXiGptvtUMNYGURxBTj65Nnom3iAJV+AdMOThDwYMvsJJjFkMnC5wO2n ZAexumWPnUzWoxSMTraT7a6b/kilFUrcPljxSrFd9yVeU8E6a1OSW35oWoQ3itrc xx/ne8RodLmCPC9DjecFcQR+qUuXsF+XCCj07QpfKNTAObr17e9nsKJneR6MX79C Lpc7Ka/CiTGYcebWX7tqtjwGPfa6iqekswxYRRp7j54bQ4sHmKyordZy0Q8+c079 gmMlPdNbqQg3YwHyXW2yeJETDS1HBp61RRojAP15BsL73wyYQNE= =AuXr -----END PGP SIGNATURE----- Merge tag 'x86_urgent_for_v5.13_rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 fixes from Borislav Petkov: "A first set of urgent fixes to the FPU/XSTATE handling mess^W code. (There's a lot more in the pipe): - Prevent corruption of the XSTATE buffer in signal handling by validating what is being copied from userspace first. - Invalidate other task's preserved FPU registers on XRSTOR failure (#PF) because latter can still modify some of them. - Restore the proper PKRU value in case userspace modified it - Reset FPU state when signal restoring fails Other: - Map EFI boot services data memory as encrypted in a SEV guest so that the guest can access it and actually boot properly - Two SGX correctness fixes: proper resources freeing and a NUMA fix" * tag 'x86_urgent_for_v5.13_rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/mm: Avoid truncating memblocks for SGX memory x86/sgx: Add missing xa_destroy() when virtual EPC is destroyed x86/fpu: Reset state for all signal restore failures x86/pkru: Write hardware init value to PKRU when xstate is init x86/process: Check PF_KTHREAD and not current->mm for kernel threads x86/fpu: Invalidate FPU state after a failed XRSTOR from a user buffer x86/fpu: Prevent state corruption in __fpu__restore_sig() x86/ioremap: Map EFI-reserved memory as encrypted for SEV |
||
Linus Torvalds
|
728a748b3f |
pci-v5.13-fixes-2
-----BEGIN PGP SIGNATURE----- iQJIBAABCgAyFiEEgMe7l+5h9hnxdsnuWYigwDrT+vwFAmDM/J8UHGJoZWxnYWFz QGdvb2dsZS5jb20ACgkQWYigwDrT+vzAWBAAgHd/Taycg2JT1QakC2qkUPfipB2w IQWAzRAODWEXBOsgdck4H5q7y4dzxHdj4BmZIe0iPmc0LkqrqjYiKvYZzqdLzRlG 4SC12h7DLOBfPluKDfjB3Ceo0TlpAWM9c6Gm2liMscLJMMw8JcrnZK+pP03ws66O 3UjHRF+tJTDUqGUeOn45MVlkVSk5wIOG+hgGbI3AEGPvegteK0J97xJ8GI4MUi58 Uy5VMFB+ETOxvbzWAAiRIko4YkSjVNb1pme21Izi6z2FMldmUb9nECp6zSJzxj5t H6/8ehgzHDIoyak0DDzyS2rOL4D1jIqymEKQIIK2frODaRYSSYUR/vtXkhO/bxPf aJ9uFJQFZei98cSiONmq1NDJAMEMa21b32MfK5sOizJJ7ANljBFz+eVY0L+Mr+wy WQf8EiBXBCS2v3CQzS7iA+l8R6rvvf+VjDkqpe/ca1GrAeZ1UzdmU2vf9hcEW+Iu MJ1b6AtTTMAQIdZyTVFz+k/FR3jJyZBGavZFi8+I0Tgui0dooiCwmSgxJptVQrjr DydIiJ2Zgtq22T388aVeDL5X4xDcqWlHoamfHuBedxS/ti75Es7sexitkhMW+Sda Ygqb5Cvfyg8GdKvgvDZz59wg/+LNhhwt81ZoxD/RvDXmURyANA3l9GnTxBgq9BZb wCGLm4ZWP/AFe9g= =CY2S -----END PGP SIGNATURE----- Merge tag 'pci-v5.13-fixes-2' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci Pull PCI fixes from Bjorn Helgaas: - Clear 64-bit flag for host bridge windows below 4GB to fix a resource allocation regression added in -rc1 (Punit Agrawal) - Fix tegra194 MCFG quirk build regressions added in -rc1 (Jon Hunter) - Avoid secondary bus resets on TI KeyStone C667X devices (Antti Järvinen) - Avoid secondary bus resets on some NVIDIA GPUs (Shanker Donthineni) - Work around FLR erratum on Huawei Intelligent NIC VF (Chiqijun) - Avoid broken ATS on AMD Navi14 GPU (Evan Quan) - Trust Broadcom BCM57414 NIC to isolate functions even though it doesn't advertise ACS support (Sriharsha Basavapatna) - Work around AMD RS690 BIOSes that don't configure DMA above 4GB (Mikel Rychliski) - Fix panic during PIO transfer on Aardvark controller (Pali Rohár) * tag 'pci-v5.13-fixes-2' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci: PCI: aardvark: Fix kernel panic during PIO transfer PCI: Add AMD RS690 quirk to enable 64-bit DMA PCI: Add ACS quirk for Broadcom BCM57414 NIC PCI: Mark AMD Navi14 GPU ATS as broken PCI: Work around Huawei Intelligent NIC VF FLR erratum PCI: Mark some NVIDIA GPUs to avoid bus reset PCI: Mark TI C667X to avoid bus reset PCI: tegra194: Fix MCFG quirk build regressions PCI: of: Clear 64-bit flag for non-prefetchable memory below 4GB |
||
Fan Du
|
28e5e44aa3 |
x86/mm: Avoid truncating memblocks for SGX memory
tl;dr:
Several SGX users reported seeing the following message on NUMA systems:
sgx: [Firmware Bug]: Unable to map EPC section to online node. Fallback to the NUMA node 0.
This turned out to be the memblock code mistakenly throwing away SGX
memory.
=== Full Changelog ===
The 'max_pfn' variable represents the highest known RAM address. It can
be used, for instance, to quickly determine for which physical addresses
there is mem_map[] space allocated. The numa_meminfo code makes an
effort to throw out ("trim") all memory blocks which are above 'max_pfn'.
SGX memory is not considered RAM (it is marked as "Reserved" in the
e820) and is not taken into account by max_pfn. Despite this, SGX memory
areas have NUMA affinity and are enumerated in the ACPI SRAT table. The
existing SGX code uses the numa_meminfo mechanism to look up the NUMA
affinity for its memory areas.
In cases where SGX memory was above max_pfn (usually just the one EPC
section in the last highest NUMA node), the numa_memblock is truncated
at 'max_pfn', which is below the SGX memory. When the SGX code tries to
look up the affinity of this memory, it fails and produces an error message:
sgx: [Firmware Bug]: Unable to map EPC section to online node. Fallback to the NUMA node 0.
and assigns the memory to NUMA node 0.
Instead of silently truncating the memory block at 'max_pfn' and
dropping the SGX memory, add the truncated portion to
'numa_reserved_meminfo'. This allows the SGX code to later determine
the NUMA affinity of its 'Reserved' area.
Before, numa_meminfo looked like this (from 'crash'):
blk = { start = 0x0, end = 0x2080000000, nid = 0x0 }
{ start = 0x2080000000, end = 0x4000000000, nid = 0x1 }
numa_reserved_meminfo is empty.
With this, numa_meminfo looks like this:
blk = { start = 0x0, end = 0x2080000000, nid = 0x0 }
{ start = 0x2080000000, end = 0x4000000000, nid = 0x1 }
and numa_reserved_meminfo has an entry for node 1's SGX memory:
blk = { start = 0x4000000000, end = 0x4080000000, nid = 0x1 }
[ daveh: completely rewrote/reworked changelog ]
Fixes:
|
||
Mikel Rychliski
|
cacf994a91 |
PCI: Add AMD RS690 quirk to enable 64-bit DMA
Although the AMD RS690 chipset has 64-bit DMA support, BIOS implementations sometimes fail to configure the memory limit registers correctly. The Acer F690GVM mainboard uses this chipset and a Marvell 88E8056 NIC. The sky2 driver programs the NIC to use 64-bit DMA, which will not work: sky2 0000:02:00.0: error interrupt status=0x8 sky2 0000:02:00.0 eth0: tx timeout sky2 0000:02:00.0 eth0: transmit ring 0 .. 22 report=0 done=0 Other drivers required by this mainboard either don't support 64-bit DMA, or have it disabled using driver specific quirks. For example, the ahci driver has quirks to enable or disable 64-bit DMA depending on the BIOS version (see ahci_sb600_enable_64bit() in ahci.c). This ahci quirk matches against the SB600 SATA controller, but the real issue is almost certainly with the RS690 PCI host that it was commonly attached to. To avoid this issue in all drivers with 64-bit DMA support, fix the configuration of the PCI host. If the kernel is aware of physical memory above 4GB, but the BIOS never configured the PCI host with this information, update the registers with our values. [bhelgaas: drop PCI_DEVICE_ID_ATI_RS690 definition] Link: https://lore.kernel.org/r/20210611214823.4898-1-mikel@mikelr.com Signed-off-by: Mikel Rychliski <mikel@mikelr.com> Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> |
||
Linus Torvalds
|
fd0aa1a456 |
Miscellaneous bugfixes. The main interesting one is a NULL pointer dereference
reported by syzkaller ("KVM: x86: Immediately reset the MMU context when the SMM flag is cleared"). -----BEGIN PGP SIGNATURE----- iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmDLldwUHHBib256aW5p QHJlZGhhdC5jb20ACgkQv/vSX3jHroPTOgf/XpAehLdWlx2877ulcBD0Kjt0tLvH OFHRD1Ir0d1Ay3DX8qmxLquXHB4CoDGZBwi1d7AI165kUP/XLmV0bY6TZ74inI/P CaD8Bsbm8+iBl5jrovEPc+223bK+3OFOvo2pk6M/MlsO/ExRikaPDtHOnkfousbl nLX8v2qd7ihWyJOdLJMU9pV8E2iczQoCuH9yWBHdCrxRxWtPzkEekPWb0sujByiF 4tD7sqiEA3ugbF1Wm5keQV63NLplfxx+Zun0FV+tbpjjxQWAGl81dP+zmqok0sM/ qQCyZevt6jLLkL+Fn6hI6PP9OTeYreX2fgwhWXs71d2js33yNg5Veqx5Bw== =Gs/y -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull kvm fixes from Paolo Bonzini: "Miscellaneous bugfixes. The main interesting one is a NULL pointer dereference reported by syzkaller ("KVM: x86: Immediately reset the MMU context when the SMM flag is cleared")" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: KVM: selftests: Fix kvm_check_cap() assertion KVM: x86/mmu: Calculate and check "full" mmu_role for nested MMU KVM: X86: Fix x86_emulator slab cache leak KVM: SVM: Call SEV Guest Decommission if ASID binding fails KVM: x86: Immediately reset the MMU context when the SMM flag is cleared KVM: x86: Fix fall-through warnings for Clang KVM: SVM: fix doc warnings KVM: selftests: Fix compiling errors when initializing the static structure kvm: LAPIC: Restore guard to prevent illegal APIC register access |
||
Kai Huang
|
4692bc775d |
x86/sgx: Add missing xa_destroy() when virtual EPC is destroyed
xa_destroy() needs to be called to destroy a virtual EPC's page array
before calling kfree() to free the virtual EPC. Currently it is not
called so add the missing xa_destroy().
Fixes:
|
||
Linus Torvalds
|
191aaf6cc4 |
Misc fixes:
- Fix the NMI watchdog on ancient Intel CPUs - Remove a misguided, NMI-unsafe KASAN callback from the NMI-safe irq_work path used by perf. - Fix uncore events on Ice Lake servers. - Someone booted maxcpus=1 on an SNB-EP, and the uncore driver emitted warnings and was probably buggy. Fix it. - KCSAN found a genuine data race in the core perf code. Somewhat ironically the bug was introduced through a recent race fix. :-/ In our defense, the new race window was much more narrow. Fix it. Signed-off-by: Ingo Molnar <mingo@kernel.org> -----BEGIN PGP SIGNATURE----- iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmDErJkRHG1pbmdvQGtl cm5lbC5vcmcACgkQEnMQ0APhK1gjNxAAhWPl+zsVr+bMZGQVnjPf7swXSaqsphtU LrP0hrs4nH0JiB7lZJVjPhCMQKXb+gvP0CTmxkOXmNORDKDK3slIS/zp9uyH1F+d nXhmWi7c1bHU0vortnv87LGJpeeI1E7rQ/uBxK6b2v6kOBmCnjvQEiPvJEIGTtpE YimVBERdPDTBQiW5EQbbyL3VScwm5QUN2STnLPjUtVc9HES/zCdhXNlsASfhn/Tn 8rlSAqVEOUcsTpTXYadHckNi1zn4zrpuhWKpSHXrvXCo3qU8QpISjYNwAJ/0IGBj CMdg2r+MneF6gop76R5aRcA0JDvDgtv56LKFVhi9gEkE5em9YAni17HU0IeTvJmT mL9j64h8oUErC/TpAU1vXCJjIxH7jLq8YQoNwHUvF0pSvcNGsaFeWu1ADQuTEIi9 fyKHRpFwPMBhwc+AMaRepgQ9FlvE4567fQmwlrUDUKlCU0x0dfvFCM2z/o61YFlH oFgB0h0SNxdoj5EXny50LtokP1Kp/oBNVhhNsUpH8wVxWLi61BHJOslcc7nzdP6t JBqVE6bLQlxmlKt2AwiOkxe9xVv34o3AMxUYtUBYgCTZSlRjL//7pcqgG5r+CZH/ eXEU3wWcGtRPEItGXtiGT9Vm2ZYSaUMFF7k7OrTPCHgkW51oEW4FUoaV7M+9fl43 638x9Wnse4Q= =9LoT -----END PGP SIGNATURE----- Merge tag 'perf-urgent-2021-06-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull perf fixes from Ingo Molnar: "Misc fixes: - Fix the NMI watchdog on ancient Intel CPUs - Remove a misguided, NMI-unsafe KASAN callback from the NMI-safe irq_work path used by perf. - Fix uncore events on Ice Lake servers. - Someone booted maxcpus=1 on an SNB-EP, and the uncore driver emitted warnings and was probably buggy. Fix it. - KCSAN found a genuine data race in the core perf code. Somewhat ironically the bug was introduced through a recent race fix. :-/ In our defense, the new race window was much more narrow. Fix it" * tag 'perf-urgent-2021-06-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/nmi_watchdog: Fix old-style NMI watchdog regression on old Intel CPUs irq_work: Make irq_work_queue() NMI-safe again perf/x86/intel/uncore: Fix M2M event umask for Ice Lake server perf/x86/intel/uncore: Fix a kernel WARNING triggered by maxcpus=1 perf: Fix data race between pin_count increment/decrement |
||
Tor Vic
|
2398ce8015 |
x86, lto: Pass -stack-alignment only on LLD < 13.0.0
Since LLVM commit 3787ee4, the '-stack-alignment' flag has been dropped [1], leading to the following error message when building a LTO kernel with Clang-13 and LLD-13: ld.lld: error: -plugin-opt=-: ld.lld: Unknown command line argument '-stack-alignment=8'. Try 'ld.lld --help' ld.lld: Did you mean '--stackrealign=8'? It also appears that the '-code-model' flag is not necessary anymore starting with LLVM-9 [2]. Drop '-code-model' and make '-stack-alignment' conditional on LLD < 13.0.0. These flags were necessary because these flags were not encoded in the IR properly, so the link would restart optimizations without them. Now there are properly encoded in the IR, and these flags exposing implementation details are no longer necessary. [1] https://reviews.llvm.org/D103048 [2] https://reviews.llvm.org/D52322 Cc: stable@vger.kernel.org Link: https://github.com/ClangBuiltLinux/linux/issues/1377 Signed-off-by: Tor Vic <torvic9@mailbox.org> Reviewed-by: Nathan Chancellor <nathan@kernel.org> Tested-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/f2c018ee-5999-741e-58d4-e482d5246067@mailbox.org |
||
Sean Christopherson
|
654430efde |
KVM: x86/mmu: Calculate and check "full" mmu_role for nested MMU
Calculate and check the full mmu_role when initializing the MMU context
for the nested MMU, where "full" means the bits and pieces of the role
that aren't handled by kvm_calc_mmu_role_common(). While the nested MMU
isn't used for shadow paging, things like the number of levels in the
guest's page tables are surprisingly important when walking the guest
page tables. Failure to reinitialize the nested MMU context if L2's
paging mode changes can result in unexpected and/or missed page faults,
and likely other explosions.
E.g. if an L1 vCPU is running both a 32-bit PAE L2 and a 64-bit L2, the
"common" role calculation will yield the same role for both L2s. If the
64-bit L2 is run after the 32-bit PAE L2, L0 will fail to reinitialize
the nested MMU context, ultimately resulting in a bad walk of L2's page
tables as the MMU will still have a guest root_level of PT32E_ROOT_LEVEL.
WARNING: CPU: 4 PID: 167334 at arch/x86/kvm/vmx/vmx.c:3075 ept_save_pdptrs+0x15/0xe0 [kvm_intel]
Modules linked in: kvm_intel]
CPU: 4 PID: 167334 Comm: CPU 3/KVM Not tainted 5.13.0-rc1-d849817d5673-reqs #185
Hardware name: ASUS Q87M-E/Q87M-E, BIOS 1102 03/03/2014
RIP: 0010:ept_save_pdptrs+0x15/0xe0 [kvm_intel]
Code: <0f> 0b c3 f6 87 d8 02 00f
RSP: 0018:ffffbba702dbba00 EFLAGS: 00010202
RAX: 0000000000000011 RBX: 0000000000000002 RCX: ffffffff810a2c08
RDX: ffff91d7bc30acc0 RSI: 0000000000000011 RDI: ffff91d7bc30a600
RBP: ffff91d7bc30a600 R08: 0000000000000010 R09: 0000000000000007
R10: 0000000000000000 R11: 0000000000000000 R12: ffff91d7bc30a600
R13: ffff91d7bc30acc0 R14: ffff91d67c123460 R15: 0000000115d7e005
FS: 00007fe8e9ffb700(0000) GS:ffff91d90fb00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 000000029f15a001 CR4: 00000000001726e0
Call Trace:
kvm_pdptr_read+0x3a/0x40 [kvm]
paging64_walk_addr_generic+0x327/0x6a0 [kvm]
paging64_gva_to_gpa_nested+0x3f/0xb0 [kvm]
kvm_fetch_guest_virt+0x4c/0xb0 [kvm]
__do_insn_fetch_bytes+0x11a/0x1f0 [kvm]
x86_decode_insn+0x787/0x1490 [kvm]
x86_decode_emulated_instruction+0x58/0x1e0 [kvm]
x86_emulate_instruction+0x122/0x4f0 [kvm]
vmx_handle_exit+0x120/0x660 [kvm_intel]
kvm_arch_vcpu_ioctl_run+0xe25/0x1cb0 [kvm]
kvm_vcpu_ioctl+0x211/0x5a0 [kvm]
__x64_sys_ioctl+0x83/0xb0
do_syscall_64+0x40/0xb0
entry_SYSCALL_64_after_hwframe+0x44/0xae
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Fixes:
|
||
Wanpeng Li
|
dfdc0a714d |
KVM: X86: Fix x86_emulator slab cache leak
Commit |
||
Alper Gun
|
934002cd66 |
KVM: SVM: Call SEV Guest Decommission if ASID binding fails
Send SEV_CMD_DECOMMISSION command to PSP firmware if ASID binding
fails. If a failure happens after a successful LAUNCH_START command,
a decommission command should be executed. Otherwise, guest context
will be unfreed inside the AMD SP. After the firmware will not have
memory to allocate more SEV guest context, LAUNCH_START command will
begin to fail with SEV_RET_RESOURCE_LIMIT error.
The existing code calls decommission inside sev_unbind_asid, but it is
not called if a failure happens before guest activation succeeds. If
sev_bind_asid fails, decommission is never called. PSP firmware has a
limit for the number of guests. If sev_asid_binding fails many times,
PSP firmware will not have resources to create another guest context.
Cc: stable@vger.kernel.org
Fixes:
|
||
Sean Christopherson
|
78fcb2c91a |
KVM: x86: Immediately reset the MMU context when the SMM flag is cleared
Immediately reset the MMU context when the vCPU's SMM flag is cleared so
that the SMM flag in the MMU role is always synchronized with the vCPU's
flag. If RSM fails (which isn't correctly emulated), KVM will bail
without calling post_leave_smm() and leave the MMU in a bad state.
The bad MMU role can lead to a NULL pointer dereference when grabbing a
shadow page's rmap for a page fault as the initial lookups for the gfn
will happen with the vCPU's SMM flag (=0), whereas the rmap lookup will
use the shadow page's SMM flag, which comes from the MMU (=1). SMM has
an entirely different set of memslots, and so the initial lookup can find
a memslot (SMM=0) and then explode on the rmap memslot lookup (SMM=1).
general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN
KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007]
CPU: 1 PID: 8410 Comm: syz-executor382 Not tainted 5.13.0-rc5-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:__gfn_to_rmap arch/x86/kvm/mmu/mmu.c:935 [inline]
RIP: 0010:gfn_to_rmap+0x2b0/0x4d0 arch/x86/kvm/mmu/mmu.c:947
Code: <42> 80 3c 20 00 74 08 4c 89 ff e8 f1 79 a9 00 4c 89 fb 4d 8b 37 44
RSP: 0018:ffffc90000ffef98 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff888015b9f414 RCX: ffff888019669c40
RDX: 0000000000000000 RSI: 0000000000000001 RDI: 0000000000000001
RBP: 0000000000000001 R08: ffffffff811d9cdb R09: ffffed10065a6002
R10: ffffed10065a6002 R11: 0000000000000000 R12: dffffc0000000000
R13: 0000000000000003 R14: 0000000000000001 R15: 0000000000000000
FS: 000000000124b300(0000) GS:ffff8880b9b00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 0000000028e31000 CR4: 00000000001526e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
rmap_add arch/x86/kvm/mmu/mmu.c:965 [inline]
mmu_set_spte+0x862/0xe60 arch/x86/kvm/mmu/mmu.c:2604
__direct_map arch/x86/kvm/mmu/mmu.c:2862 [inline]
direct_page_fault+0x1f74/0x2b70 arch/x86/kvm/mmu/mmu.c:3769
kvm_mmu_do_page_fault arch/x86/kvm/mmu.h:124 [inline]
kvm_mmu_page_fault+0x199/0x1440 arch/x86/kvm/mmu/mmu.c:5065
vmx_handle_exit+0x26/0x160 arch/x86/kvm/vmx/vmx.c:6122
vcpu_enter_guest+0x3bdd/0x9630 arch/x86/kvm/x86.c:9428
vcpu_run+0x416/0xc20 arch/x86/kvm/x86.c:9494
kvm_arch_vcpu_ioctl_run+0x4e8/0xa40 arch/x86/kvm/x86.c:9722
kvm_vcpu_ioctl+0x70f/0xbb0 arch/x86/kvm/../../../virt/kvm/kvm_main.c:3460
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:1069 [inline]
__se_sys_ioctl+0xfb/0x170 fs/ioctl.c:1055
do_syscall_64+0x3f/0xb0 arch/x86/entry/common.c:47
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x440ce9
Cc: stable@vger.kernel.org
Reported-by: syzbot+fb0b6a7e8713aeb0319c@syzkaller.appspotmail.com
Fixes:
|
||
Gustavo A. R. Silva
|
551912d286 |
KVM: x86: Fix fall-through warnings for Clang
In preparation to enable -Wimplicit-fallthrough for Clang, fix a couple of warnings by explicitly adding break statements instead of just letting the code fall through to the next case. Link: https://github.com/KSPP/linux/issues/115 Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org> Message-Id: <20210528200756.GA39320@embeddedor> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> |
||
ChenXiaoSong
|
02ffbe6351 |
KVM: SVM: fix doc warnings
Fix kernel-doc warnings: arch/x86/kvm/svm/avic.c:233: warning: Function parameter or member 'activate' not described in 'avic_update_access_page' arch/x86/kvm/svm/avic.c:233: warning: Function parameter or member 'kvm' not described in 'avic_update_access_page' arch/x86/kvm/svm/avic.c:781: warning: Function parameter or member 'e' not described in 'get_pi_vcpu_info' arch/x86/kvm/svm/avic.c:781: warning: Function parameter or member 'kvm' not described in 'get_pi_vcpu_info' arch/x86/kvm/svm/avic.c:781: warning: Function parameter or member 'svm' not described in 'get_pi_vcpu_info' arch/x86/kvm/svm/avic.c:781: warning: Function parameter or member 'vcpu_info' not described in 'get_pi_vcpu_info' arch/x86/kvm/svm/avic.c:1009: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst Signed-off-by: ChenXiaoSong <chenxiaosong2@huawei.com> Message-Id: <20210609122217.2967131-1-chenxiaosong2@huawei.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> |
||
CodyYao-oc
|
a8383dfb21 |
x86/nmi_watchdog: Fix old-style NMI watchdog regression on old Intel CPUs
The following commit: |
||
Thomas Gleixner
|
efa1655049 |
x86/fpu: Reset state for all signal restore failures
If access_ok() or fpregs_soft_set() fails in __fpu__restore_sig() then the
function just returns but does not clear the FPU state as it does for all
other fatal failures.
Clear the FPU state for these failures as well.
Fixes:
|
||
Jim Mattson
|
218bf772bd |
kvm: LAPIC: Restore guard to prevent illegal APIC register access
Per the SDM, "any access that touches bytes 4 through 15 of an APIC register may cause undefined behavior and must not be executed." Worse, such an access in kvm_lapic_reg_read can result in a leak of kernel stack contents. Prior to commit |
||
Linus Torvalds
|
2f673816b2 |
Bugfixes, including a TLB flush fix that affects processors
without nested page tables.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmDAVpQUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNkOgf9F97eFxAdod3/wbW9EbsUPR5bMTLE
+R6Hmvw+yCm/W2cycVGdCSh1BEKNuZN/XfHln2cYVfVr6ndog58A4Y0urFAhTROv
IHs8TCA5biQitoZ716l88ExOitnqJiSmMhGex969+zm1Lb9MQo1KA/zxERlqCi3s
Pfcxb6I8VbD9LEb6NaQdDgQoslJo1tzhe9gGYAYrpMOZujpj1RPeIOZIfeII0MP/
g14/JSar8cXc9QJ6zbiKn8HhpmzGJnaIsyFFL2RMIBlKvxsnpOU6VmisLTL9407o
P246Vq59BM8pdRCVUW9W9hLr2ho8lmi+ZYXASCm+qfn8cLaHyRCqSK56ZQ==
=nW43
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"Bugfixes, including a TLB flush fix that affects processors without
nested page tables"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
kvm: fix previous commit for 32-bit builds
kvm: avoid speculation-based attacks from out-of-range memslot accesses
KVM: x86: Unload MMU on guest TLB flush if TDP disabled to force MMU sync
KVM: x86: Ensure liveliness of nested VM-Enter fail tracepoint message
selftests: kvm: Add support for customized slot0 memory size
KVM: selftests: introduce P47V64 for s390x
KVM: x86: Ensure PV TLB flush tracepoint reflects KVM behavior
KVM: X86: MMU: Use the correct inherited permissions to get shadow page
KVM: LAPIC: Write 0 to TMICT should also cancel vmx-preemption timer
KVM: SVM: Fix SEV SEND_START session length & SEND_UPDATE_DATA query length after commit
|
||
Thomas Gleixner
|
510b80a6a0 |
x86/pkru: Write hardware init value to PKRU when xstate is init
When user space brings PKRU into init state, then the kernel handling is
broken:
T1 user space
xsave(state)
state.header.xfeatures &= ~XFEATURE_MASK_PKRU;
xrstor(state)
T1 -> kernel
schedule()
XSAVE(S) -> T1->xsave.header.xfeatures[PKRU] == 0
T1->flags |= TIF_NEED_FPU_LOAD;
wrpkru();
schedule()
...
pk = get_xsave_addr(&T1->fpu->state.xsave, XFEATURE_PKRU);
if (pk)
wrpkru(pk->pkru);
else
wrpkru(DEFAULT_PKRU);
Because the xfeatures bit is 0 and therefore the value in the xsave
storage is not valid, get_xsave_addr() returns NULL and switch_to()
writes the default PKRU. -> FAIL #1!
So that wrecks any copy_to/from_user() on the way back to user space
which hits memory which is protected by the default PKRU value.
Assumed that this does not fail (pure luck) then T1 goes back to user
space and because TIF_NEED_FPU_LOAD is set it ends up in
switch_fpu_return()
__fpregs_load_activate()
if (!fpregs_state_valid()) {
load_XSTATE_from_task();
}
But if nothing touched the FPU between T1 scheduling out and back in,
then the fpregs_state is still valid which means switch_fpu_return()
does nothing and just clears TIF_NEED_FPU_LOAD. Back to user space with
DEFAULT_PKRU loaded. -> FAIL #2!
The fix is simple: if get_xsave_addr() returns NULL then set the
PKRU value to 0 instead of the restrictive default PKRU value in
init_pkru_value.
[ bp: Massage in minor nitpicks from folks. ]
Fixes:
|
||
Thomas Gleixner
|
12f7764ac6 |
x86/process: Check PF_KTHREAD and not current->mm for kernel threads
switch_fpu_finish() checks current->mm as indicator for kernel threads.
That's wrong because kernel threads can temporarily use a mm of a user
process via kthread_use_mm().
Check the task flags for PF_KTHREAD instead.
Fixes:
|
||
Andy Lutomirski
|
d8778e393a |
x86/fpu: Invalidate FPU state after a failed XRSTOR from a user buffer
Both Intel and AMD consider it to be architecturally valid for XRSTOR to
fail with #PF but nonetheless change the register state. The actual
conditions under which this might occur are unclear [1], but it seems
plausible that this might be triggered if one sibling thread unmaps a page
and invalidates the shared TLB while another sibling thread is executing
XRSTOR on the page in question.
__fpu__restore_sig() can execute XRSTOR while the hardware registers
are preserved on behalf of a different victim task (using the
fpu_fpregs_owner_ctx mechanism), and, in theory, XRSTOR could fail but
modify the registers.
If this happens, then there is a window in which __fpu__restore_sig()
could schedule out and the victim task could schedule back in without
reloading its own FPU registers. This would result in part of the FPU
state that __fpu__restore_sig() was attempting to load leaking into the
victim task's user-visible state.
Invalidate preserved FPU registers on XRSTOR failure to prevent this
situation from corrupting any state.
[1] Frequent readers of the errata lists might imagine "complex
microarchitectural conditions".
Fixes:
|
||
Thomas Gleixner
|
484cea4f36 |
x86/fpu: Prevent state corruption in __fpu__restore_sig()
The non-compacted slowpath uses __copy_from_user() and copies the entire
user buffer into the kernel buffer, verbatim. This means that the kernel
buffer may now contain entirely invalid state on which XRSTOR will #GP.
validate_user_xstate_header() can detect some of that corruption, but that
leaves the onus on callers to clear the buffer.
Prior to XSAVES support, it was possible just to reinitialize the buffer,
completely, but with supervisor states that is not longer possible as the
buffer clearing code split got it backwards. Fixing that is possible but
not corrupting the state in the first place is more robust.
Avoid corruption of the kernel XSAVE buffer by using copy_user_to_xstate()
which validates the XSAVE header contents before copying the actual states
to the kernel. copy_user_to_xstate() was previously only called for
compacted-format kernel buffers, but it works for both compacted and
non-compacted forms.
Using it for the non-compacted form is slower because of multiple
__copy_from_user() operations, but that cost is less important than robust
code in an already slow path.
[ Changelog polished by Dave Hansen ]
Fixes:
|
||
Lai Jiangshan
|
b53e84eed0 |
KVM: x86: Unload MMU on guest TLB flush if TDP disabled to force MMU sync
When using shadow paging, unload the guest MMU when emulating a guest TLB flush to ensure all roots are synchronized. From the guest's perspective, flushing the TLB ensures any and all modifications to its PTEs will be recognized by the CPU. Note, unloading the MMU is overkill, but is done to mirror KVM's existing handling of INVPCID(all) and ensure the bug is squashed. Future cleanup can be done to more precisely synchronize roots when servicing a guest TLB flush. If TDP is enabled, synchronizing the MMU is unnecessary even if nested TDP is in play, as a "legacy" TLB flush from L1 does not invalidate L1's TDP mappings. For EPT, an explicit INVEPT is required to invalidate guest-physical mappings; for NPT, guest mappings are always tagged with an ASID and thus can only be invalidated via the VMCB's ASID control. This bug has existed since the introduction of KVM_VCPU_FLUSH_TLB. It was only recently exposed after Linux guests stopped flushing the local CPU's TLB prior to flushing remote TLBs (see commit |
||
Sean Christopherson
|
f31500b0d4 |
KVM: x86: Ensure liveliness of nested VM-Enter fail tracepoint message
Use the __string() machinery provided by the tracing subystem to make a
copy of the string literals consumed by the "nested VM-Enter failed"
tracepoint. A complete copy is necessary to ensure that the tracepoint
can't outlive the data/memory it consumes and deference stale memory.
Because the tracepoint itself is defined by kvm, if kvm-intel and/or
kvm-amd are built as modules, the memory holding the string literals
defined by the vendor modules will be freed when the module is unloaded,
whereas the tracepoint and its data in the ring buffer will live until
kvm is unloaded (or "indefinitely" if kvm is built-in).
This bug has existed since the tracepoint was added, but was recently
exposed by a new check in tracing to detect exactly this type of bug.
fmt: '%s%s
' current_buffer: ' vmx_dirty_log_t-140127 [003] .... kvm_nested_vmenter_failed: '
WARNING: CPU: 3 PID: 140134 at kernel/trace/trace.c:3759 trace_check_vprintf+0x3be/0x3e0
CPU: 3 PID: 140134 Comm: less Not tainted 5.13.0-rc1-ce2e73ce600a-req #184
Hardware name: ASUS Q87M-E/Q87M-E, BIOS 1102 03/03/2014
RIP: 0010:trace_check_vprintf+0x3be/0x3e0
Code: <0f> 0b 44 8b 4c 24 1c e9 a9 fe ff ff c6 44 02 ff 00 49 8b 97 b0 20
RSP: 0018:ffffa895cc37bcb0 EFLAGS: 00010282
RAX: 0000000000000000 RBX: ffffa895cc37bd08 RCX: 0000000000000027
RDX: 0000000000000027 RSI: 00000000ffffdfff RDI: ffff9766cfad74f8
RBP: ffffffffc0a041d4 R08: ffff9766cfad74f0 R09: ffffa895cc37bad8
R10: 0000000000000001 R11: 0000000000000001 R12: ffffffffc0a041d4
R13: ffffffffc0f4dba8 R14: 0000000000000000 R15: ffff976409f2c000
FS: 00007f92fa200740(0000) GS:ffff9766cfac0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000559bd11b0000 CR3: 000000019fbaa002 CR4: 00000000001726e0
Call Trace:
trace_event_printf+0x5e/0x80
trace_raw_output_kvm_nested_vmenter_failed+0x3a/0x60 [kvm]
print_trace_line+0x1dd/0x4e0
s_show+0x45/0x150
seq_read_iter+0x2d5/0x4c0
seq_read+0x106/0x150
vfs_read+0x98/0x180
ksys_read+0x5f/0xe0
do_syscall_64+0x40/0xb0
entry_SYSCALL_64_after_hwframe+0x44/0xae
Cc: Steven Rostedt <rostedt@goodmis.org>
Fixes:
|
||
Lai Jiangshan
|
af3511ff7f |
KVM: x86: Ensure PV TLB flush tracepoint reflects KVM behavior
In record_steal_time(), st->preempted is read twice, and trace_kvm_pv_tlb_flush() might output result inconsistent if kvm_vcpu_flush_tlb_guest() see a different st->preempted later. It is a very trivial problem and hardly has actual harm and can be avoided by reseting and reading st->preempted in atomic way via xchg(). Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com> Message-Id: <20210531174628.10265-1-jiangshanlai@gmail.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> |
||
Lai Jiangshan
|
b1bd5cba33 |
KVM: X86: MMU: Use the correct inherited permissions to get shadow page
When computing the access permissions of a shadow page, use the effective permissions of the walk up to that point, i.e. the logic AND of its parents' permissions. Two guest PxE entries that point at the same table gfn need to be shadowed with different shadow pages if their parents' permissions are different. KVM currently uses the effective permissions of the last non-leaf entry for all non-leaf entries. Because all non-leaf SPTEs have full ("uwx") permissions, and the effective permissions are recorded only in role.access and merged into the leaves, this can lead to incorrect reuse of a shadow page and eventually to a missing guest protection page fault. For example, here is a shared pagetable: pgd[] pud[] pmd[] virtual address pointers /->pmd1(u--)->pte1(uw-)->page1 <- ptr1 (u--) /->pud1(uw-)--->pmd2(uw-)->pte2(uw-)->page2 <- ptr2 (uw-) pgd-| (shared pmd[] as above) \->pud2(u--)--->pmd1(u--)->pte1(uw-)->page1 <- ptr3 (u--) \->pmd2(uw-)->pte2(uw-)->page2 <- ptr4 (u--) pud1 and pud2 point to the same pmd table, so: - ptr1 and ptr3 points to the same page. - ptr2 and ptr4 points to the same page. (pud1 and pud2 here are pud entries, while pmd1 and pmd2 here are pmd entries) - First, the guest reads from ptr1 first and KVM prepares a shadow page table with role.access=u--, from ptr1's pud1 and ptr1's pmd1. "u--" comes from the effective permissions of pgd, pud1 and pmd1, which are stored in pt->access. "u--" is used also to get the pagetable for pud1, instead of "uw-". - Then the guest writes to ptr2 and KVM reuses pud1 which is present. The hypervisor set up a shadow page for ptr2 with pt->access is "uw-" even though the pud1 pmd (because of the incorrect argument to kvm_mmu_get_page in the previous step) has role.access="u--". - Then the guest reads from ptr3. The hypervisor reuses pud1's shadow pmd for pud2, because both use "u--" for their permissions. Thus, the shadow pmd already includes entries for both pmd1 and pmd2. - At last, the guest writes to ptr4. This causes no vmexit or pagefault, because pud1's shadow page structures included an "uw-" page even though its role.access was "u--". Any kind of shared pagetable might have the similar problem when in virtual machine without TDP enabled if the permissions are different from different ancestors. In order to fix the problem, we change pt->access to be an array, and any access in it will not include permissions ANDed from child ptes. The test code is: https://lore.kernel.org/kvm/20210603050537.19605-1-jiangshanlai@gmail.com/ Remember to test it with TDP disabled. The problem had existed long before the commit |
||
Wanpeng Li
|
e898da784a |
KVM: LAPIC: Write 0 to TMICT should also cancel vmx-preemption timer
According to the SDM 10.5.4.1: A write of 0 to the initial-count register effectively stops the local APIC timer, in both one-shot and periodic mode. However, the lapic timer oneshot/periodic mode which is emulated by vmx-preemption timer doesn't stop by writing 0 to TMICT since vmx->hv_deadline_tsc is still programmed and the guest will receive the spurious timer interrupt later. This patch fixes it by also cancelling the vmx-preemption timer when writing 0 to the initial-count register. Reviewed-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Wanpeng Li <wanpengli@tencent.com> Message-Id: <1623050385-100988-1-git-send-email-wanpengli@tencent.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> |
||
Ashish Kalra
|
4f13d471e5 |
KVM: SVM: Fix SEV SEND_START session length & SEND_UPDATE_DATA query length after commit 238eca821c
Commit |
||
Tom Lendacky
|
8d651ee9c7 |
x86/ioremap: Map EFI-reserved memory as encrypted for SEV
Some drivers require memory that is marked as EFI boot services
data. In order for this memory to not be re-used by the kernel
after ExitBootServices(), efi_mem_reserve() is used to preserve it
by inserting a new EFI memory descriptor and marking it with the
EFI_MEMORY_RUNTIME attribute.
Under SEV, memory marked with the EFI_MEMORY_RUNTIME attribute needs to
be mapped encrypted by Linux, otherwise the kernel might crash at boot
like below:
EFI Variables Facility v0.08 2004-May-17
general protection fault, probably for non-canonical address 0x3597688770a868b2: 0000 [#1] SMP NOPTI
CPU: 13 PID: 1 Comm: swapper/0 Not tainted 5.12.4-2-default #1 openSUSE Tumbleweed
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:efi_mokvar_entry_next
[...]
Call Trace:
efi_mokvar_sysfs_init
? efi_mokvar_table_init
do_one_initcall
? __kmalloc
kernel_init_freeable
? rest_init
kernel_init
ret_from_fork
Expand the __ioremap_check_other() function to additionally check for
this other type of boot data reserved at runtime and indicate that it
should be mapped encrypted for an SEV guest.
[ bp: Massage commit message. ]
Fixes:
|
||
Linus Torvalds
|
773ac53bbf |
- Fix out-of-spec hardware (1st gen Hygon) which does not implement
MSR_AMD64_SEV even though the spec clearly states so, and check CPUID bits first. - Send only one signal to a task when it is a SEGV_PKUERR si_code type. - Do away with all the wankery of reserving X amount of memory in the first megabyte to prevent BIOS corrupting it and simply and unconditionally reserve the whole first megabyte. - Make alternatives NOP optimization work at an arbitrary position within the patched sequence because the compiler can put single-byte NOPs for alignment anywhere in the sequence (32-bit retpoline), vs our previous assumption that the NOPs are only appended. - Force-disable ENQCMD[S] instructions support and remove update_pasid() because of insufficient protection against FPU state modification in an interrupt context, among other xstate horrors which are being addressed at the moment. This one limits the fallout until proper enablement. - Use cpu_feature_enabled() in the idxd driver so that it can be build-time disabled through the defines in .../asm/disabled-features.h. - Fix LVT thermal setup for SMI delivery mode by making sure the APIC LVT value is read before APIC initialization so that softlockups during boot do not happen at least on one machine. - Mark all legacy interrupts as legacy vectors when the IO-APIC is disabled and when all legacy interrupts are routed through the PIC. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmC8fdEACgkQEsHwGGHe VUqO5A/+IbIo8myl8VPjw6HRnHgY8rsYRjxdtmVhbaMi5XOmTMfVA9zJ6QALxseo Mar8bmWcezEs0/FmNvk1vEOtIgZvRVy5RqXbu3W2EgWICuzRWbj822q+KrkbY0tH 1GWjcZQO8VlgeuQsukyj5QHaBLffpn3Fh1XB8r0cktZvwciM+LRNMnK8d6QjqxNM ctTX4wdI6kc076pOi7MhKxSe+/xo5Wnf27lClLMOcsO/SS42KqgeRM5psWqxihhL j6Y3Oe+Nm+7GKF8y841PUSlwjgWmlZa6UkR6DBTP7DGnHDa5hMpzxYvHOquq/SbA leV9OLqI0iWs56kSzbEcXo7do1kld62KjsA2KtUhJfVAtm+igQLh5G0jESBwrWca TBWaE5kt6s8wP7LXeg26o4U8XD8vqEH88Tmsjlgqb/t/PKDV9PMGvNpF00dPZFo6 Jhj2yntJYjLQYoAQLuQm5pfnKhZy3KKvk7ViGcnp3iN9i4eU9HzawIiXnliNOrTI ohQ9KoRhy1Cx0UfLkR+cdK4ks0u26DC2/Ewt0CE5AP/CQ1rX6Zbv2gFLjSpy7yQo 6A99HEpbaLuy3kDt5vn91viPNUlOveuIXIdHp6u+zgFfx88eLUoEvfR135aV/Gyh p5PJm/BO99KByQzFCnilkp7nBeKtnKYSmUojA6JsZKjzJimSPYo= =zRI1 -----END PGP SIGNATURE----- Merge tag 'x86_urgent_for_v5.13-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 fixes from Borislav Petkov: "A bunch of x86/urgent stuff accumulated for the last two weeks so lemme unload it to you. It should be all totally risk-free, of course. :-) - Fix out-of-spec hardware (1st gen Hygon) which does not implement MSR_AMD64_SEV even though the spec clearly states so, and check CPUID bits first. - Send only one signal to a task when it is a SEGV_PKUERR si_code type. - Do away with all the wankery of reserving X amount of memory in the first megabyte to prevent BIOS corrupting it and simply and unconditionally reserve the whole first megabyte. - Make alternatives NOP optimization work at an arbitrary position within the patched sequence because the compiler can put single-byte NOPs for alignment anywhere in the sequence (32-bit retpoline), vs our previous assumption that the NOPs are only appended. - Force-disable ENQCMD[S] instructions support and remove update_pasid() because of insufficient protection against FPU state modification in an interrupt context, among other xstate horrors which are being addressed at the moment. This one limits the fallout until proper enablement. - Use cpu_feature_enabled() in the idxd driver so that it can be build-time disabled through the defines in disabled-features.h. - Fix LVT thermal setup for SMI delivery mode by making sure the APIC LVT value is read before APIC initialization so that softlockups during boot do not happen at least on one machine. - Mark all legacy interrupts as legacy vectors when the IO-APIC is disabled and when all legacy interrupts are routed through the PIC" * tag 'x86_urgent_for_v5.13-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/sev: Check SME/SEV support in CPUID first x86/fault: Don't send SIGSEGV twice on SEGV_PKUERR x86/setup: Always reserve the first 1M of RAM x86/alternative: Optimize single-byte NOPs at an arbitrary position x86/cpufeatures: Force disable X86_FEATURE_ENQCMD and remove update_pasid() dmaengine: idxd: Use cpu_feature_enabled() x86/thermal: Fix LVT thermal setup for SMI delivery mode x86/apic: Mark _all_ legacy interrupts when IO/APIC is missing |
||
Pu Wen
|
009767dbf4 |
x86/sev: Check SME/SEV support in CPUID first
The first two bits of the CPUID leaf 0x8000001F EAX indicate whether SEV
or SME is supported, respectively. It's better to check whether SEV or
SME is actually supported before accessing the MSR_AMD64_SEV to check
whether SEV or SME is enabled.
This is both a bare-metal issue and a guest/VM issue. Since the first
generation Hygon Dhyana CPU doesn't support the MSR_AMD64_SEV, reading that
MSR results in a #GP - either directly from hardware in the bare-metal
case or via the hypervisor (because the RDMSR is actually intercepted)
in the guest/VM case, resulting in a failed boot. And since this is very
early in the boot phase, rdmsrl_safe()/native_read_msr_safe() can't be
used.
So check the CPUID bits first, before accessing the MSR.
[ tlendacky: Expand and improve commit message. ]
[ bp: Massage commit message. ]
Fixes:
|
||
Jiashuo Liang
|
5405b42c2f |
x86/fault: Don't send SIGSEGV twice on SEGV_PKUERR
__bad_area_nosemaphore() calls both force_sig_pkuerr() and
force_sig_fault() when handling SEGV_PKUERR. This does not cause
problems because the second signal is filtered by the legacy_queue()
check in __send_signal() because in both cases, the signal is SIGSEGV,
the second one seeing that the first one is already pending.
This causes the kernel to do unnecessary work so send the signal only
once for SEGV_PKUERR.
[ bp: Massage commit message. ]
Fixes:
|
||
Mike Rapoport
|
f1d4d47c58 |
x86/setup: Always reserve the first 1M of RAM
There are BIOSes that are known to corrupt the memory under 1M, or more
precisely under 640K because the memory above 640K is anyway reserved
for the EGA/VGA frame buffer and BIOS.
To prevent usage of the memory that will be potentially clobbered by the
kernel, the beginning of the memory is always reserved. The exact size
of the reserved area is determined by CONFIG_X86_RESERVE_LOW build time
and the "reservelow=" command line option. The reserved range may be
from 4K to 640K with the default of 64K. There are also configurations
that reserve the entire 1M range, like machines with SandyBridge graphic
devices or systems that enable crash kernel.
In addition to the potentially clobbered memory, EBDA of unknown size may
be as low as 128K and the memory above that EBDA start is also reserved
early.
It would have been possible to reserve the entire range under 1M unless for
the real mode trampoline that must reside in that area.
To accommodate placement of the real mode trampoline and keep the memory
safe from being clobbered by BIOS, reserve the first 64K of RAM before
memory allocations are possible and then, after the real mode trampoline
is allocated, reserve the entire range from 0 to 1M.
Update trim_snb_memory() and reserve_real_mode() to avoid redundant
reservations of the same memory range.
Also make sure the memory under 1M is not getting freed by
efi_free_boot_services().
[ bp: Massage commit message and comments. ]
Fixes:
|