IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Patch series "Cleanups and fixup for page_alloc", v2.
This series contains cleanups to remove meaningless VM_BUG_ON(), use
helpers to simplify the code and remove obsolete comment. Also we avoid
allocating highmem pages via alloc_pages_exact[_nid]. More details can be
found in the respective changelogs.
This patch (of 5):
It's meaningless to VM_BUG_ON() order != pageblock_order just after
setting order to pageblock_order. Remove it.
Link: https://lkml.kernel.org/r/20210902121242.41607-1-linmiaohe@huawei.com
Link: https://lkml.kernel.org/r/20210902121242.41607-2-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If __vmalloc() returned NULL, is_vm_area_hugepages(NULL) will fault if
CONFIG_HAVE_ARCH_HUGE_VMALLOC=y
Link: https://lkml.kernel.org/r/20210915212530.2321545-1-eric.dumazet@gmail.com
Fixes: 121e6f3258fe ("mm/vmalloc: hugepage vmalloc mappings")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use swap() in order to make code cleaner. Issue found by coccinelle.
Link: https://lkml.kernel.org/r/20211028111443.15744-1-deng.changcheng@zte.com.cn
Signed-off-by: Changcheng Deng <deng.changcheng@zte.com.cn>
Reported-by: Zeal Robot <zealci@zte.com.cn>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit ffb29b1c255a ("mm/vmalloc: fix numa spreading for large hash
tables") can cause significant performance regressions in some
situations as Andrew mentioned in [1]. The main situation is vmalloc,
vmalloc will allocate pages with NUMA_NO_NODE by default, that will
result in alloc page one by one;
In order to solve this, __alloc_pages_bulk and mempolicy should be
considered at the same time.
1) If node is specified in memory allocation request, it will alloc all
pages by __alloc_pages_bulk.
2) If interleaving allocate memory, it will cauculate how many pages
should be allocated in each node, and use __alloc_pages_bulk to alloc
pages in each node.
[1]: https://lore.kernel.org/lkml/CALvZod4G3SzP3kWxQYn0fj+VgG-G3yWXz=gz17+3N57ru1iajw@mail.gmail.com/t/#m750c8e3231206134293b089feaa090590afa0f60
[akpm@linux-foundation.org: coding style fixes]
[akpm@linux-foundation.org: make two functions static]
[akpm@linux-foundation.org: fix CONFIG_NUMA=n build]
Link: https://lkml.kernel.org/r/20211021080744.874701-3-chenwandun@huawei.com
Signed-off-by: Chen Wandun <chenwandun@huawei.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The core of the vmalloc allocator __vmalloc_area_node doesn't say
anything about gfp mask argument. Not all gfp flags are supported
though. Be more explicit about constraints.
Link: https://lkml.kernel.org/r/20211020082545.4830-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Neil Brown <neilb@suse.de>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Uladzislau Rezki <urezki@gmail.com>
Cc: Ilya Dryomov <idryomov@gmail.com>
Cc: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Percpu embedded first chunk allocator is the firstly option, but it
could fails on ARM64, eg,
percpu: max_distance=0x5fcfdc640000 too large for vmalloc space 0x781fefff0000
percpu: max_distance=0x600000540000 too large for vmalloc space 0x7dffb7ff0000
percpu: max_distance=0x5fff9adb0000 too large for vmalloc space 0x5dffb7ff0000
then we could get
WARNING: CPU: 15 PID: 461 at vmalloc.c:3087 pcpu_get_vm_areas+0x488/0x838
and the system could not boot successfully.
Let's implement page mapping percpu first chunk allocator as a fallback
to the embedding allocator to increase the robustness of the system.
Link: https://lkml.kernel.org/r/20210910053354.26721-3-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Marco Elver <elver@google.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Percpu embedded first chunk allocator is the firstly option, but it
could fail on ARM64, eg,
percpu: max_distance=0x5fcfdc640000 too large for vmalloc space 0x781fefff0000
percpu: max_distance=0x600000540000 too large for vmalloc space 0x7dffb7ff0000
percpu: max_distance=0x5fff9adb0000 too large for vmalloc space 0x5dffb7ff0000
then we could get to
WARNING: CPU: 15 PID: 461 at vmalloc.c:3087 pcpu_get_vm_areas+0x488/0x838
and the system cannot boot successfully.
Let's implement page mapping percpu first chunk allocator as a fallback
to the embedding allocator to increase the robustness of the system.
Also fix a crash when both NEED_PER_CPU_PAGE_FIRST_CHUNK and
KASAN_VMALLOC enabled.
Tested on ARM64 qemu with cmdline "percpu_alloc=page".
This patch (of 3):
There are some fixed locations in the vmalloc area be reserved in
ARM(see iotable_init()) and ARM64(see map_kernel()), but for
pcpu_page_first_chunk(), it calls vm_area_register_early() and choose
VMALLOC_START as the start address of vmap area which could be
conflicted with above address, then could trigger a BUG_ON in
vm_area_add_early().
Let's choose a suit start address by traversing the vmlist.
Link: https://lkml.kernel.org/r/20210910053354.26721-1-wangkefeng.wang@huawei.com
Link: https://lkml.kernel.org/r/20210910053354.26721-2-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Huge vmalloc allocation on heavy loaded node can lead to a global memory
shortage. Task called vmalloc can have worst badness and be selected by
OOM-killer, however taken fatal signal does not interrupt allocation
cycle. Vmalloc repeat page allocaions again and again, exacerbating the
crisis and consuming the memory freed up by another killed tasks.
After a successful completion of the allocation procedure, a fatal
signal will be processed and task will be destroyed finally. However it
may not release the consumed memory, since the allocated object may have
a lifetime unrelated to the completed task. In the worst case, this can
lead to the host will panic due to "Out of memory and no killable
processes..."
This patch allows OOM-killer to break vmalloc cycle, makes OOM more
effective and avoid host panic. It does not check oom condition
directly, however, and breaks page allocation cycle when fatal signal
was received.
This may trigger some hidden problems, when caller does not handle
vmalloc failures, or when rollaback after failed vmalloc calls own
vmallocs inside. However all of these scenarios are incorrect: vmalloc
does not guarantee successful allocation, it has never been called with
__GFP_NOFAIL and threfore either should not be used for any rollbacks or
should handle such errors correctly and not lead to critical failures.
Link: https://lkml.kernel.org/r/83efc664-3a65-2adb-d7c4-2885784cf109@virtuozzo.com
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Before we did not guarantee a free block with lowest start address for
allocations with alignment >= PAGE_SIZE. Because an alignment overhead
was included into a search length like below:
length = size + align - 1;
doing so we make sure that a bigger block would fit after applying an
alignment adjustment. Now there is no such limitation, i.e. any
alignment that user wants to apply will result to a lowest address of
returned free area.
Link: https://lkml.kernel.org/r/20211004142829.22222-2-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Ping Fang <pifang@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We used to include an alignment overhead into a search length, in that
case we guarantee that a found area will definitely fit after applying a
specific alignment that user specifies. From the other hand we do not
guarantee that an area has the lowest address if an alignment is >=
PAGE_SIZE.
It means that, when a user specifies a special alignment together with a
range that corresponds to an exact requested size then an allocation
will fail. This is what happens to KASAN, it wants the free block that
exactly matches a specified range during onlining memory banks:
[root@vm-0 fedora]# echo online > /sys/devices/system/memory/memory82/state
[root@vm-0 fedora]# echo online > /sys/devices/system/memory/memory83/state
[root@vm-0 fedora]# echo online > /sys/devices/system/memory/memory85/state
[root@vm-0 fedora]# echo online > /sys/devices/system/memory/memory84/state
vmap allocation for size 16777216 failed: use vmalloc=<size> to increase size
bash: vmalloc: allocation failure: 16777216 bytes, mode:0x6000c0(GFP_KERNEL), nodemask=(null),cpuset=/,mems_allowed=0
CPU: 4 PID: 1644 Comm: bash Kdump: loaded Not tainted 4.18.0-339.el8.x86_64+debug #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
Call Trace:
dump_stack+0x8e/0xd0
warn_alloc.cold.90+0x8a/0x1b2
? zone_watermark_ok_safe+0x300/0x300
? slab_free_freelist_hook+0x85/0x1a0
? __get_vm_area_node+0x240/0x2c0
? kfree+0xdd/0x570
? kmem_cache_alloc_node_trace+0x157/0x230
? notifier_call_chain+0x90/0x160
__vmalloc_node_range+0x465/0x840
? mark_held_locks+0xb7/0x120
Fix it by making sure that find_vmap_lowest_match() returns lowest start
address with any given alignment value, i.e. for alignments bigger then
PAGE_SIZE the algorithm rolls back toward parent nodes checking right
sub-trees if the most left free block did not fit due to alignment
overhead.
Link: https://lkml.kernel.org/r/20211004142829.22222-1-urezki@gmail.com
Fixes: 68ad4a330433 ("mm/vmalloc.c: keep track of free blocks for vmap allocation")
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reported-by: Ping Fang <pifang@redhat.com>
Tested-by: David Hildenbrand <david@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If last va found in vmap_area_list does not have a vm pointer,
vmallocinfo.s_show() returns 0, and show_purge_info() is not called as
it should.
Link: https://lkml.kernel.org/r/20211001170815.73321-1-eric.dumazet@gmail.com
Fixes: dd3b8353bae7 ("mm/vmalloc: do not keep unpurged areas in the busy tree")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Pengfei Li <lpf.vector@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
show_numa_info() can be slightly faster, by skipping over hugepages
directly.
Link: https://lkml.kernel.org/r/20211001172725.105824-1-eric.dumazet@gmail.com
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The vmalloc guard pages are added on top of each allocation, thereby
isolating any two allocations from one another. The top guard of the
lower allocation is the bottom guard guard of the higher allocation etc.
Therefore VM_NO_GUARD is dangerous; it breaks the basic premise of
isolating separate allocations.
There are only two in-tree users of this flag, neither of which use it
through the exported interface. Ensure it stays this way.
Link: https://lkml.kernel.org/r/YUMfdA36fuyZ+/xt@hirez.programming.kicks-ass.net
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Uladzislau Rezki <urezki@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit f255935b9767 ("mm: cleanup the gfp_mask handling in
__vmalloc_area_node") added __GFP_NOWARN to gfp_mask unconditionally
however it disabled all output inside warn_alloc() call. This patch
saves original gfp_mask and provides it to all warn_alloc() calls.
Link: https://lkml.kernel.org/r/f4f3187b-9684-e426-565d-827c2a9bbb0e@virtuozzo.com
Fixes: f255935b9767 ("mm: cleanup the gfp_mask handling in __vmalloc_area_node")
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
By using DECLARE_EVENT_CLASS and TRACE_EVENT_FN, we can save a lot of
space from duplicate code.
Link: https://lkml.kernel.org/r/20211009071243.70286-1-ligang.bdlg@bytedance.com
Signed-off-by: Gang Li <ligang.bdlg@bytedance.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ftrace core will add newline automatically on printing, so using it in
TP_printkcreates a blank line.
Link: https://lkml.kernel.org/r/20211009071105.69544-1-ligang.bdlg@bytedance.com
Signed-off-by: Gang Li <ligang.bdlg@bytedance.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The fallback was introduced in commit 80c33624e472 ("io-mapping: Fixup
for different names of writecombine") to fix the build on microblaze.
5 years later, it seems all archs now provide a pgprot_writecombine(),
so just remove the other possible fallbacks. For microblaze,
pgprot_writecombine() is available since commit 97ccedd793ac
("microblaze: Provide pgprot_device/writecombine macros for nommu").
This is build-tested on microblaze with a hack to always build
mm/io-mapping.o and without DIYing on an x86-only macro
(_PAGE_CACHE_MASK)
Link: https://lkml.kernel.org/r/20211020204838.1142908-1-lucas.demarchi@intel.com
Signed-off-by: Lucas De Marchi <lucas.demarchi@intel.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All this vm_unacct_memory(charged) dance seems to complicate the life
without a good reason. Furthermore, it seems not always done right on
error-pathes in mremap_to(). And worse than that: this `charged'
difference is sometimes double-accounted for growing MREMAP_DONTUNMAP
mremap()s in move_vma():
if (security_vm_enough_memory_mm(mm, new_len >> PAGE_SHIFT))
Let's not do this. Account memory in mremap() fast-path for growing
VMAs or in move_vma() for actually moving things. The same simpler way
as it's done by vm_stat_account(), but with a difference to call
security_vm_enough_memory_mm() before copying/adjusting VMA.
Originally noticed by Chen Wandun:
https://lkml.kernel.org/r/20210717101942.120607-1-chenwandun@huawei.com
Link: https://lkml.kernel.org/r/20210721131320.522061-1-dima@arista.com
Fixes: e346b3813067 ("mm/mremap: add MREMAP_DONTUNMAP to mremap()")
Signed-off-by: Dmitry Safonov <dima@arista.com>
Acked-by: Brian Geffon <bgeffon@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chen Wandun <chenwandun@huawei.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yongjun <weiyongjun1@huawei.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After adjustment, the repeated assignment of "prev" is avoided, and the
readability of the code is improved.
Link: https://lkml.kernel.org/r/20211012152444.4127-1-fishland@aliyun.com
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Liu Song <liu.song11@zte.com.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 3947be1969a9 ("[PATCH] memory hotplug: sysfs and add/remove
functions") defines CONFIG_MEM_BLOCK_SIZE, but this has never been
utilized anywhere.
It is a good practice to keep the CONFIG_* defines exclusively for the
Kbuild system. So, drop this unused definition.
This issue was noticed due to running ./scripts/checkkconfigsymbols.py.
Link: https://lkml.kernel.org/r/20211006120354.7468-1-lukas.bulwahn@gmail.com
Signed-off-by: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch follows the discussions on previous documentation patch
threads [1][2]. It presents the exception case of shared memory
management from the pagemap's point of view. It briefly describes what
is missing, why it is missing and alternatives to the pagemap for page
info retrieval in user space.
In short, the kernel does not keep track of PTEs for swapped out shared
pages within the processes that references them. Thus, the
proc/pid/pagemap tool cannot print the swap destination of the shared
memory pages, instead setting the pagemap entry to zero for both
non-allocated and swapped out pages. This can create confusion for
users who need information on swapped out pages.
The reasons why maintaining the PTEs of all swapped out shared pages
among all processes while maintaining similar performance is not a
trivial task, or a desirable change, have been discussed extensively
[1][3][4][5]. There are also arguments for why this arguably missing
information should eventually be exposed to the user in either a future
pagemap patch, or by an alternative tool.
[1]: https://marc.info/?m=162878395426774
[2]: https://lore.kernel.org/lkml/20210920164931.175411-1-tiberiu.georgescu@nutanix.com/
[3]: https://lore.kernel.org/lkml/20210730160826.63785-1-tiberiu.georgescu@nutanix.com/
[4]: https://lore.kernel.org/lkml/20210807032521.7591-1-peterx@redhat.com/
[5]: https://lore.kernel.org/lkml/20210715201651.212134-1-peterx@redhat.com/
Mention the current missing information in the pagemap and alternatives
on how to retrieve it, in case someone stumbles upon unexpected
behaviour.
Link: https://lkml.kernel.org/r/20210923064618.157046-1-tiberiu.georgescu@nutanix.com
Link: https://lkml.kernel.org/r/20210923064618.157046-2-tiberiu.georgescu@nutanix.com
Signed-off-by: Tiberiu A Georgescu <tiberiu.georgescu@nutanix.com>
Reviewed-by: Ivan Teterevkov <ivan.teterevkov@nutanix.com>
Reviewed-by: Florian Schmidt <florian.schmidt@nutanix.com>
Reviewed-by: Carl Waldspurger <carl.waldspurger@nutanix.com>
Reviewed-by: Jonathan Davies <jonathan.davies@nutanix.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The smp_wmb() which is in the __pte_alloc() is used to ensure all ptes
setup is visible before the pte is made visible to other CPUs by being
put into page tables. We only need this when the pte is actually
populated, so move it to pmd_install(). __pte_alloc_kernel(),
__p4d_alloc(), __pud_alloc() and __pmd_alloc() are similar to this case.
We can also defer smp_wmb() to the place where the pmd entry is really
populated by preallocated pte. There are two kinds of user of
preallocated pte, one is filemap & finish_fault(), another is THP. The
former does not need another smp_wmb() because the smp_wmb() has been
done by pmd_install(). Fortunately, the latter also does not need
another smp_wmb() because there is already a smp_wmb() before populating
the new pte when the THP uses a preallocated pte to split a huge pmd.
Link: https://lkml.kernel.org/r/20210901102722.47686-3-zhengqi.arch@bytedance.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mika Penttila <mika.penttila@nextfour.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Do some code cleanups related to mm", v3.
This patch (of 2):
Currently we have three times the same few lines repeated in the code.
Deduplicate them by newly introduced pmd_install() helper.
Link: https://lkml.kernel.org/r/20210901102722.47686-1-zhengqi.arch@bytedance.com
Link: https://lkml.kernel.org/r/20210901102722.47686-2-zhengqi.arch@bytedance.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Mika Penttila <mika.penttila@nextfour.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use the helper for the checks. Rename "check_mapping" into
"zap_mapping" because "check_mapping" looks like a bool but in fact it
stores the mapping itself. When it's set, we check the mapping (it must
be non-NULL). When it's cleared we skip the check, which works like the
old way.
Move the duplicated comments to the helper too.
Link: https://lkml.kernel.org/r/20210915181538.11288-1-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The first_index/last_index parameters in zap_details are actually only
used in unmap_mapping_range_tree(). At the meantime, this function is
only called by unmap_mapping_pages() once.
Instead of passing these two variables through the whole stack of page
zapping code, remove them from zap_details and let them simply be
parameters of unmap_mapping_range_tree(), which is inlined.
Link: https://lkml.kernel.org/r/20210915181535.11238-1-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Liam Howlett <liam.howlett@oracle.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pte_unmap_same() will always unmap the pte pointer. After the unmap,
vmf->pte will not be valid any more, we should clear it.
It was safe only because no one is accessing vmf->pte after
pte_unmap_same() returns, since the only caller of pte_unmap_same() (so
far) is do_swap_page(), where vmf->pte will in most cases be overwritten
very soon.
Directly pass in vmf into pte_unmap_same() and then we can also avoid
the long parameter list too, which should be a nice cleanup.
Link: https://lkml.kernel.org/r/20210915181533.11188-1-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Liam Howlett <liam.howlett@oracle.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: A few cleanup patches around zap, shmem and uffd", v4.
IMHO all of them are very nice cleanups to existing code already,
they're all small and self-contained. They'll be needed by uffd-wp
coming series.
This patch (of 4):
It was conditionally done previously, as there's one shmem special case
that we use SetPageDirty() instead. However that's not necessary and it
should be easier and cleaner to do it unconditionally in
mfill_atomic_install_pte().
The most recent discussion about this is here, where Hugh explained the
history of SetPageDirty() and why it's possible that it's not required
at all:
https://lore.kernel.org/lkml/alpine.LSU.2.11.2104121657050.1097@eggly.anvils/
Currently mfill_atomic_install_pte() has three callers:
1. shmem_mfill_atomic_pte
2. mcopy_atomic_pte
3. mcontinue_atomic_pte
After the change: case (1) should have its SetPageDirty replaced by the
dirty bit on pte (so we unify them together, finally), case (2) should
have no functional change at all as it has page_in_cache==false, case
(3) may add a dirty bit to the pte. However since case (3) is
UFFDIO_CONTINUE for shmem, it's merely 100% sure the page is dirty after
all because UFFDIO_CONTINUE normally requires another process to modify
the page cache and kick the faulted thread, so should not make a real
difference either.
This should make it much easier to follow on which case will set dirty
for uffd, as we'll simply set it all now for all uffd related ioctls.
Meanwhile, no special handling of SetPageDirty() if there's no need.
Link: https://lkml.kernel.org/r/20210915181456.10739-1-peterx@redhat.com
Link: https://lkml.kernel.org/r/20210915181456.10739-2-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Axel Rasmussen <axelrasmussen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Annotating a pointer from __user to kernel and then back again might
confuse sparse. In copy_huge_page_from_user() it can be avoided by
removing the intermediate variable since it is never used.
Link: https://lkml.kernel.org/r/20210914150820.19326-1-amit.kachhap@arm.com
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vincenzo Frascino <Vincenzo.Frascino@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is defined in the same file just a few lines above.
Link: https://lkml.kernel.org/r/4598487.Rc0NezkW7i@mobilepool36.emlix.com
Signed-off-by: Rolf Eike Beer <eb@emlix.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The variable mm->total_vm could be accessed concurrently during mmaping
and system accounting as noticed by KCSAN,
BUG: KCSAN: data-race in __acct_update_integrals / mmap_region
read-write to 0xffffa40267bd14c8 of 8 bytes by task 15609 on cpu 3:
mmap_region+0x6dc/0x1400
do_mmap+0x794/0xca0
vm_mmap_pgoff+0xdf/0x150
ksys_mmap_pgoff+0xe1/0x380
do_syscall_64+0x37/0x50
entry_SYSCALL_64_after_hwframe+0x44/0xa9
read to 0xffffa40267bd14c8 of 8 bytes by interrupt on cpu 2:
__acct_update_integrals+0x187/0x1d0
acct_account_cputime+0x3c/0x40
update_process_times+0x5c/0x150
tick_sched_timer+0x184/0x210
__run_hrtimer+0x119/0x3b0
hrtimer_interrupt+0x350/0xaa0
__sysvec_apic_timer_interrupt+0x7b/0x220
asm_call_irq_on_stack+0x12/0x20
sysvec_apic_timer_interrupt+0x4d/0x80
asm_sysvec_apic_timer_interrupt+0x12/0x20
smp_call_function_single+0x192/0x2b0
perf_install_in_context+0x29b/0x4a0
__se_sys_perf_event_open+0x1a98/0x2550
__x64_sys_perf_event_open+0x63/0x70
do_syscall_64+0x37/0x50
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Reported by Kernel Concurrency Sanitizer on:
CPU: 2 PID: 15610 Comm: syz-executor.3 Not tainted 5.10.0+ #2
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
Ubuntu-1.8.2-1ubuntu1 04/01/2014
In vm_stat_account which called by mmap_region, increase total_vm, and
__acct_update_integrals may read total_vm at the same time. This will
cause a data race which lead to undefined behaviour. To avoid potential
bad read/write, volatile property and barrier are both used to avoid
undefined behaviour.
Link: https://lkml.kernel.org/r/20210913105550.1569419-1-liupeng256@huawei.com
Signed-off-by: Peng Liu <liupeng256@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memory cgroup charging allows killed or exiting tasks to exceed the hard
limit. It is assumed that the amount of the memory charged by those
tasks is bound and most of the memory will get released while the task
is exiting. This is resembling a heuristic for the global OOM situation
when tasks get access to memory reserves. There is no global memory
shortage at the memcg level so the memcg heuristic is more relieved.
The above assumption is overly optimistic though. E.g. vmalloc can
scale to really large requests and the heuristic would allow that. We
used to have an early break in the vmalloc allocator for killed tasks
but this has been reverted by commit b8c8a338f75e ("Revert "vmalloc:
back off when the current task is killed""). There are likely other
similar code paths which do not check for fatal signals in an
allocation&charge loop. Also there are some kernel objects charged to a
memcg which are not bound to a process life time.
It has been observed that it is not really hard to trigger these
bypasses and cause global OOM situation.
One potential way to address these runaways would be to limit the amount
of excess (similar to the global OOM with limited oom reserves). This
is certainly possible but it is not really clear how much of an excess
is desirable and still protects from global OOMs as that would have to
consider the overall memcg configuration.
This patch is addressing the problem by removing the heuristic
altogether. Bypass is only allowed for requests which either cannot
fail or where the failure is not desirable while excess should be still
limited (e.g. atomic requests). Implementation wise a killed or dying
task fails to charge if it has passed the OOM killer stage. That should
give all forms of reclaim chance to restore the limit before the failure
(ENOMEM) and tell the caller to back off.
In addition, this patch renames should_force_charge() helper to
task_is_dying() because now its use is not associated witch forced
charging.
This patch depends on pagefault_out_of_memory() to not trigger
out_of_memory(), because then a memcg failure can unwind to VM_FAULT_OOM
and cause a global OOM killer.
Link: https://lkml.kernel.org/r/8f5cebbb-06da-4902-91f0-6566fc4b4203@virtuozzo.com
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Uladzislau Rezki <urezki@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Any allocation failure during the #PF path will return with VM_FAULT_OOM
which in turn results in pagefault_out_of_memory. This can happen for 2
different reasons. a) Memcg is out of memory and we rely on
mem_cgroup_oom_synchronize to perform the memcg OOM handling or b)
normal allocation fails.
The latter is quite problematic because allocation paths already trigger
out_of_memory and the page allocator tries really hard to not fail
allocations. Anyway, if the OOM killer has been already invoked there
is no reason to invoke it again from the #PF path. Especially when the
OOM condition might be gone by that time and we have no way to find out
other than allocate.
Moreover if the allocation failed and the OOM killer hasn't been invoked
then we are unlikely to do the right thing from the #PF context because
we have already lost the allocation context and restictions and
therefore might oom kill a task from a different NUMA domain.
This all suggests that there is no legitimate reason to trigger
out_of_memory from pagefault_out_of_memory so drop it. Just to be sure
that no #PF path returns with VM_FAULT_OOM without allocation print a
warning that this is happening before we restart the #PF.
[VvS: #PF allocation can hit into limit of cgroup v1 kmem controller.
This is a local problem related to memcg, however, it causes unnecessary
global OOM kills that are repeated over and over again and escalate into a
real disaster. This has been broken since kmem accounting has been
introduced for cgroup v1 (3.8). There was no kmem specific reclaim for
the separate limit so the only way to handle kmem hard limit was to return
with ENOMEM. In upstream the problem will be fixed by removing the
outdated kmem limit, however stable and LTS kernels cannot do it and are
still affected. This patch fixes the problem and should be backported
into stable/LTS.]
Link: https://lkml.kernel.org/r/f5fd8dd8-0ad4-c524-5f65-920b01972a42@virtuozzo.com
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Uladzislau Rezki <urezki@gmail.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "memcg: prohibit unconditional exceeding the limit of dying tasks", v3.
Memory cgroup charging allows killed or exiting tasks to exceed the hard
limit. It can be misused and allowed to trigger global OOM from inside
a memcg-limited container. On the other hand if memcg fails allocation,
called from inside #PF handler it triggers global OOM from inside
pagefault_out_of_memory().
To prevent these problems this patchset:
(a) removes execution of out_of_memory() from
pagefault_out_of_memory(), becasue nobody can explain why it is
necessary.
(b) allow memcg to fail allocation of dying/killed tasks.
This patch (of 3):
Any allocation failure during the #PF path will return with VM_FAULT_OOM
which in turn results in pagefault_out_of_memory which in turn executes
out_out_memory() and can kill a random task.
An allocation might fail when the current task is the oom victim and
there are no memory reserves left. The OOM killer is already handled at
the page allocator level for the global OOM and at the charging level
for the memcg one. Both have much more information about the scope of
allocation/charge request. This means that either the OOM killer has
been invoked properly and didn't lead to the allocation success or it
has been skipped because it couldn't have been invoked. In both cases
triggering it from here is pointless and even harmful.
It makes much more sense to let the killed task die rather than to wake
up an eternally hungry oom-killer and send him to choose a fatter victim
for breakfast.
Link: https://lkml.kernel.org/r/0828a149-786e-7c06-b70a-52d086818ea3@virtuozzo.com
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Uladzislau Rezki <urezki@gmail.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The non-memcg-aware lru is always skiped when traversing the global lru
list, which is not efficient. We can only add the memcg-aware lru to
the global lru list instead to make traversing more efficient.
Link: https://lkml.kernel.org/r/20211025124353.55781-1-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now the kmem states is only used to indicate whether the kmem is
offline. However, we can set ->kmemcg_id to -1 to indicate whether the
kmem is offline. Finally, we can remove the kmem states to simplify the
code.
Link: https://lkml.kernel.org/r/20211025125259.56624-1-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since slab objects and kmem pages are charged to object cgroup instead
of memory cgroup, memcg_reparent_objcgs() will reparent this cgroup and
all its descendants to its parent cgroup. This already makes further
list_lru_add()'s add elements to the parent's list. So it is
unnecessary to change kmemcg_id of an offline cgroup to its parent's id.
It just wastes CPU cycles. Just remove the redundant code.
Link: https://lkml.kernel.org/r/20211025125102.56533-1-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 2788cf0c401c ("memcg: reparent list_lrus and free kmemcg_id
on css offline"), ->nr_items can be negative during memory cgroup
reparenting. In this case, list_lru_count_one() will return an unusual
and huge value, which can surprise users. At least for now it hasn't
affected any users. But it is better to let list_lru_count_ont()
returns zero when ->nr_items is negative.
Link: https://lkml.kernel.org/r/20211025124910.56433-1-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit e5bc3af7734f ("rcu: Consolidate PREEMPT and !PREEMPT
synchronize_rcu()"), the critical section of spin lock can serve as an
RCU read-side critical section which already allows readers that hold
nlru->lock to avoid taking rcu lock. So just remove holding lock.
Link: https://lkml.kernel.org/r/20211025124534.56345-1-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The deprecation process of kmem.limit_in_bytes started with the commit
0158115f702 ("memcg, kmem: deprecate kmem.limit_in_bytes") which also
explains in detail the motivation behind the deprecation. To summarize,
it is the unexpected behavior on hitting the kmem limit. This patch
moves the deprecation process to the next stage by disallowing to set
the kmem limit. In future we might just remove the kmem.limit_in_bytes
file completely.
[akpm@linux-foundation.org: s/ENOTSUPP/EOPNOTSUPP/]
[arnd@arndb.de: mark cancel_charge() inline]
Link: https://lkml.kernel.org/r/20211022070542.679839-1-arnd@kernel.org
Link: https://lkml.kernel.org/r/20211019153408.2916808-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Vasily Averin <vvs@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As noted in the "Deprecated Interfaces, Language Features, Attributes,
and Conventions" documentation [1], size calculations (especially
multiplication) should not be performed in memory allocator (or similar)
function arguments due to the risk of them overflowing.
This could lead to values wrapping around and a smaller allocation being
made than the caller was expecting. Using those allocations could lead
to linear overflows of heap memory and other misbehaviors.
So, use the struct_size() helper to do the arithmetic instead of the
argument "size + count * size" in the kvmalloc() functions.
Also, take the opportunity to refactor the memcpy() call to use the
flex_array_size() helper.
This code was detected with the help of Coccinelle and audited and fixed
manually.
[1] https://www.kernel.org/doc/html/latest/process/deprecated.html#open-coded-arithmetic-in-allocator-arguments
Link: https://lkml.kernel.org/r/20211017105929.9284-1-len.baker@gmx.com
Signed-off-by: Len Baker <len.baker@gmx.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: "Gustavo A. R. Silva" <gustavoars@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit d648bcc7fe65 ("mm: kmem: make memcg_kmem_enabled()
irreversible"), the only thing memcg_free_kmem() does is to call
memcg_offline_kmem() when the memcg is still online which can happen
when online_css() fails due to -ENOMEM.
However, the name memcg_free_kmem() is confusing and it is more clear
and straight forward to call memcg_offline_kmem() directly from
mem_cgroup_css_free().
Link: https://lkml.kernel.org/r/20211005202450.11775-1-longman@redhat.com
Signed-off-by: Waiman Long <longman@redhat.com>
Suggested-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Aaron Tomlin <atomlin@redhat.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memcg stats can be flushed in multiple context and potentially in
parallel too. For example multiple parallel user space readers for
memcg stats will contend on the rstat locks with each other. There is
no need for that. We just need one flusher and everyone else can
benefit.
In addition after aa48e47e3906 ("memcg: infrastructure to flush memcg
stats") the kernel periodically flush the memcg stats from the root, so,
the other flushers will potentially have much less work to do.
Link: https://lkml.kernel.org/r/20211001190040.48086-2-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: "Michal Koutný" <mkoutny@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
At the moment, the kernel flushes the memcg stats on every refault and
also on every reclaim iteration. Although rstat maintains per-cpu
update tree but on the flush the kernel still has to go through all the
cpu rstat update tree to check if there is anything to flush. This
patch adds the tracking on the stats update side to make flush side more
clever by skipping the flush if there is no update.
The stats update codepath is very sensitive performance wise for many
workloads and benchmarks. So, we can not follow what the commit
aa48e47e3906 ("memcg: infrastructure to flush memcg stats") did which
was triggering async flush through queue_work() and caused a lot
performance regression reports. That got reverted by the commit
1f828223b799 ("memcg: flush lruvec stats in the refault").
In this patch we kept the stats update codepath very minimal and let the
stats reader side to flush the stats only when the updates are over a
specific threshold. For now the threshold is (nr_cpus * CHARGE_BATCH).
To evaluate the impact of this patch, an 8 GiB tmpfs file is created on
a system with swap-on-zram and the file was pushed to swap through
memory.force_empty interface. On reading the whole file, the memcg stat
flush in the refault code path is triggered. With this patch, we
observed 63% reduction in the read time of 8 GiB file.
Link: https://lkml.kernel.org/r/20211001190040.48086-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Reviewed-by: "Michal Koutný" <mkoutny@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is unused after the rework of commit f5df8635c5a3 ("mm: use
find_get_incore_page in memcontrol").
Link: https://lkml.kernel.org/r/20210916193014.80129-1-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of calling put_page() one page at a time, pop pages off the list
if their refcount was too high and pass the remainder to
put_unref_page_list(). This should be a speed improvement, but I have
no measurements to support that. Current callers do not care about
performance, but I hope to add some which do.
Link: https://lkml.kernel.org/r/20211007192138.561673-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Anthony Yznaga <anthony.yznaga@oracle.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This one is just a minor nuisance for people going through /proc/swaps
if any of their swapareas is bigger than, or equal to 1073741824 pages
(4TB).
seq_printf() format string casts as uint the conversion from pages to
KB, and that will overflow in the aforementioned case.
Albeit being almost unthinkable that someone would actually set up such
big of a single swaparea, there is a ticket recently filed against RHEL:
https://bugzilla.redhat.com/show_bug.cgi?id=2008812
Given that all other codesites that use format strings for the same swap
pages-to-KB conversion do cast it as ulong, this patch just follows
suit.
Link: https://lkml.kernel.org/r/20211006184011.2579054-1-aquini@redhat.com
Signed-off-by: Rafael Aquini <aquini@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The request_queue pointer returned from bdev_get_queue() shall never be
NULL, so the null check is unnecessary, just remove it.
Link: https://lkml.kernel.org/r/20210917082111.33923-1-vulab@iscas.ac.cn
Signed-off-by: Xu Wang <vulab@iscas.ac.cn>
Acked-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 6401c4eb57f9 ("mm: gup: fix potential pgmap refcnt leak in
__gup_device_huge()") simplified the return paths, but didn't go quite
far enough, as discussed in [1].
Remove the "ret" variable entirely, because there is enough information
already available to provide the return value.
[1] https://lore.kernel.org/r/CAHk-=wgQTRX=5SkCmS+zfmpqubGHGJvXX_HgnPG8JSpHKHBMeg@mail.gmail.com
Link: https://lkml.kernel.org/r/20210904004224.86391-1-jhubbard@nvidia.com
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Claudio Imbrenda <imbrenda@linux.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The fast path here is not needing any writeback, yet we spend time
setting up the xarray lookup data upfront. Move the part that actually
needs to iterate the address space mapping into a separate helper,
saving ~30% of the time here.
Link: https://lkml.kernel.org/r/49f67983-b802-8929-edab-d807f745c9ca@kernel.dk
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>