IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Clarify the distinction between "commands", the ioctls userspace calls
to request the kernel take some action on a given dimm device, and
"_DSMs", the actual function numbers used in the firmware interface to
the DIMM. _DSMs are ACPI specific whereas commands are Linux kernel
generic.
This is in preparation for breaking the 1:1 implicit relationship
between the kernel ioctl number space and the firmware specific function
numbers.
Cc: Jerry Hoemann <jerry.hoemann@hpe.com>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
During region creation, perform Address Range Scrubs (ARS) for the SPA
(System Physical Address) ranges to retrieve known poison locations from
firmware. Add a new data structure 'nd_poison' which is used as a list
in nvdimm_bus to store these poison locations.
When creating a pmem namespace, if there is any known poison associated
with its physical address space, convert the poison ranges to bad sectors
that are exposed using the badblocks interface.
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Implement the base infrastructure for libnvdimm PFN devices. Similar to
BTT devices they take a namespace as a backing device and layer
functionality on top. In this case the functionality is reserving space
for an array of 'struct page' entries to be handed out through
pfn_to_page(). For now this is just the basic libnvdimm-device-model for
configuring the base PFN device.
As the namespace claiming mechanism for PFN devices is mostly identical
to BTT devices drivers/nvdimm/claim.c is created to house the common
bits.
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The libnvdimm implementation handles allocating dimm address space (DPA)
between PMEM and BLK mode interfaces. After DPA has been allocated from
a BLK-region to a BLK-namespace the nd_blk driver attaches to handle I/O
as a struct bio based block device. Unlike PMEM, BLK is required to
handle platform specific details like mmio register formats and memory
controller interleave. For this reason the libnvdimm generic nd_blk
driver calls back into the bus provider to carry out the I/O.
This initial implementation handles the BLK interface defined by the
ACPI 6 NFIT [1] and the NVDIMM DSM Interface Example [2] composed from
DCR (dimm control region), BDW (block data window), IDT (interleave
descriptor) NFIT structures and the hardware register format.
[1]: http://www.uefi.org/sites/default/files/resources/ACPI_6.0.pdf
[2]: http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jens Axboe <axboe@fb.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
NVDIMM namespaces, in addition to accepting "struct bio" based requests,
also have the capability to perform byte-aligned accesses. By default
only the bio/block interface is used. However, if another driver can
make effective use of the byte-aligned capability it can claim namespace
interface and use the byte-aligned ->rw_bytes() interface.
The BTT driver is the initial first consumer of this mechanism to allow
adding atomic sector update semantics to a pmem or blk namespace. This
patch is the sysfs infrastructure to allow configuring a BTT instance
for a namespace. Enabling that BTT and performing i/o is in a
subsequent patch.
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Neil Brown <neilb@suse.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
After 'uuid', 'size', 'sector_size', and optionally 'alt_name' have been
set to valid values the labels on the dimm can be updated. The
difference with the pmem case is that blk namespaces are limited to one
dimm and can cover discontiguous ranges in dpa space.
Also, after allocating label slots, it is useful for userspace to know
how many slots are left. Export this information in sysfs.
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Neil Brown <neilb@suse.de>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
A blk label set describes a namespace comprised of one or more
discontiguous dpa ranges on a single dimm. They may alias with one or
more pmem interleave sets that include the given dimm.
This is the runtime/volatile configuration infrastructure for sysfs
manipulation of 'alt_name', 'uuid', 'size', and 'sector_size'. A later
patch will make these settings persistent by writing back the label(s).
Unlike pmem namespaces, multiple blk namespaces can be created per
region. Once a blk namespace has been created a new seed device
(unconfigured child of a parent blk region) is instantiated. As long as
a region has 'available_size' != 0 new child namespaces may be created.
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Neil Brown <neilb@suse.de>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
A complete label set is a PMEM-label per-dimm per-interleave-set where
all the UUIDs match and the interleave set cookie matches the hosting
interleave set.
Present sysfs attributes for manipulation of a PMEM-namespace's
'alt_name', 'uuid', and 'size' attributes. A later patch will make
these settings persistent by writing back the label.
Note that PMEM allocations grow forwards from the start of an interleave
set (lowest dimm-physical-address (DPA)). BLK-namespaces that alias
with a PMEM interleave set will grow allocations backward from the
highest DPA.
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Neil Brown <neilb@suse.de>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
On platforms that have firmware support for reading/writing per-dimm
label space, a portion of the dimm may be accessible via an interleave
set PMEM mapping in addition to the dimm's BLK (block-data-window
aperture(s)) interface. A label, stored in a "configuration data
region" on the dimm, disambiguates which dimm addresses are accessed
through which exclusive interface.
Add infrastructure that allows the kernel to block modifications to a
label in the set while any member dimm is active. Note that this is
meant only for enforcing "no modifications of active labels" via the
coarse ioctl command. Adding/deleting namespaces from an active
interleave set is always possible via sysfs.
Another aspect of tracking interleave sets is tracking their integrity
when DIMMs in a set are physically re-ordered. For this purpose we
generate an "interleave-set cookie" that can be recorded in a label and
validated against the current configuration. It is the bus provider
implementation's responsibility to calculate the interleave set cookie
and attach it to a given region.
Cc: Neil Brown <neilb@suse.de>
Cc: <linux-acpi@vger.kernel.org>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Robert Moore <robert.moore@intel.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The libnvdimm region driver is an intermediary driver that translates
non-volatile "region"s into "namespace" sub-devices that are surfaced by
persistent memory block-device drivers (PMEM and BLK).
ACPI 6 introduces the concept that a given nvdimm may simultaneously
offer multiple access modes to its media through direct PMEM load/store
access, or windowed BLK mode. Existing nvdimms mostly implement a PMEM
interface, some offer a BLK-like mode, but never both as ACPI 6 defines.
If an nvdimm is single interfaced, then there is no need for dimm
metadata labels. For these devices we can take the region boundaries
directly to create a child namespace device (nd_namespace_io).
Acked-by: Christoph Hellwig <hch@lst.de>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
A "region" device represents the maximum capacity of a BLK range (mmio
block-data-window(s)), or a PMEM range (DAX-capable persistent memory or
volatile memory), without regard for aliasing. Aliasing, in the
dimm-local address space (DPA), is resolved by metadata on a dimm to
designate which exclusive interface will access the aliased DPA ranges.
Support for the per-dimm metadata/label arrvies is in a subsequent
patch.
The name format of "region" devices is "regionN" where, like dimms, N is
a global ida index assigned at discovery time. This id is not reliable
across reboots nor in the presence of hotplug. Look to attributes of
the region or static id-data of the sub-namespace to generate a
persistent name. However, if the platform configuration does not change
it is reasonable to expect the same region id to be assigned at the next
boot.
"region"s have 2 generic attributes "size", and "mapping"s where:
- size: the BLK accessible capacity or the span of the
system physical address range in the case of PMEM.
- mappingN: a tuple describing a dimm's contribution to the region's
capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region
there will be at least one mapping per dimm in the interleave set. For
a BLK-region there is only "mapping0" listing the starting DPA of the
BLK-region and the available DPA capacity of that space (matches "size"
above).
The max number of mappings per "region" is hard coded per the
constraints of sysfs attribute groups. That said the number of mappings
per region should never exceed the maximum number of possible dimms in
the system. If the current number turns out to not be enough then the
"mappings" attribute clarifies how many there are supposed to be. "32
should be enough for anybody...".
Cc: Neil Brown <neilb@suse.de>
Cc: <linux-acpi@vger.kernel.org>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Robert Moore <robert.moore@intel.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* Implement the device-model infrastructure for loading modules and
attaching drivers to nvdimm devices. This is a simple association of a
nd-device-type number with a driver that has a bitmask of supported
device types. To facilitate userspace bind/unbind operations 'modalias'
and 'devtype', that also appear in the uevent, are added as generic
sysfs attributes for all nvdimm devices. The reason for the device-type
number is to support sub-types within a given parent devtype, be it a
vendor-specific sub-type or otherwise.
* The first consumer of this infrastructure is the driver
for dimm devices. It simply uses control messages to retrieve and
store the configuration-data image (label set) from each dimm.
Note: nd_device_register() arranges for asynchronous registration of
nvdimm bus devices by default.
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Neil Brown <neilb@suse.de>
Acked-by: Christoph Hellwig <hch@lst.de>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Most discovery/configuration of the nvdimm-subsystem is done via sysfs
attributes. However, some nvdimm_bus instances, particularly the
ACPI.NFIT bus, define a small set of messages that can be passed to the
platform. For convenience we derive the initial libnvdimm-ioctl command
formats directly from the NFIT DSM Interface Example formats.
ND_CMD_SMART: media health and diagnostics
ND_CMD_GET_CONFIG_SIZE: size of the label space
ND_CMD_GET_CONFIG_DATA: read label space
ND_CMD_SET_CONFIG_DATA: write label space
ND_CMD_VENDOR: vendor-specific command passthrough
ND_CMD_ARS_CAP: report address-range-scrubbing capabilities
ND_CMD_ARS_START: initiate scrubbing
ND_CMD_ARS_STATUS: report on scrubbing state
ND_CMD_SMART_THRESHOLD: configure alarm thresholds for smart events
If a platform later defines different commands than this set it is
straightforward to extend support to those formats.
Most of the commands target a specific dimm. However, the
address-range-scrubbing commands target the bus. The 'commands'
attribute in sysfs of an nvdimm_bus, or nvdimm, enumerate the supported
commands for that object.
Cc: <linux-acpi@vger.kernel.org>
Cc: Robert Moore <robert.moore@intel.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reported-by: Nicholas Moulin <nicholas.w.moulin@linux.intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Enable nvdimm devices to be registered on a nvdimm_bus. The kernel
assigned device id for nvdimm devicesis dynamic. If userspace needs a
more static identifier it should consult a provider-specific attribute.
In the case where NFIT is the provider, the 'nmemX/nfit/handle' or
'nmemX/nfit/serial' attributes may be used for this purpose.
Cc: Neil Brown <neilb@suse.de>
Cc: <linux-acpi@vger.kernel.org>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Robert Moore <robert.moore@intel.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The control device for a nvdimm_bus is registered as an "nd" class
device. The expectation is that there will usually only be one "nd" bus
registered under /sys/class/nd. However, we allow for the possibility
of multiple buses and they will listed in discovery order as
ndctl0...ndctlN. This character device hosts the ioctl for passing
control messages. The initial command set has a 1:1 correlation with
the commands listed in the by the "NFIT DSM Example" document [1], but
this scheme is extensible to future command sets.
Note, nd_ioctl() and the backing ->ndctl() implementation are defined in
a subsequent patch. This is simply the initial registrations and sysfs
attributes.
[1]: http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
Cc: Neil Brown <neilb@suse.de>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: <linux-acpi@vger.kernel.org>
Cc: Robert Moore <robert.moore@intel.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
A struct nvdimm_bus is the anchor device for registering nvdimm
resources and interfaces, for example, a character control device,
nvdimm devices, and I/O region devices. The ACPI NFIT (NVDIMM Firmware
Interface Table) is one possible platform description for such
non-volatile memory resources in a system. The nfit.ko driver attaches
to the "ACPI0012" device that indicates the presence of the NFIT and
parses the table to register a struct nvdimm_bus instance.
Cc: <linux-acpi@vger.kernel.org>
Cc: Lv Zheng <lv.zheng@intel.com>
Cc: Robert Moore <robert.moore@intel.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>