9 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Luca Miccio
|
a33801e8b4 |
block, bfq: move debug blkio stats behind CONFIG_DEBUG_BLK_CGROUP
BFQ currently creates, and updates, its own instance of the whole set of blkio statistics that cfq creates. Yet, from the comments of Tejun Heo in [1], it turned out that most of these statistics are meant/useful only for debugging. This commit makes BFQ create the latter, debugging statistics only if the option CONFIG_DEBUG_BLK_CGROUP is set. By doing so, this commit also enables BFQ to enjoy a high perfomance boost. The reason is that, if CONFIG_DEBUG_BLK_CGROUP is not set, then BFQ has to update far fewer statistics, and, in particular, not the heaviest to update. To give an idea of the benefits, if CONFIG_DEBUG_BLK_CGROUP is not set, then, on an Intel i7-4850HQ, and with 8 threads doing random I/O in parallel on null_blk (configured with 0 latency), the throughput of BFQ grows from 310 to 400 KIOPS (+30%). We have measured similar or even much higher boosts with other CPUs: e.g., +45% with an ARM CortexTM-A53 Octa-core. Our results have been obtained and can be reproduced very easily with the script in [1]. [1] https://www.spinics.net/lists/linux-block/msg18943.html Suggested-by: Tejun Heo <tj@kernel.org> Suggested-by: Ulf Hansson <ulf.hansson@linaro.org> Tested-by: Lee Tibbert <lee.tibbert@gmail.com> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Signed-off-by: Luca Miccio <lucmiccio@gmail.com> Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
||
Paolo Valente
|
24bfd19bb7 |
block, bfq: update blkio stats outside the scheduler lock
bfq invokes various blkg_*stats_* functions to update the statistics contained in the special files blkio.bfq.* in the blkio controller groups, i.e., the I/O accounting related to the proportional-share policy provided by bfq. The execution of these functions takes a considerable percentage, about 40%, of the total per-request execution time of bfq (i.e., of the sum of the execution time of all the bfq functions that have to be executed to process an I/O request from its creation to its destruction). This reduces the request-processing rate sustainable by bfq noticeably, even on a multicore CPU. In fact, the bfq functions that invoke blkg_*stats_* functions cannot be executed in parallel with the rest of the code of bfq, because both are executed under the same same per-device scheduler lock. To reduce this slowdown, this commit moves, wherever possible, the invocation of these functions (more precisely, of the bfq functions that invoke blkg_*stats_* functions) outside the critical sections protected by the scheduler lock. With this change, and with all blkio.bfq.* statistics enabled, the throughput grows, e.g., from 250 to 310 KIOPS (+25%) on an Intel i7-4850HQ, in case of 8 threads doing random I/O in parallel on null_blk, with the latter configured with 0 latency. We obtained the same or higher throughput boosts, up to +30%, with other processors (some figures are reported in the documentation). For our tests, we used the script [1], with which our results can be easily reproduced. NOTE. This commit still protects the invocation of blkg_*stats_* functions with the request_queue lock, because the group these functions are invoked on may otherwise disappear before or while these functions are executed. Fortunately, tests without even this lock show, by difference, that the serialization caused by this lock has a little impact (at most ~5% of throughput reduction). [1] https://github.com/Algodev-github/IOSpeed Tested-by: Lee Tibbert <lee.tibbert@gmail.com> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Luca Miccio <lucmiccio@gmail.com> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
||
Paolo Valente
|
68017e5d87 |
doc, block, bfq: update max IOPS sustainable with BFQ
We have investigated more deeply the performance of BFQ, in terms of number of IOPS that can be processed by the CPU when BFQ is used as I/O scheduler. In more detail, using the script [1], we have measured the number of IOPS reached on top of a null block device configured with zero latency, as a function of the workload (sequential read, sequential write, random read, random write) and of the system (we considered desktops, laptops and embedded systems). Basing on the resulting figures, with this commit we update the current, conservative IOPS range reported in BFQ documentation. In particular, the documentation now reports, for each of three different systems, the lowest number of IOPS obtained for that system with the above test (namely, the value obtained with the workload leading to the lowest IOPS). [1] https://github.com/Algodev-github/IOSpeed Reviewed-by: Lee Tibbert <lee.tibbert@gmail.com> Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Luca Miccio <lucmiccio@gmail.com> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
||
Paolo Valente
|
2670cd1674 |
doc, block, bfq: better describe how to properly configure bfq
Many users have reported the lack of an HOWTO for properly configuring bfq as a function of the goal one wants to achieve (max responsiveness, max throughput, ...). In fact, all needed details are already provided in the documentation file bfq-iosched.txt. Yet the document lacks guidance on which parameter descriptions to look at. This commit adds some simple direction. Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Reviewed-by: Jeremy Hickman <jeremywh7@gmail.com> Reviewed-by: Laurentiu Nicola <lnicola@dend.ro> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
||
Paolo Valente
|
233f0bf415 |
doc, block, bfq: fix some typos and remove stale stuff
In addition to containing some typos and stale sentences, the file bfq-iosched.txt still mentioned a set of sysfs parameters that have been removed from this version of bfq. This commit fixes all these issues. Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Reviewed-by: Jeremy Hickman <jeremywh7@gmail.com> Reviewed-by: Laurentiu Nicola <lnicola@dend.ro> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
||
Paolo Valente
|
43c1b3d6e5 |
block, bfq: stress that low_latency must be off to get max throughput
The introduction of the BFQ and Kyber I/O schedulers has triggered a new wave of I/O benchmarks. Unfortunately, comments and discussions on these benchmarks confirm that there is still little awareness that it is very hard to achieve, at the same time, a low latency and a high throughput. In particular, virtually all benchmarks measure throughput, or throughput-related figures of merit, but, for BFQ, they use the scheduler in its default configuration. This configuration is geared, instead, toward a low latency. This is evidently a sign that BFQ documentation is still too unclear on this important aspect. This commit addresses this issue by stressing how BFQ configuration must be (easily) changed if the only goal is maximum throughput. Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Jens Axboe <axboe@fb.com> |
||
Paolo Valente
|
44e44a1b32 |
block, bfq: improve responsiveness
This patch introduces a simple heuristic to load applications quickly, and to perform the I/O requested by interactive applications just as quickly. To this purpose, both a newly-created queue and a queue associated with an interactive application (we explain in a moment how BFQ decides whether the associated application is interactive), receive the following two special treatments: 1) The weight of the queue is raised. 2) The queue unconditionally enjoys device idling when it empties; in fact, if the requests of a queue are sync, then performing device idling for the queue is a necessary condition to guarantee that the queue receives a fraction of the throughput proportional to its weight (see [1] for details). For brevity, we call just weight-raising the combination of these two preferential treatments. For a newly-created queue, weight-raising starts immediately and lasts for a time interval that: 1) depends on the device speed and type (rotational or non-rotational), and 2) is equal to the time needed to load (start up) a large-size application on that device, with cold caches and with no additional workload. Finally, as for guaranteeing a fast execution to interactive, I/O-related tasks (such as opening a file), consider that any interactive application blocks and waits for user input both after starting up and after executing some task. After a while, the user may trigger new operations, after which the application stops again, and so on. Accordingly, the low-latency heuristic weight-raises again a queue in case it becomes backlogged after being idle for a sufficiently long (configurable) time. The weight-raising then lasts for the same time as for a just-created queue. According to our experiments, the combination of this low-latency heuristic and of the improvements described in the previous patch allows BFQ to guarantee a high application responsiveness. [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O Scheduler", Proceedings of the First Workshop on Mobile System Technologies (MST-2015), May 2015. http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Arianna Avanzini <avanzini.arianna@gmail.com> Signed-off-by: Jens Axboe <axboe@fb.com> |
||
Arianna Avanzini
|
e21b7a0b98 |
block, bfq: add full hierarchical scheduling and cgroups support
Add complete support for full hierarchical scheduling, with a cgroups interface. Full hierarchical scheduling is implemented through the 'entity' abstraction: both bfq_queues, i.e., the internal BFQ queues associated with processes, and groups are represented in general by entities. Given the bfq_queues associated with the processes belonging to a given group, the entities representing these queues are sons of the entity representing the group. At higher levels, if a group, say G, contains other groups, then the entity representing G is the parent entity of the entities representing the groups in G. Hierarchical scheduling is performed as follows: if the timestamps of a leaf entity (i.e., of a bfq_queue) change, and such a change lets the entity become the next-to-serve entity for its parent entity, then the timestamps of the parent entity are recomputed as a function of the budget of its new next-to-serve leaf entity. If the parent entity belongs, in its turn, to a group, and its new timestamps let it become the next-to-serve for its parent entity, then the timestamps of the latter parent entity are recomputed as well, and so on. When a new bfq_queue must be set in service, the reverse path is followed: the next-to-serve highest-level entity is chosen, then its next-to-serve child entity, and so on, until the next-to-serve leaf entity is reached, and the bfq_queue that this entity represents is set in service. Writeback is accounted for on a per-group basis, i.e., for each group, the async I/O requests of the processes of the group are enqueued in a distinct bfq_queue, and the entity associated with this queue is a child of the entity associated with the group. Weights can be assigned explicitly to groups and processes through the cgroups interface, differently from what happens, for single processes, if the cgroups interface is not used (as explained in the description of the previous patch). In particular, since each node has a full scheduler, each group can be assigned its own weight. Signed-off-by: Fabio Checconi <fchecconi@gmail.com> Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Arianna Avanzini <avanzini.arianna@gmail.com> Signed-off-by: Jens Axboe <axboe@fb.com> |
||
Paolo Valente
|
aee69d78de |
block, bfq: introduce the BFQ-v0 I/O scheduler as an extra scheduler
We tag as v0 the version of BFQ containing only BFQ's engine plus hierarchical support. BFQ's engine is introduced by this commit, while hierarchical support is added by next commit. We use the v0 tag to distinguish this minimal version of BFQ from the versions containing also the features and the improvements added by next commits. BFQ-v0 coincides with the version of BFQ submitted a few years ago [1], apart from the introduction of preemption, described below. BFQ is a proportional-share I/O scheduler, whose general structure, plus a lot of code, are borrowed from CFQ. - Each process doing I/O on a device is associated with a weight and a (bfq_)queue. - BFQ grants exclusive access to the device, for a while, to one queue (process) at a time, and implements this service model by associating every queue with a budget, measured in number of sectors. - After a queue is granted access to the device, the budget of the queue is decremented, on each request dispatch, by the size of the request. - The in-service queue is expired, i.e., its service is suspended, only if one of the following events occurs: 1) the queue finishes its budget, 2) the queue empties, 3) a "budget timeout" fires. - The budget timeout prevents processes doing random I/O from holding the device for too long and dramatically reducing throughput. - Actually, as in CFQ, a queue associated with a process issuing sync requests may not be expired immediately when it empties. In contrast, BFQ may idle the device for a short time interval, giving the process the chance to go on being served if it issues a new request in time. Device idling typically boosts the throughput on rotational devices, if processes do synchronous and sequential I/O. In addition, under BFQ, device idling is also instrumental in guaranteeing the desired throughput fraction to processes issuing sync requests (see [2] for details). - With respect to idling for service guarantees, if several processes are competing for the device at the same time, but all processes (and groups, after the following commit) have the same weight, then BFQ guarantees the expected throughput distribution without ever idling the device. Throughput is thus as high as possible in this common scenario. - Queues are scheduled according to a variant of WF2Q+, named B-WF2Q+, and implemented using an augmented rb-tree to preserve an O(log N) overall complexity. See [2] for more details. B-WF2Q+ is also ready for hierarchical scheduling. However, for a cleaner logical breakdown, the code that enables and completes hierarchical support is provided in the next commit, which focuses exactly on this feature. - B-WF2Q+ guarantees a tight deviation with respect to an ideal, perfectly fair, and smooth service. In particular, B-WF2Q+ guarantees that each queue receives a fraction of the device throughput proportional to its weight, even if the throughput fluctuates, and regardless of: the device parameters, the current workload and the budgets assigned to the queue. - The last, budget-independence, property (although probably counterintuitive in the first place) is definitely beneficial, for the following reasons: - First, with any proportional-share scheduler, the maximum deviation with respect to an ideal service is proportional to the maximum budget (slice) assigned to queues. As a consequence, BFQ can keep this deviation tight not only because of the accurate service of B-WF2Q+, but also because BFQ *does not* need to assign a larger budget to a queue to let the queue receive a higher fraction of the device throughput. - Second, BFQ is free to choose, for every process (queue), the budget that best fits the needs of the process, or best leverages the I/O pattern of the process. In particular, BFQ updates queue budgets with a simple feedback-loop algorithm that allows a high throughput to be achieved, while still providing tight latency guarantees to time-sensitive applications. When the in-service queue expires, this algorithm computes the next budget of the queue so as to: - Let large budgets be eventually assigned to the queues associated with I/O-bound applications performing sequential I/O: in fact, the longer these applications are served once got access to the device, the higher the throughput is. - Let small budgets be eventually assigned to the queues associated with time-sensitive applications (which typically perform sporadic and short I/O), because, the smaller the budget assigned to a queue waiting for service is, the sooner B-WF2Q+ will serve that queue (Subsec 3.3 in [2]). - Weights can be assigned to processes only indirectly, through I/O priorities, and according to the relation: weight = 10 * (IOPRIO_BE_NR - ioprio). The next patch provides, instead, a cgroups interface through which weights can be assigned explicitly. - If several processes are competing for the device at the same time, but all processes and groups have the same weight, then BFQ guarantees the expected throughput distribution without ever idling the device. It uses preemption instead. Throughput is then much higher in this common scenario. - ioprio classes are served in strict priority order, i.e., lower-priority queues are not served as long as there are higher-priority queues. Among queues in the same class, the bandwidth is distributed in proportion to the weight of each queue. A very thin extra bandwidth is however guaranteed to the Idle class, to prevent it from starving. - If the strict_guarantees parameter is set (default: unset), then BFQ - always performs idling when the in-service queue becomes empty; - forces the device to serve one I/O request at a time, by dispatching a new request only if there is no outstanding request. In the presence of differentiated weights or I/O-request sizes, both the above conditions are needed to guarantee that every queue receives its allotted share of the bandwidth (see Documentation/block/bfq-iosched.txt for more details). Setting strict_guarantees may evidently affect throughput. [1] https://lkml.org/lkml/2008/4/1/234 https://lkml.org/lkml/2008/11/11/148 [2] P. Valente and M. Andreolini, "Improving Application Responsiveness with the BFQ Disk I/O Scheduler", Proceedings of the 5th Annual International Systems and Storage Conference (SYSTOR '12), June 2012. Slightly extended version: http://algogroup.unimore.it/people/paolo/disk_sched/bfq-v1-suite- results.pdf Signed-off-by: Fabio Checconi <fchecconi@gmail.com> Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Arianna Avanzini <avanzini.arianna@gmail.com> Signed-off-by: Jens Axboe <axboe@fb.com> |