IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The full dynticks tree needs the latest RCU and sched
upstream updates in order to fix some dependencies.
Merge a common upstream merge point that has these
updates.
Conflicts:
include/linux/perf_event.h
kernel/rcutree.h
kernel/rcutree_plugin.h
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Pull more full-dynticks updates from Frederic Weisbecker:
* Get rid of the passive dependency on VIRT_CPU_ACCOUNTING_GEN (finally!)
* Preparation patch to remove the dependency on CONFIG_64BITS
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Turn the full dynticks passive dependency on VIRT_CPU_ACCOUNTING_GEN
to an active one.
The full dynticks Kconfig is currently hidden behind the full dynticks
cputime accounting, which is an awkward and counter-intuitive layout:
the user first has to select the dynticks cputime accounting in order
to make the full dynticks feature to be visible.
We definetly want it the other way around. The usual way to perform
this kind of active dependency is use "select" on the depended target.
Now we can't use the Kconfig "select" instruction when the target is
a "choice".
So this patch inspires on how the RCU subsystem Kconfig interact
with its dependencies on SMP and PREEMPT: we make sure that cputime
accounting can't propose another option than VIRT_CPU_ACCOUNTING_GEN
when NO_HZ_FULL is selected by using the right "depends on" instruction
for each cputime accounting choices.
v2: Keep full dynticks cputime accounting available even without
full dynticks, as per Paul McKenney's suggestion.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
One testbox of mine (Intel Nehalem, 16-way) uses MWAIT for its idle routine,
which apparently can break out of its idle loop rather frequently, with
high frequency.
In that case NO_HZ_FULL=y kernels show high ksoftirqd overhead and constant
context switching, because tick_nohz_stop_sched_tick() will, if
delta_jiffies == 0, mis-identify this as a timer event - activating the
TIMER_SOFTIRQ, which wakes up ksoftirqd.
Fix this by treating delta_jiffies == 0 the same way we treat other short
wakeups, delta_jiffies == 1.
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Remove the dependency on (TREE_RCU || TREE_PREEMPT_RCU). The full
dynticks option already depends on SMP which implies
(whatever flavour of) RCU tree config anyway.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
It's not obvious to find out why the full dynticks subsystem
doesn't always stop the tick: whether this is due to kthreads,
posix timers, perf events, etc...
These new tracepoints are here to help the user diagnose
the failures and test this feature.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
It makes testing and implementation much easier as we
know in advance that all CPUs are RCU nocbs.
Also this prepares to remove the dynamic check for
nohz_full= boot mask to be a subset of rcu_nocbs=
Eventually this should also help removing the requirement
for the boot CPU to be outside the full dynticks range.
Suggested-by: Christoph Lameter <cl@linux.com>
Suggested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
When a task is scheduled in, it may have some properties
of its own that could make the CPU reconsider the need for
the tick: posix cpu timers, perf events, ...
So notify the full dynticks subsystem when a task gets
scheduled in and re-check the tick dependency at this
stage. This is done through a self IPI to avoid messing
up with any current lock scenario.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Interrupt exit is a natural place to stop the tick: it happens
after all events happening before and during the irq which
are liable to update the dependency on the tick occured. Also
it makes sure that any check on tick dependency is well ordered
against dynticks kick IPIs.
Bring in the infrastructure that performs the tick dependency
checks on irq exit and shut it down if these checks show that we
can do it safely.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Implement the full dynticks kick that is performed from
IPIs sent by various subsystems (scheduler, posix timers, ...)
when they want to notify about a new event that may
reconsider the dependency on the tick.
Most of the time, such an event end up restarting the tick.
(Part of the design with subsystems providing *_can_stop_tick()
helpers suggested by Peter Zijlstra a while ago).
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
The scheduler IPI is used by the scheduler to kick
full dynticks CPUs asynchronously when more than one
task are running or when a new timer list timer is
enqueued. This way the destination CPU can decide
to restart the tick to handle this new situation.
Now let's call that kick in the scheduler IPI.
(Reusing the scheduler IPI rather than implementing
a new IPI was suggested by Peter Zijlstra a while ago)
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Provide a new kernel config that defaults all CPUs to be part
of the full dynticks range, except the boot one for timekeeping.
This default setting is overriden by the nohz_full= boot option
if passed by the user.
This is helpful for those who don't need a finegrained range
of full dynticks CPU and also for automated testing.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
We need full dynticks CPU to also be RCU nocb so
that we don't have to keep the tick to handle RCU
callbacks.
Make sure the range passed to nohz_full= boot
parameter is a subset of rcu_nocbs=
The CPUs that fail to meet this requirement will be
excluded from the nohz_full range. This is checked
early in boot time, before any CPU has the opportunity
to stop its tick.
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
The timekeeping job must be able to run early on boot
because there may be some pre-SMP (and thus pre-initcalls )
components that rely on it. The IO-APIC is one such users
as it tests the timer health by watching jiffies progression.
Given that it happens before we know the initial online
set, we can't rely on it to select a timekeeper. We need
one before SMP time otherwise we simply crash on boot.
To fix this and keep things simple for now, force the boot CPU
outside of the full dynticks range in any case and do this early
on kernel parameter parsing time.
We might want a trickier solution later, expecially for aSMP
architectures that need to assign housekeeping tasks to arbitrary
low power CPUs.
But it's still first pass KISS time for now.
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Provide two new helpers in order to notify the full dynticks CPUs about
some internal system changes against which they may reconsider the state
of their tick. Some practical examples include: posix cpu timers, perf tick
and sched clock tick.
For now the notifying handler, implemented through IPIs, is a stub
that will be implemented when we get the tick stop/restart infrastructure
in.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Remove the "single task" statement from CONFIG_NO_HZ_FULL
title. The constraint can be invalidated when tasks from
other sched classes than SCHED_FAIR are running. Moreover
it's possible that hrtick join the party in the future.
Also add a line about the dependency on SMP.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Rename CONFIG_PERIODIC_HZ to CONFIG_HZ_PERIODIC in
order to stay consistent with other tick implementation
entries:
CONFIG_HZ_PERIODIC
CONFIG_NO_HZ_IDLE
CONFIG_NO_HZ_FULL
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
"Extended nohz" was used as a naming base for the full dynticks
API and Kconfig symbols. It reflects the fact the system tries
to stop the tick in more places than just idle.
But that "extended" name is a bit opaque and vague. Rename it to
"full" makes it clearer what the system tries to do under this
config: try to shutdown the tick anytime it can. The various
constraints that prevent that to happen shouldn't be considered
as fundamental properties of this feature but rather technical
issues that may be solved in the future.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
In order to enforce backward compatibility with older
config files, we want the new dynticks-idle Kconfig entry
to default its value to the one of the old CONFIG_NO_HZ symbol
if present.
Namely we want:
config NO_HZ # old obsolete dynticks idle symbol
bool
config NO_HZ_IDLE # new dynticks idle symbol
default NO_HZ
However Kconfig prevents this to work if the old symbol
is not visible. And this is currently the case because
NO_HZ lacks a title in order to show it in make oldconfig
and alike.
To fix this, bring a minimal title and help text to the
obsolete Kconfig entry that explains its purpose. This
makes the "defaulting" to work.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Given that we apply a few restrictions on the full dynticks
CPUs range (keep an online timekeeper oustide the range,
then in the future have the range be an RCU nocb CPUs subset),
let's print the final resulting range of full dynticks CPUs to
the user so that he knows what's really going to run.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Now the user has the choice between three implementations of
the timer tick:
* Static periodic tick
* Idle dynticks
* Full dynticks
At least for now, these are mutually exclusive choices, so
let's rely on the proper Kconfig feature to display these
to the user.
A new entry CONFIG_NO_HZ_IDLE is created and the old
CONFIG_NO_HZ maps to it for config file backward compatibility.
The old name was too general now that we have more
granular dynticks implementations.
While at it, add some explanation to help the user on
his decision between the 3 entries.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
We are planning to convert the dynticks Kconfig options layout
into a choice menu. The user must be able to easily pick
any of the following implementations: constant periodic tick,
idle dynticks, full dynticks.
As this implies a mutual exclusion, the two dynticks implementions
need to converge on the selection of a common Kconfig option in order
to ease the sharing of a common infrastructure.
It would thus seem pretty natural to reuse CONFIG_NO_HZ to
that end. It already implements all the idle dynticks code
and the full dynticks depends on all that code for now.
So ideally the choice menu would propose CONFIG_NO_HZ_IDLE and
CONFIG_NO_HZ_EXTENDED then both would select CONFIG_NO_HZ.
On the other hand we want to stay backward compatible: if
CONFIG_NO_HZ is set in an older config file, we want to
enable CONFIG_NO_HZ_IDLE by default.
But we can't afford both at the same time or we run into
a circular dependency:
1) CONFIG_NO_HZ_IDLE and CONFIG_NO_HZ_EXTENDED both select
CONFIG_NO_HZ
2) If CONFIG_NO_HZ is set, we default to CONFIG_NO_HZ_IDLE
We might be able to support that from Kconfig/Kbuild but it
may not be wise to introduce such a confusing behaviour.
So to solve this, create a new CONFIG_NO_HZ_COMMON option
which gathers the common code between idle and full dynticks
(that common code for now is simply the idle dynticks code)
and select it from their referring Kconfig.
Then we'll later create CONFIG_NO_HZ_IDLE and map CONFIG_NO_HZ
to it for backward compatibility.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
The full dynticks feature only shows up when all its
Kconfig dependencies are met (RCU nocbs, RCU user mode, ...)
This is far from being user friendly as those who want to
activate this feature need to look into the Kconfig files
and iterate through each dependency then activate these
by hand in order to show and select the full dynticks
Kconfig option.
So process the other way around: show up the Kconfig option
if the minimal low level dependencies are met and activate
the high level ones when we enable the feature.
Note there is one exception in the picture:
CONFIG_VIRT_CPU_ACCOUNTING_GEN is part of a Kconfig choice
menu and it appears we can't select it from another Kconfig
selection when it's under such layout. So for now this
particular item stays as a passive dependency.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
This way the full nohz CPUs can safely run with the tick
stopped with a guarantee that somebody else is taking
care of the jiffies and GTOD progression.
Once the duty is attributed to a CPU, it won't change. Also that
CPU can't enter into dyntick idle mode or be hot unplugged.
This may later be improved from a power consumption POV. At
least we should be able to share the duty amongst all CPUs
outside the full dynticks range. Then the duty could even be
shared with full dynticks CPUs when those can't stop their
tick for any reason.
But let's start with that very simple approach first.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
[fix have_nohz_full_mask offcase]
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
For extreme usecases such as Real Time or HPC, having
the ability to shutdown the tick when a single task runs
on a CPU is a desired feature:
* Reducing the amount of interrupts improves throughput
for CPU-bound tasks. The CPU is less distracted from its
real job, from an execution time and from the cache point
of views.
* This also improve latency response as we have less critical
sections.
Start with introducing a very simple interface to define
full dynticks CPU: use a boot time option defined cpumask
through the "nohz_extended=" kernel parameter. CPUs that
are part of this range will have their tick shutdown
whenever possible: provided they run a single task and
they don't do kernel activity that require the periodic
tick. These details will be later documented in
Documentation/*
An online CPU must be kept outside this range to handle the
timekeeping.
Suggested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Currently tick_check_broadcast_device doesn't reject clock_event_devices
with CLOCK_EVT_FEAT_DUMMY, and may select them in preference to real
hardware if they have a higher rating value. In this situation, the
dummy timer is responsible for broadcasting to itself, and the core
clockevents code may attempt to call non-existent callbacks for
programming the dummy, eventually leading to a panic.
This patch makes tick_check_broadcast_device always reject dummy timers,
preventing this problem.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: Jon Medhurst (Tixy) <tixy@linaro.org>
Cc: stable@vger.kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull thermal management updates from Zhang Rui:
"Highlights:
- introduction of Dove thermal sensor driver.
- introduction of Kirkwood thermal sensor driver.
- introduction of intel_powerclamp thermal cooling device driver.
- add interrupt and DT support for rcar thermal driver.
- add thermal emulation support which allows platform thermal driver
to do software/hardware emulation for thermal issues."
* 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/rzhang/linux: (36 commits)
thermal: rcar: remove __devinitconst
thermal: return an error on failure to register thermal class
Thermal: rename thermal governor Kconfig option to avoid generic naming
thermal: exynos: Use the new thermal trend type for quick cooling action.
Thermal: exynos: Add support for temperature falling interrupt.
Thermal: Dove: Add Themal sensor support for Dove.
thermal: Add support for the thermal sensor on Kirkwood SoCs
thermal: rcar: add Device Tree support
thermal: rcar: remove machine_power_off() from rcar_thermal_notify()
thermal: rcar: add interrupt support
thermal: rcar: add read/write functions for common/priv data
thermal: rcar: multi channel support
thermal: rcar: use mutex lock instead of spin lock
thermal: rcar: enable CPCTL to use hardware TSC deciding
thermal: rcar: use parenthesis on macro
Thermal: fix a build warning when CONFIG_THERMAL_EMULATION cleared
Thermal: fix a wrong comment
thermal: sysfs: Add a new sysfs node emul_temp for thermal emulation
PM: intel_powerclamp: off by one in start_power_clamp()
thermal: exynos: Miscellaneous fixes to support falling threshold interrupt
...
Pull core locking changes from Ingo Molnar:
"The biggest change is the rwsem lock-steal improvements, both to the
assembly optimized and the spinlock based variants.
The other notable change is the clean up of the seqlock implementation
to be based on the seqcount infrastructure.
The rest is assorted smaller debuggability, cleanup and continued -rt
locking changes."
* 'core-locking-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
rwsem-spinlock: Implement writer lock-stealing for better scalability
futex: Revert "futex: Mark get_robust_list as deprecated"
generic: Use raw local irq variant for generic cmpxchg
lockdep: Selftest: convert spinlock to raw spinlock
seqlock: Use seqcount infrastructure
seqlock: Remove unused functions
ntp: Make ntp_lock raw
intel_idle: Convert i7300_idle_lock to raw_spinlock
locking: Various static lock initializer fixes
lockdep: Print more info when MAX_LOCK_DEPTH is exceeded
rwsem: Implement writer lock-stealing for better scalability
lockdep: Silence warning if CONFIG_LOCKDEP isn't set
watchdog: Use local_clock for get_timestamp()
lockdep: Rename print_unlock_inbalance_bug() to print_unlock_imbalance_bug()
locking/stat: Fix a typo
A large number of cleanups, all over the platforms. This is dominated
largely by the Samsung platforms (s3c, s5p, exynos) and a few of the
others moving code out of arch/arm into more appropriate subsystems.
The clocksource and irqchip drivers are now abstracted to the point
where platforms that are already cleaned up do not need to even specify
the driver they use, it can all get configured from the device tree
as we do for normal device drivers. The clocksource changes basically
touch every single platform in the process.
We further clean up the use of platform specific header files here,
with the goal of turning more of the platforms over to being
"multiplatform" enabled, which implies that they cannot expose
their headers to architecture independent code any more.
It is expected that no functional changes are part of the cleanup.
The overall reduction in total code lines is mostly the result of
removing broken and obsolete code.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQIVAwUAUSUyKmCrR//JCVInAQIN8RAAnb/uPytmlMjn5yCksF4Mvb/FVbn/TVwz
KRIGpCHOzyKK1q7pM8NRUVWfjW2SZqbXJFqx6zBGKSlDPvFTOhsLyyupU+Tnyu5W
IX4eIUBwb+a6H7XDHw0X2YI8uHzi5RNLhne0A1QyDKcnuHs1LDAttXnJHaK4Ap6Y
NN2YFt3l3ld7DXWXJtMsw5v8lC10aeIFGTvXefaPDAdeMLivmI57qEUMDXknNr7W
Odz/Rc0/cw3BNBVl/zNHA0jw7FOjKAymCYYNUa4xDCJEr+JnIRTqizd0N/YIIC7x
aA2xjJ3oKUFyF51yiJE6nFuTyJznhwtehc+uiMOSIkjrPLym52LEHmd7G5Yqlmjz
oiei09qBb870q3lGxwfht9iaeIwYgQFYGfD0yW5QWArCO5pxhtCPLPH7YZNZtcQd
ZJRSGGqT/ljBz3bm0K9OLESeeTTN7+Nxvtpiz/CD+Piegz0gWJzDYJRTzkJ3UWpA
WTVhVQdWUeX2JrNkgM7Z3Tu8iXOe+LIEs7kVXGJZSREmIIZiRvR36UrODZtAkp9I
7YQ+srX/uaR832pgK0RrHK0zY0psU6MmIvhYxJZFbx7keiPA9eH6drb0x7tGqcUD
FzEUzvcZvyqppndfBi+R60H/YKAhJDEXdwxzo6dyCpPQaW1T9GnzIqXuE1zin+Aw
X7Y8YywMbHI=
=DvgJ
-----END PGP SIGNATURE-----
Merge tag 'cleanup' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
Pull ARM SoC cleanups from Arnd Bergmann:
"A large number of cleanups, all over the platforms. This is dominated
largely by the Samsung platforms (s3c, s5p, exynos) and a few of the
others moving code out of arch/arm into more appropriate subsystems.
The clocksource and irqchip drivers are now abstracted to the point
where platforms that are already cleaned up do not need to even
specify the driver they use, it can all get configured from the device
tree as we do for normal device drivers. The clocksource changes
basically touch every single platform in the process.
We further clean up the use of platform specific header files here,
with the goal of turning more of the platforms over to being
"multiplatform" enabled, which implies that they cannot expose their
headers to architecture independent code any more.
It is expected that no functional changes are part of the cleanup.
The overall reduction in total code lines is mostly the result of
removing broken and obsolete code."
* tag 'cleanup' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (133 commits)
ARM: mvebu: correct gated clock documentation
ARM: kirkwood: add missing include for nsa310
ARM: exynos: move exynos4210-combiner to drivers/irqchip
mfd: db8500-prcmu: update resource passing
drivers/db8500-cpufreq: delete dangling include
ARM: at91: remove NEOCORE 926 board
sunxi: Cleanup the reset code and add meaningful registers defines
ARM: S3C24XX: header mach/regs-mem.h local
ARM: S3C24XX: header mach/regs-power.h local
ARM: S3C24XX: header mach/regs-s3c2412-mem.h local
ARM: S3C24XX: Remove plat-s3c24xx directory in arch/arm/
ARM: S3C24XX: transform s3c2443 subirqs into new structure
ARM: S3C24XX: modify s3c2443 irq init to initialize all irqs
ARM: S3C24XX: move s3c2443 irq code to irq.c
ARM: S3C24XX: transform s3c2416 irqs into new structure
ARM: S3C24XX: modify s3c2416 irq init to initialize all irqs
ARM: S3C24XX: move s3c2416 irq init to common irq code
ARM: S3C24XX: Modify s3c_irq_wake to use the hwirq property
ARM: S3C24XX: Move irq syscore-ops to irq-pm
clocksource: always define CLOCKSOURCE_OF_DECLARE
...
Pull timer changes from Ingo Molnar:
"Main changes:
- ntp: Add CONFIG_RTC_SYSTOHC: a generic RTC driver facility
complementing the existing CONFIG_RTC_HCTOSYS, which uses NTP to
keep the hardware clock updated.
- posix-timers: Fix clock_adjtime to always return timex data on
success. This is changing the ABI, but no breakage was expected
and found - caution is warranted nevertheless.
- platform persistent clock improvements/cleanups.
- clockevents: refactor timer broadcast handling to be more generic
and less duplicated with matching architecture code (mostly ARM
motivated.)
- various fixes and cleanups"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
timers/x86/hpet: Use HPET_COUNTER to specify the hpet counter in vread_hpet()
posix-cpu-timers: Fix nanosleep task_struct leak
clockevents: Fix generic broadcast for FEAT_C3STOP
time, Fix setting of hardware clock in NTP code
hrtimer: Prevent hrtimer_enqueue_reprogram race
clockevents: Add generic timer broadcast function
clockevents: Add generic timer broadcast receiver
timekeeping: Switch HAS_PERSISTENT_CLOCK to ALWAYS_USE_PERSISTENT_CLOCK
x86/time/rtc: Don't print extended CMOS year when reading RTC
x86: Select HAS_PERSISTENT_CLOCK on x86
timekeeping: Add CONFIG_HAS_PERSISTENT_CLOCK option
rtc: Skip the suspend/resume handling if persistent clock exist
timekeeping: Add persistent_clock_exist flag
posix-timers: Fix clock_adjtime to always return timex data on success
Round the calculated scale factor in set_cyc2ns_scale()
NTP: Add a CONFIG_RTC_SYSTOHC configuration
MAINTAINERS: Update John Stultz's email
time: create __getnstimeofday for WARNless calls
Pull scheduler changes from Ingo Molnar:
"Main changes:
- scheduler side full-dynticks (user-space execution is undisturbed
and receives no timer IRQs) preparation changes that convert the
cputime accounting code to be full-dynticks ready, from Frederic
Weisbecker.
- Initial sched.h split-up changes, by Clark Williams
- select_idle_sibling() performance improvement by Mike Galbraith:
" 1 tbench pair (worst case) in a 10 core + SMT package:
pre 15.22 MB/sec 1 procs
post 252.01 MB/sec 1 procs "
- sched_rr_get_interval() ABI fix/change. We think this detail is not
used by apps (so it's not an ABI in practice), but lets keep it
under observation.
- misc RT scheduling cleanups, optimizations"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
sched/rt: Add <linux/sched/rt.h> header to <linux/init_task.h>
cputime: Remove irqsave from seqlock readers
sched, powerpc: Fix sched.h split-up build failure
cputime: Restore CPU_ACCOUNTING config defaults for PPC64
sched/rt: Move rt specific bits into new header file
sched/rt: Add a tuning knob to allow changing SCHED_RR timeslice
sched: Move sched.h sysctl bits into separate header
sched: Fix signedness bug in yield_to()
sched: Fix select_idle_sibling() bouncing cow syndrome
sched/rt: Further simplify pick_rt_task()
sched/rt: Do not account zero delta_exec in update_curr_rt()
cputime: Safely read cputime of full dynticks CPUs
kvm: Prepare to add generic guest entry/exit callbacks
cputime: Use accessors to read task cputime stats
cputime: Allow dynamic switch between tick/virtual based cputime accounting
cputime: Generic on-demand virtual cputime accounting
cputime: Move default nsecs_to_cputime() to jiffies based cputime file
cputime: Librarize per nsecs resolution cputime definitions
cputime: Avoid multiplication overflow on utime scaling
context_tracking: Export context state for generic vtime
...
Fix up conflict in kernel/context_tracking.c due to comment additions.
seconds_overflow() is called from hard interrupt context even on
Preempt-RT. This requires the lock to be a raw_spinlock.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 12ad100046: "clockevents: Add generic timer broadcast function"
made tick_device_uses_broadcast set up the generic broadcast function
for dummy devices (where !tick_device_is_functional(dev)), but neglected
to set up the broadcast function for devices that stop in low power
states (with the CLOCK_EVT_FEAT_C3STOP flag).
When these devices enter low power states they will not have the generic
broadcast function assigned, and will bring down the system when an
attempt is made to broadcast to them.
This patch ensures that the broadcast function is also assigned for
devices which require broadcast in low power states.
Reported-by: Stephen Warren <swarren@nvidia.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Stephen Warren <swarren@nvidia.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: nico@linaro.org
Cc: Marc.Zyngier@arm.com
Cc: Will.Deacon@arm.com
Cc: santosh.shilimkar@ti.com
Cc: john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
At init time, if the system time is "warped" forward in warp_clock()
it will differ from the hardware clock by sys_tz.tz_minuteswest. This time
difference is not taken into account when ntp updates the hardware clock,
and this causes the system time to jump forward by this offset every reboot.
The kernel must take this offset into account when writing the system time
to the hardware clock in the ntp code. This patch adds
persistent_clock_is_local which indicates that an offset has been applied
in warp_clock() and accounts for the "warp" before writing the hardware
clock.
x86 does not have this problem as rtc writes are software limited to a
+/-15 minute window relative to the current rtc time. Other arches, such
as powerpc, however do a full synchronization of the system time to the
rtc and will see this problem.
[v2]: generated against tip/timers/core
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Conflicts:
kernel/irq_work.c
Add support for printk in full dynticks CPU.
* Don't stop tick with irq works pending. This
fix is generally useful and concerns archs that
can't raise self IPIs.
* Flush irq works before CPU offlining.
* Introduce "lazy" irq works that can wait for the
next tick to be executed, unless it's stopped.
* Implement klogd wake up using irq work. This
removes the ad-hoc printk_tick()/printk_needs_cpu()
hooks and make it working even in dynticks mode.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Currently, the timer broadcast mechanism is defined by a function
pointer on struct clock_event_device. As the fundamental mechanism for
broadcast is architecture-specific, this means that clock_event_device
drivers cannot be shared across multiple architectures.
This patch adds an (optional) architecture-specific function for timer
tick broadcast, allowing drivers which may require broadcast
functionality to be shared across multiple architectures.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: nico@linaro.org
Cc: Will.Deacon@arm.com
Cc: Marc.Zyngier@arm.com
Cc: john.stultz@linaro.org
Link: http://lkml.kernel.org/r/1358183124-28461-3-git-send-email-mark.rutland@arm.com
Tested-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Reviewed-by: Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Currently the broadcast mechanism used for timers is abstracted by a
function pointer on struct clock_event_device. As the fundamental
mechanism for broadcast is architecture-specific, this ties each
clock_event_device driver to a single architecture, even where the
driver is otherwise generic.
This patch adds a standard path for the receipt of timer broadcasts, so
drivers and/or architecture backends need not manage redundant lists of
timers for the purpose of routing broadcast timer ticks.
[tglx: Made the implementation depend on the config switch as well ]
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: nico@linaro.org
Cc: Will.Deacon@arm.com
Cc: Marc.Zyngier@arm.com
Cc: john.stultz@linaro.org
Link: http://lkml.kernel.org/r/1358183124-28461-2-git-send-email-mark.rutland@arm.com
Tested-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Reviewed-by: Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Jason pointed out the HAS_PERSISTENT_CLOCK name isn't
quite accurate for the config, as some systems may have
the persistent_clock in some cases, but not always.
So change the config name to the more clear
ALWAYS_USE_PERSISTENT_CLOCK.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Allow to dynamically switch between tick and virtual based
cputime accounting. This way we can provide a kind of "on-demand"
virtual based cputime accounting. In this mode, the kernel relies
on the context tracking subsystem to dynamically probe on kernel
boundaries.
This is in preparation for being able to stop the timer tick in
more places than just the idle state. Doing so will depend on
CONFIG_VIRT_CPU_ACCOUNTING_GEN which makes it possible to account
the cputime without the tick by hooking on kernel/user boundaries.
Depending whether the tick is stopped or not, we can switch between
tick and vtime based accounting anytime in order to minimize the
overhead associated to user hooks.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Allow drivers such as intel_powerclamp to use these apis for
turning on/off ticks during idle.
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Make the persistent clock check a kernel config option, so that some
platform can explicitely select it, also make CONFIG_RTC_HCTOSYS and
RTC_SYSTOHC depend on its non-existence, which could prevent the
persistent clock and RTC code from doing similar thing twice during
system's init/suspend/resume phases.
If the CONFIG_HAS_PERSISTENT_CLOCK=n, then no change happens for kernel
which still does the persistent clock check in timekeeping_init().
Cc: Thomas Gleixner <tglx@linutronix.de>
Suggested-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Feng Tang <feng.tang@intel.com>
[jstultz: Added dependency for RTC_SYSTOHC as well]
Signed-off-by: John Stultz <john.stultz@linaro.org>
In current kernel, there are several places which need to check
whether there is a persistent clock for the platform. Current check
is done by calling the read_persistent_clock() and validating its
return value.
So one optimization is to do the check only once in timekeeping_init(),
and use a flag persistent_clock_exist to record it.
v2: Add a has_persistent_clock() helper function, as suggested by John.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Signed-off-by: Feng Tang <feng.tang@intel.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
The purpose of this option is to allow ARM/etc systems that rely on the
class RTC subsystem to have the same kind of automatic NTP based
synchronization that we have on PC platforms. Today ARM does not
implement update_persistent_clock and makes extensive use of the class
RTC system.
When enabled CONFIG_RTC_SYSTOHC will provide a generic
rtc_update_persistent_clock that stores the current time in the RTC and
is intended complement the existing CONFIG_RTC_HCTOSYS option that loads
the RTC at boot.
Like with RTC_HCTOSYS the platform's update_persistent_clock is used
first, if it works. Platforms with mixed class RTC and non-RTC drivers
need to return ENODEV when class RTC should be used. Such an update for
PPC is included in this patch.
Long term, implementations of update_persistent_clock should migrate to
proper class RTC drivers and use CONFIG_RTC_SYSTOHC instead.
Tested on ARM kirkwood and PPC405
Signed-off-by: Jason Gunthorpe <jgunthorpe@obsidianresearch.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
The pstore RAM backend can get called during resume, and must be defensive
against a suspended time source. Expose getnstimeofday logic that returns
an error instead of a WARN. This can be detected and the timestamp can
be zeroed out.
Reported-by: Doug Anderson <dianders@chromium.org>
Cc: John Stultz <johnstul@us.ibm.com>
Cc: Anton Vorontsov <anton.vorontsov@linaro.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Clockevent cleanup series from Shawn Guo.
Resolved move/change conflict in mach-pxa/time.c due to the sys_timer
cleanup.
* clocksource/cleanup:
clocksource: use clockevents_config_and_register() where possible
ARM: use clockevents_config_and_register() where possible
clockevents: export clockevents_config_and_register for module use
+ sync to Linux 3.8-rc3
Signed-off-by: Olof Johansson <olof@lixom.net>
Conflicts:
arch/arm/mach-pxa/time.c