IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
There are two cases we need to adjust page size in set_spte:
1): the one is other vcpu creates new sp in the window between mapping_level()
and acquiring mmu-lock.
2): the another case is the new sp is created by itself (page-fault path) when
guest uses the target gfn as its page table.
In current code, set_spte drop the spte and emulate the access for these case,
it works not good:
- for the case 1, it may destroy the mapping established by other vcpu, and
do expensive instruction emulation.
- for the case 2, it may emulate the access even if the guest is accessing
the page which not used as page table. There is a example, 0~2M is used as
huge page in guest, in this huge page, only page 3 used as page table, then
guest read/writes on other pages can cause instruction emulation.
Both of these cases can be fixed by allowing guest to retry the access, it
will refault, then we can establish the mapping by using small page
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Acked-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
VMX behaves now as SVM wrt to FPU initialization. Code has been moved to
generic code path. General-purpose registers are now cleared on reset and
INIT. SVM code properly initializes EDX.
Signed-off-by: Julian Stecklina <jsteckli@os.inf.tu-dresden.de>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Bit24 in VMX_EPT_VPID_CAP_MASI is not used for address-specific invalidation capability
reporting, so remove it from KVM to avoid conflicts in future.
Signed-off-by: Zhang Xiantao <xiantao.zhang@intel.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Bit 6 in EPT vmexit's exit qualification is not defined in SDM, so remove it.
Signed-off-by: Zhang Xiantao <xiantao.zhang@intel.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
CPUID.7.0.EBX[1]=1 indicates IA32_TSC_ADJUST MSR 0x3b is supported
Basic design is to emulate the MSR by allowing reads and writes to a guest
vcpu specific location to store the value of the emulated MSR while adding
the value to the vmcs tsc_offset. In this way the IA32_TSC_ADJUST value will
be included in all reads to the TSC MSR whether through rdmsr or rdtsc. This
is of course as long as the "use TSC counter offsetting" VM-execution control
is enabled as well as the IA32_TSC_ADJUST control.
However, because hardware will only return the TSC + IA32_TSC_ADJUST +
vmsc tsc_offset for a guest process when it does and rdtsc (with the correct
settings) the value of our virtualized IA32_TSC_ADJUST must be stored in one
of these three locations. The argument against storing it in the actual MSR
is performance. This is likely to be seldom used while the save/restore is
required on every transition. IA32_TSC_ADJUST was created as a way to solve
some issues with writing TSC itself so that is not an option either.
The remaining option, defined above as our solution has the problem of
returning incorrect vmcs tsc_offset values (unless we intercept and fix, not
done here) as mentioned above. However, more problematic is that storing the
data in vmcs tsc_offset will have a different semantic effect on the system
than does using the actual MSR. This is illustrated in the following example:
The hypervisor set the IA32_TSC_ADJUST, then the guest sets it and a guest
process performs a rdtsc. In this case the guest process will get
TSC + IA32_TSC_ADJUST_hyperviser + vmsc tsc_offset including
IA32_TSC_ADJUST_guest. While the total system semantics changed the semantics
as seen by the guest do not and hence this will not cause a problem.
Signed-off-by: Will Auld <will.auld@intel.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
In order to track who initiated the call (host or guest) to modify an msr
value I have changed function call parameters along the call path. The
specific change is to add a struct pointer parameter that points to (index,
data, caller) information rather than having this information passed as
individual parameters.
The initial use for this capability is for updating the IA32_TSC_ADJUST msr
while setting the tsc value. It is anticipated that this capability is
useful for other tasks.
Signed-off-by: Will Auld <will.auld@intel.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
vmcs->cpu indicates whether it exists on the target cpu, -1 means the vmcs
does not exist on any vcpu
If vcpu load vmcs with vmcs.cpu = -1, it can be directly added to cpu's percpu
list. The list can be corrupted if the cpu prefetch the vmcs's list before
reading vmcs->cpu. Meanwhile, we should remove vmcs from the list before
making vmcs->vcpu == -1 be visible
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
In loaded_vmcs_clear, loaded_vmcs->cpu is the fist parameter passed to
smp_call_function_single, if the target cpu is downing (doing cpu hot remove),
loaded_vmcs->cpu can become -1 then -1 is passed to smp_call_function_single
It can be triggered when vcpu is being destroyed, loaded_vmcs_clear is called
in the preemptionable context
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
As Frederic pointed idle_cpu() may return false even if async fault
happened in the idle task if wake up is pending. In this case the code
will try to put idle task to sleep. Fix this by using is_idle_task() to
check for idle task.
Reported-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
As requested by Glauber, do not update kvmclock area on vcpu->pcpu
migration, in case the host has stable TSC.
This is to reduce cacheline bouncing.
Acked-by: Glauber Costa <glommer@parallels.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
With master clock, a pvclock clock read calculates:
ret = system_timestamp + [ (rdtsc + tsc_offset) - tsc_timestamp ]
Where 'rdtsc' is the host TSC.
system_timestamp and tsc_timestamp are unique, one tuple
per VM: the "master clock".
Given a host with synchronized TSCs, its obvious that
guest TSC must be matched for the above to guarantee monotonicity.
Allow master clock usage only if guest TSCs are synchronized.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
KVM added a global variable to guarantee monotonicity in the guest.
One of the reasons for that is that the time between
1. ktime_get_ts(×pec);
2. rdtscll(tsc);
Is variable. That is, given a host with stable TSC, suppose that
two VCPUs read the same time via ktime_get_ts() above.
The time required to execute 2. is not the same on those two instances
executing in different VCPUS (cache misses, interrupts...).
If the TSC value that is used by the host to interpolate when
calculating the monotonic time is the same value used to calculate
the tsc_timestamp value stored in the pvclock data structure, and
a single <system_timestamp, tsc_timestamp> tuple is visible to all
vcpus simultaneously, this problem disappears. See comment on top
of pvclock_update_vm_gtod_copy for details.
Monotonicity is then guaranteed by synchronicity of the host TSCs
and guest TSCs.
Set TSC stable pvclock flag in that case, allowing the guest to read
clock from userspace.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Register a notifier for clocksource change event. In case
the host switches to clock other than TSC, disable master
clock usage.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Improve performance of time system calls when using Linux pvclock,
by reading time info from fixmap visible copy of pvclock data.
Originally from Jeremy Fitzhardinge.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Hook into generic pvclock vsyscall code, with the aim to
allow userspace to have visibility into pvclock data.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Originally from Jeremy Fitzhardinge.
Introduce generic, non hypervisor specific, pvclock initialization
routines.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Originally from Jeremy Fitzhardinge.
So code can be reused.
Acked-by: Glauber Costa <glommer@parallels.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Originally from Jeremy Fitzhardinge.
We can copy the information directly from "struct pvclock_vcpu_time_info",
remove pvclock_shadow_time.
Reviewed-by: Glauber Costa <glommer@parallels.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Originally from Jeremy Fitzhardinge.
pvclock_get_time_values, which contains the memory barriers
will be removed by next patch.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
We want to expose the pvclock shared memory areas, which
the hypervisor periodically updates, to userspace.
For a linear mapping from userspace, it is necessary that
entire page sized regions are used for array of pvclock
structures.
There is no such guarantee with per cpu areas, therefore move
to memblock_alloc based allocation.
Acked-by: Glauber Costa <glommer@parallels.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Otherwise its possible for an unrelated KVM_REQ_UPDATE_CLOCK (such as due to CPU
migration) to clear the bit.
Noticed by Paolo Bonzini.
Reviewed-by: Gleb Natapov <gleb@redhat.com>
Reviewed-by: Glauber Costa <glommer@parallels.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
No need to check return value before breaking switch.
Signed-off-by: Guo Chao <yan@linux.vnet.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Return value of this function will be that of ioctl().
#include <stdio.h>
#include <linux/kvm.h>
int main () {
int fd;
fd = open ("/dev/kvm", 0);
fd = ioctl (fd, KVM_CREATE_VM, 0);
ioctl (fd, KVM_SET_TSS_ADDR, 0xfffff000);
perror ("");
return 0;
}
Output is "Operation not permitted". That's not what
we want.
Return -EINVAL in this case.
Signed-off-by: Guo Chao <yan@linux.vnet.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
We should avoid kfree()ing error pointer in kvm_vcpu_ioctl() and
kvm_arch_vcpu_ioctl().
Signed-off-by: Guo Chao <yan@linux.vnet.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This patch filters noslot pfn out from error pfns based on Marcelo comment:
noslot pfn is not a error pfn
After this patch,
- is_noslot_pfn indicates that the gfn is not in slot
- is_error_pfn indicates that the gfn is in slot but the error is occurred
when translate the gfn to pfn
- is_error_noslot_pfn indicates that the pfn either it is error pfns or it
is noslot pfn
And is_invalid_pfn can be removed, it makes the code more clean
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Merge reason: development work has dependency on kvm patches merged
upstream.
Conflicts:
arch/powerpc/include/asm/Kbuild
arch/powerpc/include/asm/kvm_para.h
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Pull x86 fixes from Ingo Molnar:
"This fixes a couple of nasty page table initialization bugs which were
causing kdump regressions. A clean rearchitecturing of the code is in
the works - meanwhile these are reverts that restore the
best-known-working state of the kernel.
There's also EFI fixes and other small fixes."
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, mm: Undo incorrect revert in arch/x86/mm/init.c
x86: efi: Turn off efi_enabled after setup on mixed fw/kernel
x86, mm: Find_early_table_space based on ranges that are actually being mapped
x86, mm: Use memblock memory loop instead of e820_RAM
x86, mm: Trim memory in memblock to be page aligned
x86/irq/ioapic: Check for valid irq_cfg pointer in smp_irq_move_cleanup_interrupt
x86/efi: Fix oops caused by incorrect set_memory_uc() usage
x86-64: Fix page table accounting
Revert "x86/mm: Fix the size calculation of mapping tables"
MAINTAINERS: Add EFI git repository location
Commit
844ab6f9 x86, mm: Find_early_table_space based on ranges that are actually being mapped
added back some lines back wrongly that has been removed in commit
7b16bbf97 Revert "x86/mm: Fix the size calculation of mapping tables"
remove them again.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/CAE9FiQW_vuaYQbmagVnxT2DGsYc=9tNeAbdBq53sYkitPOwxSQ@mail.gmail.com
Acked-by: Jacob Shin <jacob.shin@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
When 32-bit EFI is used with 64-bit kernel (or vice versa), turn off
efi_enabled once setup is done. Beyond setup, it is normally used to
determine if runtime services are available and we will have none.
This will resolve issues stemming from efivars modprobe panicking on a
32/64-bit setup, as well as some reboot issues on similar setups.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=45991
Reported-by: Marko Kohtala <marko.kohtala@gmail.com>
Reported-by: Maxim Kammerer <mk@dee.su>
Signed-off-by: Olof Johansson <olof@lixom.net>
Acked-by: Maarten Lankhorst <maarten.lankhorst@canonical.com>
Cc: stable@kernel.org # 3.4 - 3.6
Cc: Matthew Garrett <mjg@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Current logic finds enough space for direct mapping page tables from 0
to end. Instead, we only need to find enough space to cover mr[0].start
to mr[nr_range].end -- the range that is actually being mapped by
init_memory_mapping()
This is needed after 1bbbbe779a, to address
the panic reported here:
https://lkml.org/lkml/2012/10/20/160https://lkml.org/lkml/2012/10/21/157
Signed-off-by: Jacob Shin <jacob.shin@amd.com>
Link: http://lkml.kernel.org/r/20121024195311.GB11779@jshin-Toonie
Tested-by: Tom Rini <trini@ti.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
We need to handle E820_RAM and E820_RESERVED_KERNEL at the same time.
Also memblock has page aligned range for ram, so we could avoid mapping
partial pages.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/CAE9FiQVZirvaBMFYRfXMmWEcHbKSicQEHz4VAwUv0xFCk51ZNw@mail.gmail.com
Acked-by: Jacob Shin <jacob.shin@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: <stable@vger.kernel.org>
We will not map partial pages, so need to make sure memblock
allocation will not allocate those bytes out.
Also we will use for_each_mem_pfn_range() to loop to map memory
range to keep them consistent.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/CAE9FiQVZirvaBMFYRfXMmWEcHbKSicQEHz4VAwUv0xFCk51ZNw@mail.gmail.com
Acked-by: Jacob Shin <jacob.shin@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: <stable@vger.kernel.org>
Posting this patch to fix an issue concerning sparse irq's that
I raised a while back. There was discussion about adding
refcounting to sparse irqs (to fix other potential race
conditions), but that does not appear to have been addressed
yet. This covers the only issue of this type that I've
encountered in this area.
A NULL pointer dereference can occur in
smp_irq_move_cleanup_interrupt() if we haven't yet setup the
irq_cfg pointer in the irq_desc.irq_data.chip_data.
In create_irq_nr() there is a window where we have set
vector_irq in __assign_irq_vector(), but not yet called
irq_set_chip_data() to set the irq_cfg pointer.
Should an IRQ_MOVE_CLEANUP_VECTOR hit the cpu in question during
this time, smp_irq_move_cleanup_interrupt() will attempt to
process the aforementioned irq, but panic when accessing
irq_cfg.
Only continue processing the irq if irq_cfg is non-NULL.
Signed-off-by: Dimitri Sivanich <sivanich@sgi.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Joerg Roedel <joerg.roedel@amd.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Alexander Gordeev <agordeev@redhat.com>
Link: http://lkml.kernel.org/r/20121016125021.GA22935@sgi.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Calling __pa() with an ioremap'd address is invalid. If we
encounter an efi_memory_desc_t without EFI_MEMORY_WB set in
->attribute we currently call set_memory_uc(), which in turn
calls __pa() on a potentially ioremap'd address.
On CONFIG_X86_32 this results in the following oops:
BUG: unable to handle kernel paging request at f7f22280
IP: [<c10257b9>] reserve_ram_pages_type+0x89/0x210
*pdpt = 0000000001978001 *pde = 0000000001ffb067 *pte = 0000000000000000
Oops: 0000 [#1] PREEMPT SMP
Modules linked in:
Pid: 0, comm: swapper Not tainted 3.0.0-acpi-efi-0805 #3
EIP: 0060:[<c10257b9>] EFLAGS: 00010202 CPU: 0
EIP is at reserve_ram_pages_type+0x89/0x210
EAX: 0070e280 EBX: 38714000 ECX: f7814000 EDX: 00000000
ESI: 00000000 EDI: 38715000 EBP: c189fef0 ESP: c189fea8
DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068
Process swapper (pid: 0, ti=c189e000 task=c18bbe60 task.ti=c189e000)
Stack:
80000200 ff108000 00000000 c189ff00 00038714 00000000 00000000 c189fed0
c104f8ca 00038714 00000000 00038715 00000000 00000000 00038715 00000000
00000010 38715000 c189ff48 c1025aff 38715000 00000000 00000010 00000000
Call Trace:
[<c104f8ca>] ? page_is_ram+0x1a/0x40
[<c1025aff>] reserve_memtype+0xdf/0x2f0
[<c1024dc9>] set_memory_uc+0x49/0xa0
[<c19334d0>] efi_enter_virtual_mode+0x1c2/0x3aa
[<c19216d4>] start_kernel+0x291/0x2f2
[<c19211c7>] ? loglevel+0x1b/0x1b
[<c19210bf>] i386_start_kernel+0xbf/0xc8
The only time we can call set_memory_uc() for a memory region is
when it is part of the direct kernel mapping. For the case where
we ioremap a memory region we must leave it alone.
This patch reimplements the fix from e8c7106280 ("x86, efi:
Calling __pa() with an ioremap()ed address is invalid") which
was reverted in e1ad783b12 because it caused a regression on
some MacBooks (they hung at boot). The regression was caused
because the commit only marked EFI_RUNTIME_SERVICES_DATA as
E820_RESERVED_EFI, when it should have marked all regions that
have the EFI_MEMORY_RUNTIME attribute.
Despite first impressions, it's not possible to use
ioremap_cache() to map all cached memory regions on
CONFIG_X86_64 because of the way that the memory map might be
configured as detailed in the following bug report,
https://bugzilla.redhat.com/show_bug.cgi?id=748516
e.g. some of the EFI memory regions *need* to be mapped as part
of the direct kernel mapping.
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Cc: Matthew Garrett <mjg@redhat.com>
Cc: Zhang Rui <rui.zhang@intel.com>
Cc: Huang Ying <huang.ying.caritas@gmail.com>
Cc: Keith Packard <keithp@keithp.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/1350649546-23541-1-git-send-email-matt@console-pimps.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Although based on the Intel P6 design, the interrupt mechnanism
for KNC more closely resembles the Intel architectural
perfmon one.
We can't just re-use that code though, because KNC has different
MSR numbers for the status and ack registers.
In this case we just cut-and paste from perf_event_intel.c
with some minor changes, as it looks like it would not be
worth the trouble to change that code to be MSR-configurable.
Signed-off-by: Vince Weaver <vincent.weaver@maine.edu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
Cc: eranian@gmail.com
Cc: Meadows Lawrence F <lawrence.f.meadows@intel.com>
Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1210171304410.23243@vincent-weaver-1.um.maine.edu
[ Small stylistic edits. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
x86_pmu.enable() is called from x86_pmu_enable() with
cpuc->enabled set to 0. This means we weren't re-enabling the
counters after a context switch.
This patch just removes the check, as it should't be necessary
(and the equivelent x86_ generic code does not have the checks).
The origin of this problem is the KNC driver being based on the
P6 one. The P6 driver also has this issue, but works anyway
due to various lucky accidents.
Signed-off-by: Vince Weaver <vincent.weaver@maine.edu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
Cc: eranian@gmail.com
Cc: Meadows
Cc: Lawrence F <lawrence.f.meadows@intel.com>
Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1210171303290.23243@vincent-weaver-1.um.maine.edu
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Early versions of Intel KNC chips have a bug where bits above 32
were not properly set. We worked around this by only using the
bottom 32 bits (out of 40 that should be available).
It turns out this workaround breaks overflow handling.
The buggy silicon will in theory never be used in production
systems, so remove this workaround so we get proper overflow
support.
Signed-off-by: Vince Weaver <vincent.weaver@maine.edu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
Cc: eranian@gmail.com
Cc: Meadows Lawrence F <lawrence.f.meadows@intel.com>
Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1210171302140.23243@vincent-weaver-1.um.maine.edu
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This, beyond handling corner cases, also fixes some build warnings:
arch/x86/kernel/cpu/perf_event_intel_uncore.c: In function ‘snbep_uncore_pci_disable_box’:
arch/x86/kernel/cpu/perf_event_intel_uncore.c:124:9: warning: ‘config’ is used uninitialized in this function [-Wuninitialized]
arch/x86/kernel/cpu/perf_event_intel_uncore.c: In function ‘snbep_uncore_pci_enable_box’:
arch/x86/kernel/cpu/perf_event_intel_uncore.c:135:9: warning: ‘config’ is used uninitialized in this function [-Wuninitialized]
arch/x86/kernel/cpu/perf_event_intel_uncore.c: In function ‘snbep_uncore_pci_read_counter’:
arch/x86/kernel/cpu/perf_event_intel_uncore.c:164:2: warning: ‘count’ is used uninitialized in this function [-Wuninitialized]
Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com>
Cc: a.p.zijlstra@chello.nl
Link: http://lkml.kernel.org/r/1351068140-13456-1-git-send-email-zheng.z.yan@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 20167d3421 ("x86-64: Fix
accounting in kernel_physical_mapping_init()") went a little too
far by entirely removing the counting of pre-populated page
tables: this should be done at boot time (to cover the page
tables set up in early boot code), but shouldn't be done during
memory hot add.
Hence, re-add the removed increments of "pages", but make them
and the one in phys_pte_init() conditional upon !after_bootmem.
Reported-Acked-and-Tested-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Cc: <stable@kernel.org>
Link: http://lkml.kernel.org/r/506DAFBA020000780009FA8C@nat28.tlf.novell.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Between 2.6.33 and 2.6.34 the PMU code was made modular.
The x86_pmu_enable() call was extended to disable cpuc->enabled
and iterate the counters, enabling one at a time, before calling
enable_all() at the end, followed by re-enabling cpuc->enabled.
Since cpuc->enabled was set to 0, that change effectively caused
the "val |= ARCH_PERFMON_EVENTSEL_ENABLE;" code in p6_pmu_enable_event()
and p6_pmu_disable_event() to be dead code that was never called.
This change removes this code (which was confusing) and adds some
extra commentary to make it more clear what is going on.
Signed-off-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1210191732000.14552@vincent-weaver-1.um.maine.edu
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch updates the generic events on p6, including some new
extended cache events.
Values for these events were taken from the equivelant PAPI
predefined events.
Tested on a Pentium II.
Signed-off-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1210191730080.14552@vincent-weaver-1.um.maine.edu
Signed-off-by: Ingo Molnar <mingo@kernel.org>
According to Intel SDM Volume 3B, FP_ASSIST is limited to Counter 1 only,
not Counter 0.
Tested on a Pentium II.
Signed-off-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1210191728570.14552@vincent-weaver-1.um.maine.edu
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit:
722bc6b167 x86/mm: Fix the size calculation of mapping tables
Tried to address the issue that the first 2/4M should use 4k pages
if PSE enabled, but extra counts should only be valid for x86_32.
This commit caused a kdump regression: the kdump kernel hangs.
Work is in progress to fundamentally fix the various page table
initialization issues that we have, via the design suggested
by H. Peter Anvin, but it's not ready yet to be merged.
So, to get a working kdump revert to the last known working version,
which is the revert of this commit and of a followup fix (which was
incomplete):
bd2753b2dd x86/mm: Only add extra pages count for the first memory range during pre-allocation
Tested kdump on physical and virtual machines.
Signed-off-by: Dave Young <dyoung@redhat.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Acked-by: Cong Wang <xiyou.wangcong@gmail.com>
Acked-by: Flavio Leitner <fbl@redhat.com>
Tested-by: Flavio Leitner <fbl@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Flavio Leitner <fbl@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: ianfang.cn@gmail.com
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: <stable@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>