443 Commits

Author SHA1 Message Date
Linus Torvalds
0e06f5c0de Merge branch 'akpm' (patches from Andrew)
Merge updates from Andrew Morton:

 - a few misc bits

 - ocfs2

 - most(?) of MM

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (125 commits)
  thp: fix comments of __pmd_trans_huge_lock()
  cgroup: remove unnecessary 0 check from css_from_id()
  cgroup: fix idr leak for the first cgroup root
  mm: memcontrol: fix documentation for compound parameter
  mm: memcontrol: remove BUG_ON in uncharge_list
  mm: fix build warnings in <linux/compaction.h>
  mm, thp: convert from optimistic swapin collapsing to conservative
  mm, thp: fix comment inconsistency for swapin readahead functions
  thp: update Documentation/{vm/transhuge,filesystems/proc}.txt
  shmem: split huge pages beyond i_size under memory pressure
  thp: introduce CONFIG_TRANSPARENT_HUGE_PAGECACHE
  khugepaged: add support of collapse for tmpfs/shmem pages
  shmem: make shmem_inode_info::lock irq-safe
  khugepaged: move up_read(mmap_sem) out of khugepaged_alloc_page()
  thp: extract khugepaged from mm/huge_memory.c
  shmem, thp: respect MADV_{NO,}HUGEPAGE for file mappings
  shmem: add huge pages support
  shmem: get_unmapped_area align huge page
  shmem: prepare huge= mount option and sysfs knob
  mm, rmap: account shmem thp pages
  ...
2016-07-26 19:55:54 -07:00
Aneesh Kumar K.V
e77b0852b5 mm/mmu_gather: track page size with mmu gather and force flush if page size change
This allows an arch which needs to do special handing with respect to
different page size when flushing tlb to implement the same in mmu
gather.

Link: http://lkml.kernel.org/r/1465049193-22197-3-git-send-email-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Aneesh Kumar K.V
31d49da5ad mm/hugetlb: simplify hugetlb unmap
For hugetlb like THP (and unlike regular page), we do tlb flush after
dropping ptl.  Because of the above, we don't need to track force_flush
like we do now.  Instead we can simply call tlb_remove_page() which will
do the flush if needed.

No functionality change in this patch.

Link: http://lkml.kernel.org/r/1465049193-22197-1-git-send-email-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Linus Torvalds
015cd867e5 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
Pull s390 updates from Martin Schwidefsky:
 "There are a couple of new things for s390 with this merge request:

   - a new scheduling domain "drawer" is added to reflect the unusual
     topology found on z13 machines.  Performance tests showed up to 8
     percent gain with the additional domain.

   - the new crc-32 checksum crypto module uses the vector-galois-field
     multiply and sum SIMD instruction to speed up crc-32 and crc-32c.

   - proper __ro_after_init support, this requires RO_AFTER_INIT_DATA in
     the generic vmlinux.lds linker script definitions.

   - kcov instrumentation support.  A prerequisite for that is the
     inline assembly basic block cleanup, which is the reason for the
     net/iucv/iucv.c change.

   - support for 2GB pages is added to the hugetlbfs backend.

  Then there are two removals:

   - the oprofile hardware sampling support is dead code and is removed.
     The oprofile user space uses the perf interface nowadays.

   - the ETR clock synchronization is removed, this has been superseeded
     be the STP clock synchronization.  And it always has been
     "interesting" code..

  And the usual bug fixes and cleanups"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (82 commits)
  s390/pci: Delete an unnecessary check before the function call "pci_dev_put"
  s390/smp: clean up a condition
  s390/cio/chp : Remove deprecated create_singlethread_workqueue
  s390/chsc: improve channel path descriptor determination
  s390/chsc: sanitize fmt check for chp_desc determination
  s390/cio: make fmt1 channel path descriptor optional
  s390/chsc: fix ioctl CHSC_INFO_CU command
  s390/cio/device_ops: fix kernel doc
  s390/cio: allow to reset channel measurement block
  s390/console: Make preferred console handling more consistent
  s390/mm: fix gmap tlb flush issues
  s390/mm: add support for 2GB hugepages
  s390: have unique symbol for __switch_to address
  s390/cpuinfo: show maximum thread id
  s390/ptrace: clarify bits in the per_struct
  s390: stack address vs thread_info
  s390: remove pointless load within __switch_to
  s390: enable kcov support
  s390/cpumf: use basic block for ecctr inline assembly
  s390/hypfs: use basic block for diag inline assembly
  ...
2016-07-26 12:22:51 -07:00
Hugh Dickins
5a49973d71 mm: thp: refix false positive BUG in page_move_anon_rmap()
The VM_BUG_ON_PAGE in page_move_anon_rmap() is more trouble than it's
worth: the syzkaller fuzzer hit it again.  It's still wrong for some THP
cases, because linear_page_index() was never intended to apply to
addresses before the start of a vma.

That's easily fixed with a signed long cast inside linear_page_index();
and Dmitry has tested such a patch, to verify the false positive.  But
why extend linear_page_index() just for this case? when the avoidance in
page_move_anon_rmap() has already grown ugly, and there's no reason for
the check at all (nothing else there is using address or index).

Remove address arg from page_move_anon_rmap(), remove VM_BUG_ON_PAGE,
remove CONFIG_DEBUG_VM PageTransHuge adjustment.

And one more thing: should the compound_head(page) be done inside or
outside page_move_anon_rmap()? It's usually pushed down to the lowest
level nowadays (and mm/memory.c shows no other explicit use of it), so I
think it's better done in page_move_anon_rmap() than by caller.

Fixes: 0798d3c022dc ("mm: thp: avoid false positive VM_BUG_ON_PAGE in page_move_anon_rmap()")
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1607120444540.12528@eggly.anvils
Signed-off-by: Hugh Dickins <hughd@google.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mika Westerberg <mika.westerberg@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org>	[4.5+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-15 14:54:27 +09:00
Gerald Schaefer
d08de8e2d8 s390/mm: add support for 2GB hugepages
This adds support for 2GB hugetlbfs pages on s390.

Reviewed-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2016-07-06 08:46:43 +02:00
Gerald Schaefer
c8cc708a34 mm/hugetlb: clear compound_mapcount when freeing gigantic pages
While working on s390 support for gigantic hugepages I ran into the
following "Bad page state" warning when freeing gigantic pages:

  BUG: Bad page state in process bash  pfn:580001
  page:000003d116000040 count:0 mapcount:0 mapping:ffffffff00000000 index:0x0
  flags: 0x7fffc0000000000()
  page dumped because: non-NULL mapping

This is because page->compound_mapcount, which is part of a union with
page->mapping, is initialized with -1 in prep_compound_gigantic_page(),
and not cleared again during destroy_compound_gigantic_page().  Fix this
by clearing the compound_mapcount in destroy_compound_gigantic_page()
before clearing compound_head.

Interestingly enough, the warning will not show up on x86_64, although
this should not be architecture specific.  Apparently there is an
endianness issue, combined with the fact that the union contains both a
64 bit ->mapping pointer and a 32 bit atomic_t ->compound_mapcount as
members.  The resulting bogus page->mapping on x86_64 therefore contains
00000000ffffffff instead of ffffffff00000000 on s390, which will falsely
trigger the PageAnon() check in free_pages_prepare() because
page->mapping & PAGE_MAPPING_ANON is true on little-endian architectures
like x86_64 in this case (the page is not compound anymore,
->compound_head was already cleared before).  As a result, page->mapping
will be cleared before doing the checks in free_pages_check().

Not sure if the bogus "PageAnon() returning true" on x86_64 for the
first tail page of a gigantic page (at this stage) has other theoretical
implications, but they would also be fixed with this patch.

Link: http://lkml.kernel.org/r/1466612719-5642-1-git-send-email-gerald.schaefer@de.ibm.com
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-06-24 17:23:52 -07:00
Kirill A. Shutemov
c17b1f4259 hugetlb: fix nr_pmds accounting with shared page tables
We account HugeTLB's shared page table to all processes who share it.
The accounting happens during huge_pmd_share().

If somebody populates pud entry under us, we should decrease pagetable's
refcount and decrease nr_pmds of the process.

By mistake, I increase nr_pmds again in this case.  :-/ It will lead to
"BUG: non-zero nr_pmds on freeing mm: 2" on process' exit.

Let's fix this by increasing nr_pmds only when we're sure that the page
table will be used.

Link: http://lkml.kernel.org/r/20160617122506.GC6534@node.shutemov.name
Fixes: dc6c9a35b66b ("mm: account pmd page tables to the process")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: zhongjiang <zhongjiang@huawei.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-06-24 17:23:52 -07:00
Mike Kravetz
67961f9db8 mm/hugetlb: fix huge page reserve accounting for private mappings
When creating a private mapping of a hugetlbfs file, it is possible to
unmap pages via ftruncate or fallocate hole punch.  If subsequent faults
repopulate these mappings, the reserve counts will go negative.  This is
because the code currently assumes all faults to private mappings will
consume reserves.  The problem can be recreated as follows:

 - mmap(MAP_PRIVATE) a file in hugetlbfs filesystem
 - write fault in pages in the mapping
 - fallocate(FALLOC_FL_PUNCH_HOLE) some pages in the mapping
 - write fault in pages in the hole

This will result in negative huge page reserve counts and negative
subpool usage counts for the hugetlbfs.  Note that this can also be
recreated with ftruncate, but fallocate is more straight forward.

This patch modifies the routines vma_needs_reserves and vma_has_reserves
to examine the reserve map associated with private mappings similar to
that for shared mappings.  However, the reserve map semantics for
private and shared mappings are very different.  This results in subtly
different code that is explained in the comments.

Link: http://lkml.kernel.org/r/1464720957-15698-1-git-send-email-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-06-09 14:23:11 -07:00
Linus Torvalds
1f40c49570 libnvdimm for 4.7
1/ Device DAX for persistent memory:
    Device DAX is the device-centric analogue of Filesystem DAX
    (CONFIG_FS_DAX).  It allows memory ranges to be allocated and mapped
    without need of an intervening file system.  Device DAX is strict,
    precise and predictable.  Specifically this interface:
 
    a) Guarantees fault granularity with respect to a given page size
       (pte, pmd, or pud) set at configuration time.
 
    b) Enforces deterministic behavior by being strict about what fault
       scenarios are supported.
 
    Persistent memory is the first target, but the mechanism is also
    targeted for exclusive allocations of performance/feature differentiated
    memory ranges.
 
 2/ Support for the HPE DSM (device specific method) command formats.
    This enables management of these first generation devices until a
    unified DSM specification materializes.
 
 3/ Further ACPI 6.1 compliance with support for the common dimm
    identifier format.
 
 4/ Various fixes and cleanups across the subsystem.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJXQhdeAAoJEB7SkWpmfYgCYP8P/RAgHkroL5lUKKU45TQUBKcY
 diC9POeNSccme4tIRIQCGQUZ7+7mKM5ECv2ulF4xYOHvFBCcd/8OF6xKAXs48r3v
 oguYhvX1YvIkBc9FUfBQbR1IsCOJ7uWp/UYiYCIQEXS5tS9Jv545j3ASqDt9xWoV
 TWlceZn3yWSbASiV9qZ2eXhEkk75pg4yara++rsm2/7rs/TTXn5EIjBs+57BtAo+
 6utI4fTy0CQvBYwVzam3m7y9dt2Z2jWXL4hgmT7pkvJ7HDoctVly0P9+bknJPUAo
 g+NugKgTGeiqH5GYp5CTZ9KvL91sDF4q00pfinITVdFl0E3VE293cIHlAzSQBm5/
 w58xxaRV958ZvpH7EaBmYQG82QDi/eFNqeHqVGn0xAM6MlaqO7avUMQp2lRPYMCJ
 u1z/NloR5yo+sffHxsn5Luiq9KqOf6zk33PuxEkKbN74OayCSPn/SeVCO7rQR0B6
 yPMJTTcTiCLnId1kOWAPaEmuK2U3BW/+ogg7hKgeCQSysuy5n6Ok5a2vEx/gJRAm
 v9yF68RmIWumpHr+QB0TmB8mVbD5SY+xWTm3CqJb9MipuFIOF7AVsPyTgucBvE7s
 v+i5F6MDO6tcVfiDT4AiZEt6D2TM5RbtckkUEX3ZTD6j7CGuR5D8bH0HNRrghrYk
 KT1lAk6tjWBOGAHc5Ji7
 =Y3Xv
 -----END PGP SIGNATURE-----

Merge tag 'libnvdimm-for-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm

Pull libnvdimm updates from Dan Williams:
 "The bulk of this update was stabilized before the merge window and
  appeared in -next.  The "device dax" implementation was revised this
  week in response to review feedback, and to address failures detected
  by the recently expanded ndctl unit test suite.

  Not included in this pull request are two dax topic branches (dax
  error handling, and dax radix-tree locking).  These topics were
  deferred to get a few more days of -next integration testing, and to
  coordinate a branch baseline with Ted and the ext4 tree.  Vishal and
  Ross will send the error handling and locking topics respectively in
  the next few days.

  This branch has received a positive build result from the kbuild robot
  across 226 configs.

  Summary:

   - Device DAX for persistent memory: Device DAX is the device-centric
     analogue of Filesystem DAX (CONFIG_FS_DAX).  It allows memory
     ranges to be allocated and mapped without need of an intervening
     file system.  Device DAX is strict, precise and predictable.
     Specifically this interface:

      a) Guarantees fault granularity with respect to a given page size
         (pte, pmd, or pud) set at configuration time.

      b) Enforces deterministic behavior by being strict about what
         fault scenarios are supported.

     Persistent memory is the first target, but the mechanism is also
     targeted for exclusive allocations of performance/feature
     differentiated memory ranges.

   - Support for the HPE DSM (device specific method) command formats.
     This enables management of these first generation devices until a
     unified DSM specification materializes.

   - Further ACPI 6.1 compliance with support for the common dimm
     identifier format.

   - Various fixes and cleanups across the subsystem"

* tag 'libnvdimm-for-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (40 commits)
  libnvdimm, dax: fix deletion
  libnvdimm, dax: fix alignment validation
  libnvdimm, dax: autodetect support
  libnvdimm: release ida resources
  Revert "block: enable dax for raw block devices"
  /dev/dax, core: file operations and dax-mmap
  /dev/dax, pmem: direct access to persistent memory
  libnvdimm: stop requiring a driver ->remove() method
  libnvdimm, dax: record the specified alignment of a dax-device instance
  libnvdimm, dax: reserve space to store labels for device-dax
  libnvdimm, dax: introduce device-dax infrastructure
  nfit: add sysfs dimm 'family' and 'dsm_mask' attributes
  tools/testing/nvdimm: ND_CMD_CALL support
  nfit: disable vendor specific commands
  nfit: export subsystem ids as attributes
  nfit: fix format interface code byte order per ACPI6.1
  nfit, libnvdimm: limited/whitelisted dimm command marshaling mechanism
  nfit, libnvdimm: clarify "commands" vs "_DSMs"
  libnvdimm: increase max envelope size for ioctl
  acpi/nfit: Add sysfs "id" for NVDIMM ID
  ...
2016-05-23 11:18:01 -07:00
Dan Williams
dee4107924 /dev/dax, core: file operations and dax-mmap
The "Device DAX" core enables dax mappings of performance / feature
differentiated memory.  An open mapping or file handle keeps the backing
struct device live, but new mappings are only possible while the device
is enabled.   Faults are handled under rcu_read_lock to synchronize
with the enabled state of the device.

Similar to the filesystem-dax case the backing memory may optionally
have struct page entries.  However, unlike fs-dax there is no support
for private mappings, or mappings that are not backed by media (see
use of zero-page in fs-dax).

Mappings are always guaranteed to match the alignment of the dax_region.
If the dax_region is configured to have a 2MB alignment, all mappings
are guaranteed to be backed by a pmd entry.  Contrast this determinism
with the fs-dax case where pmd mappings are opportunistic.  If userspace
attempts to force a misaligned mapping, the driver will fail the mmap
attempt.  See dax_dev_check_vma() for other scenarios that are rejected,
like MAP_PRIVATE mappings.

Cc: Hannes Reinecke <hare@suse.de>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Acked-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2016-05-20 22:02:55 -07:00
Joonsoo Kim
f44b2dda8b mm/hugetlb: add same zone check in pfn_range_valid_gigantic()
This patchset deals with some problematic sites that iterate pfn ranges.

There is a system thats node's pfns are overlapped as follows:

  -----pfn-------->
  N0 N1 N2 N0 N1 N2

Therefore, we need to take care of this overlapping when iterating pfn
range.

I audit many iterating sites that uses pfn_valid(), pfn_valid_within(),
zone_start_pfn and etc.  and others looks safe to me.  This is a
preparation step for a new CMA implementation, ZONE_CMA
(https://lkml.org/lkml/2015/2/12/95), because it would be easily
overlapped with other zones.  But, zone overlap check is also needed for
the general case so I send it separately.

This patch (of 5):

alloc_gigantic_page() uses alloc_contig_range() and this requires that
the requested range is in a single zone.  To satisfy this requirement,
add this check to pfn_range_valid_gigantic().

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Andrew Morton
54f18d3526 mm/hugetlb.c: use first_memory_node
Instead of open-coding it.

Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Vaishali Thakkar
9fee021d15 mm/hugetlb: introduce hugetlb_bad_size()
When any unsupported hugepage size is specified, 'hugepagesz=' and
'hugepages=' should be ignored during command line parsing until any
supported hugepage size is found.  But currently incorrect number of
hugepages are allocated when unsupported size is specified as it fails
to ignore the 'hugepages=' command.

Test case:

Note that this is specific to x86 architecture.

Boot the kernel with command line option 'hugepagesz=256M hugepages=X'.
After boot, dmesg output shows that X number of hugepages of the size 2M
is pre-allocated instead of 0.

So, to handle such command line options, introduce new routine
hugetlb_bad_size.  The routine hugetlb_bad_size sets the global variable
parsed_valid_hugepagesz.  We are using parsed_valid_hugepagesz to save
the state when unsupported hugepagesize is found so that we can ignore
the 'hugepages=' parameters after that and then reset the variable when
supported hugepage size is found.

The routine hugetlb_bad_size can be called while setting 'hugepagesz='
parameter in an architecture specific code.

Signed-off-by: Vaishali Thakkar <vaishali.thakkar@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Cc: Dominik Dingel <dingel@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mike Kravetz
09a95e29cb mm/hugetlb: optimize minimum size (min_size) accounting
It was observed that minimum size accounting associated with the
hugetlbfs min_size mount option may not perform optimally and as
expected.  As huge pages/reservations are released from the filesystem
and given back to the global pools, they are reserved for subsequent
filesystem use as long as the subpool reserved count is less than
subpool minimum size.  It does not take into account used pages within
the filesystem.  The filesystem size limits are not exceeded and this is
technically not a bug.  However, better behavior would be to wait for
the number of used pages/reservations associated with the filesystem to
drop below the minimum size before taking reservations to satisfy
minimum size.

An optimization is also made to the hugepage_subpool_get_pages() routine
which is called when pages/reservations are allocated.  This does not
change behavior, but simply avoids the accounting if all reservations
have already been taken (subpool reserved count == 0).

Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Andrew Morton
0edaf86cf1 include/linux/nodemask.h: create next_node_in() helper
Lots of code does

	node = next_node(node, XXX);
	if (node == MAX_NUMNODES)
		node = first_node(XXX);

so create next_node_in() to do this and use it in various places.

[mhocko@suse.com: use next_node_in() helper]
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Hui Zhu <zhuhui@xiaomi.com>
Cc: Wang Xiaoqiang <wangxq10@lzu.edu.cn>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Kirill A. Shutemov
09cbfeaf1a mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.

This promise never materialized.  And unlikely will.

We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE.  And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.

Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.

Let's stop pretending that pages in page cache are special.  They are
not.

The changes are pretty straight-forward:

 - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;

 - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;

 - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};

 - page_cache_get() -> get_page();

 - page_cache_release() -> put_page();

This patch contains automated changes generated with coccinelle using
script below.  For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.

The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.

There are few places in the code where coccinelle didn't reach.  I'll
fix them manually in a separate patch.  Comments and documentation also
will be addressed with the separate patch.

virtual patch

@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E

@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E

@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT

@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE

@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK

@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)

@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)

@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-04 10:41:08 -07:00
Joe Perches
598d80914e mm: convert pr_warning to pr_warn
There are a mixture of pr_warning and pr_warn uses in mm.  Use pr_warn
consistently.

Miscellanea:

 - Coalesce formats
 - Realign arguments

Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Tejun Heo <tj@kernel.org>	[percpu]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Jan Stancek
86613628b3 mm/hugetlb: use EOPNOTSUPP in hugetlb sysctl handlers
Replace ENOTSUPP with EOPNOTSUPP.  If hugepages are not supported, this
value is propagated to userspace.  EOPNOTSUPP is part of uapi and is
widely supported by libc libraries.

It gives nicer message to user, rather than:

  # cat /proc/sys/vm/nr_hugepages
  cat: /proc/sys/vm/nr_hugepages: Unknown error 524

And also LTP's proc01 test was failing because this ret code (524)
was unexpected:

  proc01      1  TFAIL  :  proc01.c:396: read failed: /proc/sys/vm/nr_hugepages: errno=???(524): Unknown error 524
  proc01      2  TFAIL  :  proc01.c:396: read failed: /proc/sys/vm/nr_hugepages_mempolicy: errno=???(524): Unknown error 524
  proc01      3  TFAIL  :  proc01.c:396: read failed: /proc/sys/vm/nr_overcommit_hugepages: errno=???(524): Unknown error 524

Signed-off-by: Jan Stancek <jstancek@redhat.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-09 15:43:42 -08:00
Geoffrey Thomas
910154d520 mm/hugetlb: hugetlb_no_page: rate-limit warning message
The warning message "killed due to inadequate hugepage pool" simply
indicates that SIGBUS was sent, not that the process was forcibly killed.
If the process has a signal handler installed does not fix the problem,
this message can rapidly spam the kernel log.

On my amd64 dev machine that does not have hugepages configured, I can
reproduce the repeated warnings easily by setting vm.nr_hugepages=2 (i.e.,
4 megabytes of huge pages) and running something that sets a signal
handler and forks, like

  #include <sys/mman.h>
  #include <signal.h>
  #include <stdlib.h>
  #include <unistd.h>

  sig_atomic_t counter = 10;
  void handler(int signal)
  {
      if (counter-- == 0)
         exit(0);
  }

  int main(void)
  {
      int status;
      char *addr = mmap(NULL, 4 * 1048576, PROT_READ | PROT_WRITE,
              MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB, -1, 0);
      if (addr == MAP_FAILED) {perror("mmap"); return 1;}
      *addr = 'x';
      switch (fork()) {
         case -1:
            perror("fork"); return 1;
         case 0:
            signal(SIGBUS, handler);
            *addr = 'x';
            break;
         default:
            *addr = 'x';
            wait(&status);
            if (WIFSIGNALED(status)) {
               psignal(WTERMSIG(status), "child");
            }
            break;
      }
  }

Signed-off-by: Geoffrey Thomas <geofft@ldpreload.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-09 15:43:42 -08:00
Vaishali Thakkar
f8b74815a4 mm/hugetlb.c: fix incorrect proc nr_hugepages value
Currently incorrect default hugepage pool size is reported by proc
nr_hugepages when number of pages for the default huge page size is
specified twice.

When multiple huge page sizes are supported, /proc/sys/vm/nr_hugepages
indicates the current number of pre-allocated huge pages of the default
size.  Basically /proc/sys/vm/nr_hugepages displays default_hstate->
max_huge_pages and after boot time pre-allocation, max_huge_pages should
equal the number of pre-allocated pages (nr_hugepages).

Test case:

Note that this is specific to x86 architecture.

Boot the kernel with command line option 'default_hugepagesz=1G
hugepages=X hugepagesz=2M hugepages=Y hugepagesz=1G hugepages=Z'.  After
boot, 'cat /proc/sys/vm/nr_hugepages' and 'sysctl -a | grep hugepages'
returns the value X.  However, dmesg output shows that Z huge pages were
pre-allocated.

So, the root cause of the problem here is that the global variable
default_hstate_max_huge_pages is set if a default huge page size is
specified (directly or indirectly) on the command line.  After the command
line processing in hugetlb_init, if default_hstate_max_huge_pages is set,
the value is assigned to default_hstae.max_huge_pages.  However,
default_hstate.max_huge_pages may have already been set based on the
number of pre-allocated huge pages of default_hstate size.

The solution to this problem is if hstate->max_huge_pages is already set
then it should not set as a result of global max_huge_pages value.
Basically if the value of the variable hugepages is set multiple times on
a command line for a specific supported hugepagesize then proc layer
should consider the last specified value.

Signed-off-by: Vaishali Thakkar <vaishali.thakkar@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-02-18 16:23:24 -08:00
Vlastimil Babka
080fe2068e mm, hugetlb: don't require CMA for runtime gigantic pages
Commit 944d9fec8d7a ("hugetlb: add support for gigantic page allocation
at runtime") has added the runtime gigantic page allocation via
alloc_contig_range(), making this support available only when CONFIG_CMA
is enabled.  Because it doesn't depend on MIGRATE_CMA pageblocks and the
associated infrastructure, it is possible with few simple adjustments to
require only CONFIG_MEMORY_ISOLATION instead of full CONFIG_CMA.

After this patch, alloc_contig_range() and related functions are
available and used for gigantic pages with just CONFIG_MEMORY_ISOLATION
enabled.  Note CONFIG_CMA selects CONFIG_MEMORY_ISOLATION.  This allows
supporting runtime gigantic pages without the CMA-specific checks in
page allocator fastpaths.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-02-05 18:10:40 -08:00
Mike Kravetz
b4330afbed mm/hugetlb: fix gigantic page initialization/allocation
Attempting to preallocate 1G gigantic huge pages at boot time with
"hugepagesz=1G hugepages=1" on the kernel command line will prevent
booting with the following:

  kernel BUG at mm/hugetlb.c:1218!

When mapcount accounting was reworked, the setting of
compound_mapcount_ptr in prep_compound_gigantic_page was overlooked.  As
a result, the validation of mapcount in free_huge_page fails.

The "BUG_ON" checks in free_huge_page were also changed to
"VM_BUG_ON_PAGE" to assist with debugging.

Fixes: 53f9263baba69 ("mm: rework mapcount accounting to enable 4k mapping of THPs")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: David Rientjes <rientjes@google.com>
Tested-by: Vlastimil Babka <vbabka@suse.cz>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-02-05 18:10:40 -08:00
Kirill A. Shutemov
53f9263bab mm: rework mapcount accounting to enable 4k mapping of THPs
We're going to allow mapping of individual 4k pages of THP compound.  It
means we need to track mapcount on per small page basis.

Straight-forward approach is to use ->_mapcount in all subpages to track
how many time this subpage is mapped with PMDs or PTEs combined.  But
this is rather expensive: mapping or unmapping of a THP page with PMD
would require HPAGE_PMD_NR atomic operations instead of single we have
now.

The idea is to store separately how many times the page was mapped as
whole -- compound_mapcount.  This frees up ->_mapcount in subpages to
track PTE mapcount.

We use the same approach as with compound page destructor and compound
order to store compound_mapcount: use space in first tail page,
->mapping this time.

Any time we map/unmap whole compound page (THP or hugetlb) -- we
increment/decrement compound_mapcount.  When we map part of compound
page with PTE we operate on ->_mapcount of the subpage.

page_mapcount() counts both: PTE and PMD mappings of the page.

Basically, we have mapcount for a subpage spread over two counters.  It
makes tricky to detect when last mapcount for a page goes away.

We introduced PageDoubleMap() for this.  When we split THP PMD for the
first time and there's other PMD mapping left we offset up ->_mapcount
in all subpages by one and set PG_double_map on the compound page.
These additional references go away with last compound_mapcount.

This approach provides a way to detect when last mapcount goes away on
per small page basis without introducing new overhead for most common
cases.

[akpm@linux-foundation.org: fix typo in comment]
[mhocko@suse.com: ignore partial THP when moving task]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov
ddc58f27f9 mm: drop tail page refcounting
Tail page refcounting is utterly complicated and painful to support.

It uses ->_mapcount on tail pages to store how many times this page is
pinned.  get_page() bumps ->_mapcount on tail page in addition to
->_count on head.  This information is required by split_huge_page() to
be able to distribute pins from head of compound page to tails during
the split.

We will need ->_mapcount to account PTE mappings of subpages of the
compound page.  We eliminate need in current meaning of ->_mapcount in
tail pages by forbidding split entirely if the page is pinned.

The only user of tail page refcounting is THP which is marked BROKEN for
now.

Let's drop all this mess.  It makes get_page() and put_page() much
simpler.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov
d281ee6145 rmap: add argument to charge compound page
We're going to allow mapping of individual 4k pages of THP compound
page.  It means we cannot rely on PageTransHuge() check to decide if
map/unmap small page or THP.

The patch adds new argument to rmap functions to indicate whether we
want to operate on whole compound page or only the small page.

[n-horiguchi@ah.jp.nec.com: fix mapcount mismatch in hugepage migration]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov
de09d31dd3 page-flags: define PG_reserved behavior on compound pages
As far as I can see there's no users of PG_reserved on compound pages.
Let's use PF_NO_COMPOUND here.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Paul Gortmaker
3e89e1c5ea hugetlb: make mm and fs code explicitly non-modular
The Kconfig currently controlling compilation of this code is:

config HUGETLBFS
        bool "HugeTLB file system support"

...meaning that it currently is not being built as a module by anyone.

Lets remove the modular code that is essentially orphaned, so that when
reading the driver there is no doubt it is builtin-only.

Since module_init translates to device_initcall in the non-modular case,
the init ordering gets moved to earlier levels when we use the more
appropriate initcalls here.

Originally I had the fs part and the mm part as separate commits, just
by happenstance of the nature of how I detected these non-modular use
cases.  But that can possibly introduce regressions if the patch merge
ordering puts the fs part 1st -- as the 0-day testing reported a splat
at mount time.

Investigating with "initcall_debug" showed that the delta was
init_hugetlbfs_fs being called _before_ hugetlb_init instead of after.  So
both the fs change and the mm change are here together.

In addition, it worked before due to luck of link order, since they were
both in the same initcall category.  So we now have the fs part using
fs_initcall, and the mm part using subsys_initcall, which puts it one
bucket earlier.  It now passes the basic sanity test that failed in
earlier 0-day testing.

We delete the MODULE_LICENSE tag and capture that information at the top
of the file alongside author comments, etc.

We don't replace module.h with init.h since the file already has that.
Also note that MODULE_ALIAS is a no-op for non-modular code.

Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Reported-by: kernel test robot <ying.huang@linux.intel.com>
Cc: Nadia Yvette Chambers <nyc@holomorphy.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Davidlohr Bueso <dave@stgolabs.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Mike Kravetz
dbe409e4f5 mm/hugetlb.c: fix resv map memory leak for placeholder entries
Dmitry Vyukov reported the following memory leak

unreferenced object 0xffff88002eaafd88 (size 32):
  comm "a.out", pid 5063, jiffies 4295774645 (age 15.810s)
  hex dump (first 32 bytes):
    28 e9 4e 63 00 88 ff ff 28 e9 4e 63 00 88 ff ff  (.Nc....(.Nc....
    00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
  backtrace:
     kmalloc include/linux/slab.h:458
     region_chg+0x2d4/0x6b0 mm/hugetlb.c:398
     __vma_reservation_common+0x2c3/0x390 mm/hugetlb.c:1791
     vma_needs_reservation mm/hugetlb.c:1813
     alloc_huge_page+0x19e/0xc70 mm/hugetlb.c:1845
     hugetlb_no_page mm/hugetlb.c:3543
     hugetlb_fault+0x7a1/0x1250 mm/hugetlb.c:3717
     follow_hugetlb_page+0x339/0xc70 mm/hugetlb.c:3880
     __get_user_pages+0x542/0xf30 mm/gup.c:497
     populate_vma_page_range+0xde/0x110 mm/gup.c:919
     __mm_populate+0x1c7/0x310 mm/gup.c:969
     do_mlock+0x291/0x360 mm/mlock.c:637
     SYSC_mlock2 mm/mlock.c:658
     SyS_mlock2+0x4b/0x70 mm/mlock.c:648

Dmitry identified a potential memory leak in the routine region_chg,
where a region descriptor is not free'ed on an error path.

However, the root cause for the above memory leak resides in region_del.
In this specific case, a "placeholder" entry is created in region_chg.
The associated page allocation fails, and the placeholder entry is left
in the reserve map.  This is "by design" as the entry should be deleted
when the map is released.  The bug is in the region_del routine which is
used to delete entries within a specific range (and when the map is
released).  region_del did not handle the case where a placeholder entry
exactly matched the start of the range range to be deleted.  In this
case, the entry would not be deleted and leaked.  The fix is to take
these special placeholder entries into account in region_del.

The region_chg error path leak is also fixed.

Fixes: feba16e25a57 ("mm/hugetlb: add region_del() to delete a specific range of entries")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: <stable@vger.kernel.org>	[4.3+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-12-12 10:15:34 -08:00
Naoya Horiguchi
0d777df5d8 mm: hugetlb: call huge_pte_alloc() only if ptep is null
Currently at the beginning of hugetlb_fault(), we call huge_pte_offset()
and check whether the obtained *ptep is a migration/hwpoison entry or
not.  And if not, then we get to call huge_pte_alloc().  This is racy
because the *ptep could turn into migration/hwpoison entry after the
huge_pte_offset() check.  This race results in BUG_ON in
huge_pte_alloc().

We don't have to call huge_pte_alloc() when the huge_pte_offset()
returns non-NULL, so let's fix this bug with moving the code into else
block.

Note that the *ptep could turn into a migration/hwpoison entry after
this block, but that's not a problem because we have another
!pte_present check later (we never go into hugetlb_no_page() in that
case.)

Fixes: 290408d4a250 ("hugetlb: hugepage migration core")
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: <stable@vger.kernel.org>	[2.6.36+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-12-12 10:15:34 -08:00
Naoya Horiguchi
a88c769548 mm: hugetlb: fix hugepage memory leak caused by wrong reserve count
When dequeue_huge_page_vma() in alloc_huge_page() fails, we fall back on
alloc_buddy_huge_page() to directly create a hugepage from the buddy
allocator.

In that case, however, if alloc_buddy_huge_page() succeeds we don't
decrement h->resv_huge_pages, which means that successful
hugetlb_fault() returns without releasing the reserve count.  As a
result, subsequent hugetlb_fault() might fail despite that there are
still free hugepages.

This patch simply adds decrementing code on that code path.

I reproduced this problem when testing v4.3 kernel in the following situation:
 - the test machine/VM is a NUMA system,
 - hugepage overcommiting is enabled,
 - most of hugepages are allocated and there's only one free hugepage
   which is on node 0 (for example),
 - another program, which calls set_mempolicy(MPOL_BIND) to bind itself to
   node 1, tries to allocate a hugepage,
 - the allocation should fail but the reserve count is still hold.

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: <stable@vger.kernel.org> [3.16+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-12-12 10:15:34 -08:00
Naoya Horiguchi
d15c7c0932 hugetlb: trivial comment fix
Recently alloc_buddy_huge_page() was renamed to __alloc_buddy_huge_page(),
so let's sync comments.

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-10 16:32:11 -08:00
Kirill A. Shutemov
d00181b96e mm: use 'unsigned int' for page order
Let's try to be consistent about data type of page order.

[sfr@canb.auug.org.au: fix build (type of pageblock_order)]
[hughd@google.com: some configs end up with MAX_ORDER and pageblock_order having different types]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 17:50:42 -08:00
Kirill A. Shutemov
1d798ca3f1 mm: make compound_head() robust
Hugh has pointed that compound_head() call can be unsafe in some
context. There's one example:

	CPU0					CPU1

isolate_migratepages_block()
  page_count()
    compound_head()
      !!PageTail() == true
					put_page()
					  tail->first_page = NULL
      head = tail->first_page
					alloc_pages(__GFP_COMP)
					   prep_compound_page()
					     tail->first_page = head
					     __SetPageTail(p);
      !!PageTail() == true
    <head == NULL dereferencing>

The race is pure theoretical. I don't it's possible to trigger it in
practice. But who knows.

We can fix the race by changing how encode PageTail() and compound_head()
within struct page to be able to update them in one shot.

The patch introduces page->compound_head into third double word block in
front of compound_dtor and compound_order. Bit 0 encodes PageTail() and
the rest bits are pointer to head page if bit zero is set.

The patch moves page->pmd_huge_pte out of word, just in case if an
architecture defines pgtable_t into something what can have the bit 0
set.

hugetlb_cgroup uses page->lru.next in the second tail page to store
pointer struct hugetlb_cgroup. The patch switch it to use page->private
in the second tail page instead. The space is free since ->first_page is
removed from the union.

The patch also opens possibility to remove HUGETLB_CGROUP_MIN_ORDER
limitation, since there's now space in first tail page to store struct
hugetlb_cgroup pointer. But that's out of scope of the patch.

That means page->compound_head shares storage space with:

 - page->lru.next;
 - page->next;
 - page->rcu_head.next;

That's too long list to be absolutely sure, but looks like nobody uses
bit 0 of the word.

page->rcu_head.next guaranteed[1] to have bit 0 clean as long as we use
call_rcu(), call_rcu_bh(), call_rcu_sched(), or call_srcu(). But future
call_rcu_lazy() is not allowed as it makes use of the bit and we can
get false positive PageTail().

[1] http://lkml.kernel.org/g/20150827163634.GD4029@linux.vnet.ibm.com

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 17:50:42 -08:00
Kirill A. Shutemov
f1e61557f0 mm: pack compound_dtor and compound_order into one word in struct page
The patch halves space occupied by compound_dtor and compound_order in
struct page.

For compound_order, it's trivial long -> short conversion.

For get_compound_page_dtor(), we now use hardcoded table for destructor
lookup and store its index in the struct page instead of direct pointer
to destructor. It shouldn't be a big trouble to maintain the table: we
have only two destructor and NULL currently.

This patch free up one word in tail pages for reuse. This is preparation
for the next patch.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 17:50:42 -08:00
Eric B Munson
de60f5f10c mm: introduce VM_LOCKONFAULT
The cost of faulting in all memory to be locked can be very high when
working with large mappings.  If only portions of the mapping will be used
this can incur a high penalty for locking.

For the example of a large file, this is the usage pattern for a large
statical language model (probably applies to other statical or graphical
models as well).  For the security example, any application transacting in
data that cannot be swapped out (credit card data, medical records, etc).

This patch introduces the ability to request that pages are not
pre-faulted, but are placed on the unevictable LRU when they are finally
faulted in.  The VM_LOCKONFAULT flag will be used together with VM_LOCKED
and has no effect when set without VM_LOCKED.  Setting the VM_LOCKONFAULT
flag for a VMA will cause pages faulted into that VMA to be added to the
unevictable LRU when they are faulted or if they are already present, but
will not cause any missing pages to be faulted in.

Exposing this new lock state means that we cannot overload the meaning of
the FOLL_POPULATE flag any longer.  Prior to this patch it was used to
mean that the VMA for a fault was locked.  This means we need the new
FOLL_MLOCK flag to communicate the locked state of a VMA.  FOLL_POPULATE
will now only control if the VMA should be populated and in the case of
VM_LOCKONFAULT, it will not be set.

Signed-off-by: Eric B Munson <emunson@akamai.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Dave Hansen
e0ec90ee7e mm, hugetlbfs: optimize when NUMA=n
My recent patch "mm, hugetlb: use memory policy when available" added some
bloat to hugetlb.o.  This patch aims to get some of the bloat back,
especially when NUMA is not in play.

It does this with an implicit #ifdef and marking some things static that
should have been static in my first patch.  It also makes the warnings
only VM_WARN_ON()s.  They were responsible for a pretty big chunk of the
bloat.

Doing this gets our NUMA=n text size back to a wee bit _below_ where we
started before the original patch.

It also shaves a bit of space off the NUMA=y case, but not much.
Enforcing the mempolicy definitely takes some text and it's hard to avoid.

size(1) output:

   text	   data	    bss	    dec	    hex	filename
  30745	   3433	   2492	  36670	   8f3e	hugetlb.o.nonuma.baseline
  31305	   3755	   2492	  37552	   92b0	hugetlb.o.nonuma.patch1
  30713	   3433	   2492	  36638	   8f1e	hugetlb.o.nonuma.patch2 (this patch)
  25235	    473	  41276	  66984	  105a8	hugetlb.o.numa.baseline
  25715	    475	  41276	  67466	  1078a	hugetlb.o.numa.patch1
  25491	    473	  41276	  67240	  106a8	hugetlb.o.numa.patch2 (this patch)

Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Dave Hansen
099730d674 mm, hugetlb: use memory policy when available
I have a hugetlbfs user which is never explicitly allocating huge pages
with 'nr_hugepages'.  They only set 'nr_overcommit_hugepages' and then let
the pages be allocated from the buddy allocator at fault time.

This works, but they noticed that mbind() was not doing them any good and
the pages were being allocated without respect for the policy they
specified.

The code in question is this:

> struct page *alloc_huge_page(struct vm_area_struct *vma,
...
>         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
>         if (!page) {
>                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);

dequeue_huge_page_vma() is smart and will respect the VMA's memory policy.
 But, it only grabs _existing_ huge pages from the huge page pool.  If the
pool is empty, we fall back to alloc_buddy_huge_page() which obviously
can't do anything with the VMA's policy because it isn't even passed the
VMA.

Almost everybody preallocates huge pages.  That's probably why nobody has
ever noticed this.  Looking back at the git history, I don't think this
_ever_ worked from when alloc_buddy_huge_page() was introduced in
7893d1d5, 8 years ago.

The fix is to pass vma/addr down in to the places where we actually call
in to the buddy allocator.  It's fairly straightforward plumbing.  This
has been lightly tested.

Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Alexander Kuleshov
b4e289a6a6 mm/hugetlb: make node_hstates array static
There are no users of the node_hstates array outside of the
mm/hugetlb.c. So let's make it static.

Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Naoya Horiguchi
5d317b2b65 mm: hugetlb: proc: add HugetlbPages field to /proc/PID/status
Currently there's no easy way to get per-process usage of hugetlb pages,
which is inconvenient because userspace applications which use hugetlb
typically want to control their processes on the basis of how much memory
(including hugetlb) they use.  So this patch simply provides easy access
to the info via /proc/PID/status.

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Joern Engel <joern@logfs.org>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Mel Gorman
2f84a8990e mm: hugetlbfs: skip shared VMAs when unmapping private pages to satisfy a fault
SunDong reported the following on

  https://bugzilla.kernel.org/show_bug.cgi?id=103841

	I think I find a linux bug, I have the test cases is constructed. I
	can stable recurring problems in fedora22(4.0.4) kernel version,
	arch for x86_64.  I construct transparent huge page, when the parent
	and child process with MAP_SHARE, MAP_PRIVATE way to access the same
	huge page area, it has the opportunity to lead to huge page copy on
	write failure, and then it will munmap the child corresponding mmap
	area, but then the child mmap area with VM_MAYSHARE attributes, child
	process munmap this area can trigger VM_BUG_ON in set_vma_resv_flags
	functions (vma - > vm_flags & VM_MAYSHARE).

There were a number of problems with the report (e.g.  it's hugetlbfs that
triggers this, not transparent huge pages) but it was fundamentally
correct in that a VM_BUG_ON in set_vma_resv_flags() can be triggered that
looks like this

	 vma ffff8804651fd0d0 start 00007fc474e00000 end 00007fc475e00000
	 next ffff8804651fd018 prev ffff8804651fd188 mm ffff88046b1b1800
	 prot 8000000000000027 anon_vma           (null) vm_ops ffffffff8182a7a0
	 pgoff 0 file ffff88106bdb9800 private_data           (null)
	 flags: 0x84400fb(read|write|shared|mayread|maywrite|mayexec|mayshare|dontexpand|hugetlb)
	 ------------
	 kernel BUG at mm/hugetlb.c:462!
	 SMP
	 Modules linked in: xt_pkttype xt_LOG xt_limit [..]
	 CPU: 38 PID: 26839 Comm: map Not tainted 4.0.4-default #1
	 Hardware name: Dell Inc. PowerEdge R810/0TT6JF, BIOS 2.7.4 04/26/2012
	 set_vma_resv_flags+0x2d/0x30

The VM_BUG_ON is correct because private and shared mappings have
different reservation accounting but the warning clearly shows that the
VMA is shared.

When a private COW fails to allocate a new page then only the process
that created the VMA gets the page -- all the children unmap the page.
If the children access that data in the future then they get killed.

The problem is that the same file is mapped shared and private.  During
the COW, the allocation fails, the VMAs are traversed to unmap the other
private pages but a shared VMA is found and the bug is triggered.  This
patch identifies such VMAs and skips them.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: SunDong <sund_sky@126.com>
Reviewed-by: Michal Hocko <mhocko@suse.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: David Rientjes <rientjes@google.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-10-01 21:42:35 -04:00
Vlastimil Babka
96db800f5d mm: rename alloc_pages_exact_node() to __alloc_pages_node()
alloc_pages_exact_node() was introduced in commit 6484eb3e2a81 ("page
allocator: do not check NUMA node ID when the caller knows the node is
valid") as an optimized variant of alloc_pages_node(), that doesn't
fallback to current node for nid == NUMA_NO_NODE.  Unfortunately the
name of the function can easily suggest that the allocation is
restricted to the given node and fails otherwise.  In truth, the node is
only preferred, unless __GFP_THISNODE is passed among the gfp flags.

The misleading name has lead to mistakes in the past, see for example
commits 5265047ac301 ("mm, thp: really limit transparent hugepage
allocation to local node") and b360edb43f8e ("mm, mempolicy:
migrate_to_node should only migrate to node").

Another issue with the name is that there's a family of
alloc_pages_exact*() functions where 'exact' means exact size (instead
of page order), which leads to more confusion.

To prevent further mistakes, this patch effectively renames
alloc_pages_exact_node() to __alloc_pages_node() to better convey that
it's an optimized variant of alloc_pages_node() not intended for general
usage.  Both functions get described in comments.

It has been also considered to really provide a convenience function for
allocations restricted to a node, but the major opinion seems to be that
__GFP_THISNODE already provides that functionality and we shouldn't
duplicate the API needlessly.  The number of users would be small
anyway.

Existing callers of alloc_pages_exact_node() are simply converted to
call __alloc_pages_node(), with the exception of sba_alloc_coherent()
which open-codes the check for NUMA_NO_NODE, so it is converted to use
alloc_pages_node() instead.  This means it no longer performs some
VM_BUG_ON checks, and since the current check for nid in
alloc_pages_node() uses a 'nid < 0' comparison (which includes
NUMA_NO_NODE), it may hide wrong values which would be previously
exposed.

Both differences will be rectified by the next patch.

To sum up, this patch makes no functional changes, except temporarily
hiding potentially buggy callers.  Restricting the checks in
alloc_pages_node() is left for the next patch which can in turn expose
more existing buggy callers.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Robin Holt <robinmholt@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Cliff Whickman <cpw@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Mike Kravetz
70c3547e36 hugetlbfs: add hugetlbfs_fallocate()
This is based on the shmem version, but it has diverged quite a bit.  We
have no swap to worry about, nor the new file sealing.  Add
synchronication via the fault mutex table to coordinate page faults,
fallocate allocation and fallocate hole punch.

What this allows us to do is move physical memory in and out of a
hugetlbfs file without having it mapped.  This also gives us the ability
to support MADV_REMOVE since it is currently implemented using
fallocate().  MADV_REMOVE lets madvise() remove pages from the middle of
a hugetlbfs file, which wasn't possible before.

hugetlbfs fallocate only operates on whole huge pages.

Based on code by Dave Hansen.

Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Mike Kravetz
ab76ad540a hugetlbfs: New huge_add_to_page_cache helper routine
Currently, there is only a single place where hugetlbfs pages are added
to the page cache.  The new fallocate code be adding a second one, so
break the functionality out into its own helper.

Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Mike Kravetz
d85f69b0b5 mm/hugetlb: alloc_huge_page handle areas hole punched by fallocate
Areas hole punched by fallocate will not have entries in the
region/reserve map.  However, shared mappings with min_size subpool
reservations may still have reserved pages.  alloc_huge_page needs to
handle this special case and do the proper accounting.

Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Mike Kravetz
1fb1b0e9ef mm/hugetlb: vma_has_reserves() needs to handle fallocate hole punch
In vma_has_reserves(), the current assumption is that reserves are
always present for shared mappings.  However, this will not be the case
with fallocate hole punch.  When punching a hole, the present page will
be deleted as well as the region/reserve map entry (and hence any
reservation).  vma_has_reserves is passed "chg" which indicates whether
or not a region/reserve map is present.  Use this to determine if
reserves are actually present or were removed via hole punch.

Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Mike Kravetz
b5cec28d36 hugetlbfs: truncate_hugepages() takes a range of pages
Modify truncate_hugepages() to take a range of pages (start, end)
instead of simply start.  If an end value of LLONG_MAX is passed, the
current "truncate" functionality is maintained.  Existing callers are
modified to pass LLONG_MAX as end of range.  By keying off end ==
LLONG_MAX, the routine behaves differently for truncate and hole punch.
Page removal is now synchronized with page allocation via faults by
using the fault mutex table.  The hole punch case can experience the
rare region_del error and must handle accordingly.

Add the routine hugetlb_fix_reserve_counts to fix up reserve counts in
the case where region_del returns an error.

Since the routine handles more than just the truncate case, it is
renamed to remove_inode_hugepages().  To be consistent, the routine
truncate_huge_page() is renamed remove_huge_page().

Downstream of remove_inode_hugepages(), the routine
hugetlb_unreserve_pages() is also modified to take a range of pages.
hugetlb_unreserve_pages is modified to detect an error from region_del and
pass it back to the caller.

Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Mike Kravetz
c672c7f29f mm/hugetlb: expose hugetlb fault mutex for use by fallocate
hugetlb page faults are currently synchronized by the table of mutexes
(htlb_fault_mutex_table).  fallocate code will need to synchronize with
the page fault code when it allocates or deletes pages.  Expose
interfaces so that fallocate operations can be synchronized with page
faults.  Minor name changes to be more consistent with other global
hugetlb symbols.

Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Mike Kravetz
feba16e25a mm/hugetlb: add region_del() to delete a specific range of entries
fallocate hole punch will want to remove a specific range of pages.  The
existing region_truncate() routine deletes all region/reserve map
entries after a specified offset.  region_del() will provide this same
functionality if the end of region is specified as LONG_MAX.  Hence,
region_del() can replace region_truncate().

Unlike region_truncate(), region_del() can return an error in the rare
case where it can not allocate memory for a region descriptor.  This
ONLY happens in the case where an existing region must be split.
Current callers passing LONG_MAX as end of range will never experience
this error and do not need to deal with error handling.  Future callers
of region_del() (such as fallocate hole punch) will need to handle this
error.

Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Mike Kravetz
5e9113731a mm/hugetlb: add cache of descriptors to resv_map for region_add
hugetlbfs is used today by applications that want a high degree of
control over huge page usage.  Often, large hugetlbfs files are used to
map a large number huge pages into the application processes.  The
applications know when page ranges within these large files will no
longer be used, and ideally would like to release them back to the
subpool or global pools for other uses.  The fallocate() system call
provides an interface for preallocation and hole punching within files.
This patch set adds fallocate functionality to hugetlbfs.

fallocate hole punch will want to remove a specific range of pages.
When pages are removed, their associated entries in the region/reserve
map will also be removed.  This will break an assumption in the
region_chg/region_add calling sequence.  If a new region descriptor must
be allocated, it is done as part of the region_chg processing.  In this
way, region_add can not fail because it does not need to attempt an
allocation.

To prepare for fallocate hole punch, create a "cache" of descriptors
that can be used by region_add if necessary.  region_chg will ensure
there are sufficient entries in the cache.  It will be necessary to
track the number of in progress add operations to know a sufficient
number of descriptors reside in the cache.  A new routine region_abort
is added to adjust this in progress count when add operations are
aborted.  vma_abort_reservation is also added for callers creating
reservations with vma_needs_reservation/vma_commit_reservation.

[akpm@linux-foundation.org: fix typo in comment, use more cols]
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00