72 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Ingo Molnar
|
6d5a763c30 |
Linux 5.4-rc7
-----BEGIN PGP SIGNATURE----- iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAl3IqJQeHHRvcnZhbGRz QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGOiUH+gOEDwid5OODaFAd CggXugdFIlBZefKqGVNW5sjgX8pxFWHXuEMC8iNb6QXtQZdFrI6LFf9hhUDmzQtm 6y1LPxxEiTZjObMEsBNylb7tyzgujFHcAlp0Zro3w/HLCqmYTSP3FF46i2u6KZfL XhkpM4X7R7qxlfpdhlfESv/ElRGocZe6SwXfC7pcPo5flFcmkdu9ijqhNd/6CZ/h Nf9rTsD/wEDVUelFbgVN+LJzlaB0tsyc4Zbof07n8OsFZjhdEOop8gfM/kTBLcyY 6bh66SfDScdsNnC/l8csbPjSZRx+i+nQs67DyhGNnsSAFgHBZdC4Tb/2mDCwhCLR dUvuYZc= =1N6F -----END PGP SIGNATURE----- Merge tag 'v5.4-rc7' into sched/core, to pick up fixes Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Valentin Schneider
|
e284df705c |
sched/topology: Allow sched_asym_cpucapacity to be disabled
While the static key is correctly initialized as being disabled, it will remain forever enabled once turned on. This means that if we start with an asymmetric system and hotplug out enough CPUs to end up with an SMP system, the static key will remain set - which is obviously wrong. We should detect this and turn off things like misfit migration and capacity aware wakeups. As Quentin pointed out, having separate root domains makes this slightly trickier. We could have exclusive cpusets that create an SMP island - IOW, the domains within this root domain will not see any asymmetry. This means we can't just disable the key on domain destruction, we need to count how many asymmetric root domains we have. Consider the following example using Juno r0 which is 2+4 big.LITTLE, where two identical cpusets are created: they both span both big and LITTLE CPUs: asym0 asym1 [ ][ ] L L B L L B $ cgcreate -g cpuset:asym0 $ cgset -r cpuset.cpus=0,1,3 asym0 $ cgset -r cpuset.mems=0 asym0 $ cgset -r cpuset.cpu_exclusive=1 asym0 $ cgcreate -g cpuset:asym1 $ cgset -r cpuset.cpus=2,4,5 asym1 $ cgset -r cpuset.mems=0 asym1 $ cgset -r cpuset.cpu_exclusive=1 asym1 $ cgset -r cpuset.sched_load_balance=0 . (the CPU numbering may look odd because on the Juno LITTLEs are CPUs 0,3-5 and bigs are CPUs 1-2) If we make one of those SMP (IOW remove asymmetry) by e.g. hotplugging its big core, we would end up with an SMP cpuset and an asymmetric cpuset - the static key must remain set, because we still have one asymmetric root domain. With the above example, this could be done with: $ echo 0 > /sys/devices/system/cpu/cpu2/online Which would result in: asym0 asym1 [ ][ ] L L B L L When both SMP and asymmetric cpusets are present, all CPUs will observe sched_asym_cpucapacity being set (it is system-wide), but not all CPUs observe asymmetry in their sched domain hierarchy: per_cpu(sd_asym_cpucapacity, <any CPU in asym0>) == <some SD at DIE level> per_cpu(sd_asym_cpucapacity, <any CPU in asym1>) == NULL Change the simple key enablement to an increment, and decrement the key counter when destroying domains that cover asymmetric CPUs. Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Dietmar.Eggemann@arm.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: hannes@cmpxchg.org Cc: lizefan@huawei.com Cc: morten.rasmussen@arm.com Cc: qperret@google.com Cc: tj@kernel.org Cc: vincent.guittot@linaro.org Fixes: df054e8445a4 ("sched/topology: Add static_key for asymmetric CPU capacity optimizations") Link: https://lkml.kernel.org/r/20191023153745.19515-3-valentin.schneider@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Valentin Schneider
|
cd1cb33505 |
sched/topology: Don't try to build empty sched domains
Turns out hotplugging CPUs that are in exclusive cpusets can lead to the cpuset code feeding empty cpumasks to the sched domain rebuild machinery. This leads to the following splat: Internal error: Oops: 96000004 [#1] PREEMPT SMP Modules linked in: CPU: 0 PID: 235 Comm: kworker/5:2 Not tainted 5.4.0-rc1-00005-g8d495477d62e #23 Hardware name: ARM Juno development board (r0) (DT) Workqueue: events cpuset_hotplug_workfn pstate: 60000005 (nZCv daif -PAN -UAO) pc : build_sched_domains (./include/linux/arch_topology.h:23 kernel/sched/topology.c:1898 kernel/sched/topology.c:1969) lr : build_sched_domains (kernel/sched/topology.c:1966) Call trace: build_sched_domains (./include/linux/arch_topology.h:23 kernel/sched/topology.c:1898 kernel/sched/topology.c:1969) partition_sched_domains_locked (kernel/sched/topology.c:2250) rebuild_sched_domains_locked (./include/linux/bitmap.h:370 ./include/linux/cpumask.h:538 kernel/cgroup/cpuset.c:955 kernel/cgroup/cpuset.c:978 kernel/cgroup/cpuset.c:1019) rebuild_sched_domains (kernel/cgroup/cpuset.c:1032) cpuset_hotplug_workfn (kernel/cgroup/cpuset.c:3205 (discriminator 2)) process_one_work (./arch/arm64/include/asm/jump_label.h:21 ./include/linux/jump_label.h:200 ./include/trace/events/workqueue.h:114 kernel/workqueue.c:2274) worker_thread (./include/linux/compiler.h:199 ./include/linux/list.h:268 kernel/workqueue.c:2416) kthread (kernel/kthread.c:255) ret_from_fork (arch/arm64/kernel/entry.S:1167) Code: f860dae2 912802d6 aa1603e1 12800000 (f8616853) The faulty line in question is: cap = arch_scale_cpu_capacity(cpumask_first(cpu_map)); and we're not checking the return value against nr_cpu_ids (we shouldn't have to!), which leads to the above. Prevent generate_sched_domains() from returning empty cpumasks, and add some assertion in build_sched_domains() to scream bloody murder if it happens again. The above splat was obtained on my Juno r0 with the following reproducer: $ cgcreate -g cpuset:asym $ cgset -r cpuset.cpus=0-3 asym $ cgset -r cpuset.mems=0 asym $ cgset -r cpuset.cpu_exclusive=1 asym $ cgcreate -g cpuset:smp $ cgset -r cpuset.cpus=4-5 smp $ cgset -r cpuset.mems=0 smp $ cgset -r cpuset.cpu_exclusive=1 smp $ cgset -r cpuset.sched_load_balance=0 . $ echo 0 > /sys/devices/system/cpu/cpu4/online $ echo 0 > /sys/devices/system/cpu/cpu5/online Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Dietmar.Eggemann@arm.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: hannes@cmpxchg.org Cc: lizefan@huawei.com Cc: morten.rasmussen@arm.com Cc: qperret@google.com Cc: tj@kernel.org Cc: vincent.guittot@linaro.org Fixes: 05484e098448 ("sched/topology: Add SD_ASYM_CPUCAPACITY flag detection") Link: https://lkml.kernel.org/r/20191023153745.19515-2-valentin.schneider@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Valentin Schneider
|
9ae7ab20b4 |
sched/topology: Don't set SD_BALANCE_WAKE on cpuset domain relax
As pointed out in commit 182a85f8a119 ("sched: Disable wakeup balancing") SD_BALANCE_WAKE is a tad too aggressive, and is usually left unset. However, it turns out cpuset domain relaxation will unconditionally set it on domains below the relaxation level. This made sense back when SD_BALANCE_WAKE was set unconditionally, but it no longer is the case. We can improve things slightly by noticing that set_domain_attribute() is always called after sd_init(), so rather than setting flags we can rely on whatever sd_init() is doing and only clear certain flags when above the relaxation level. While at it, slightly clean up the function and flip the relax level check to be more human readable. Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: mingo@kernel.org Cc: vincent.guittot@linaro.org Cc: juri.lelli@redhat.com Cc: seto.hidetoshi@jp.fujitsu.com Cc: qperret@google.com Cc: Dietmar.Eggemann@arm.com Cc: morten.rasmussen@arm.com Link: https://lkml.kernel.org/r/20191014164408.32596-1-valentin.schneider@arm.com |
||
Matt Fleming
|
a55c7454a8 |
sched/topology: Improve load balancing on AMD EPYC systems
SD_BALANCE_{FORK,EXEC} and SD_WAKE_AFFINE are stripped in sd_init() for any sched domains with a NUMA distance greater than 2 hops (RECLAIM_DISTANCE). The idea being that it's expensive to balance across domains that far apart. However, as is rather unfortunately explained in: commit 32e45ff43eaf ("mm: increase RECLAIM_DISTANCE to 30") the value for RECLAIM_DISTANCE is based on node distance tables from 2011-era hardware. Current AMD EPYC machines have the following NUMA node distances: node distances: node 0 1 2 3 4 5 6 7 0: 10 16 16 16 32 32 32 32 1: 16 10 16 16 32 32 32 32 2: 16 16 10 16 32 32 32 32 3: 16 16 16 10 32 32 32 32 4: 32 32 32 32 10 16 16 16 5: 32 32 32 32 16 10 16 16 6: 32 32 32 32 16 16 10 16 7: 32 32 32 32 16 16 16 10 where 2 hops is 32. The result is that the scheduler fails to load balance properly across NUMA nodes on different sockets -- 2 hops apart. For example, pinning 16 busy threads to NUMA nodes 0 (CPUs 0-7) and 4 (CPUs 32-39) like so, $ numactl -C 0-7,32-39 ./spinner 16 causes all threads to fork and remain on node 0 until the active balancer kicks in after a few seconds and forcibly moves some threads to node 4. Override node_reclaim_distance for AMD Zen. Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Suravee.Suthikulpanit@amd.com Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Thomas.Lendacky@amd.com Cc: Tony Luck <tony.luck@intel.com> Link: https://lkml.kernel.org/r/20190808195301.13222-3-matt@codeblueprint.co.uk Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Mathieu Poirier
|
f9a25f776d |
cpusets: Rebuild root domain deadline accounting information
When the topology of root domains is modified by CPUset or CPUhotplug operations information about the current deadline bandwidth held in the root domain is lost. This patch addresses the issue by recalculating the lost deadline bandwidth information by circling through the deadline tasks held in CPUsets and adding their current load to the root domain they are associated with. Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Juri Lelli <juri.lelli@redhat.com> [ Various additional modifications. ] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: bristot@redhat.com Cc: claudio@evidence.eu.com Cc: lizefan@huawei.com Cc: longman@redhat.com Cc: luca.abeni@santannapisa.it Cc: rostedt@goodmis.org Cc: tj@kernel.org Cc: tommaso.cucinotta@santannapisa.it Link: https://lkml.kernel.org/r/20190719140000.31694-4-juri.lelli@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Mathieu Poirier
|
c22645f4c8 |
sched/topology: Add partition_sched_domains_locked()
Introduce the partition_sched_domains_locked() function by taking the mutex locking code out of the original function. That way the work done by partition_sched_domains_locked() can be reused without dropping the mutex lock. No change of functionality is introduced by this patch. Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Tejun Heo <tj@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: bristot@redhat.com Cc: claudio@evidence.eu.com Cc: lizefan@huawei.com Cc: longman@redhat.com Cc: luca.abeni@santannapisa.it Cc: rostedt@goodmis.org Cc: tommaso.cucinotta@santannapisa.it Link: https://lkml.kernel.org/r/20190719140000.31694-2-juri.lelli@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Wanpeng Li
|
e0e8d4911e |
sched/isolation: Prefer housekeeping CPU in local node
In real product setup, there will be houseeking CPUs in each nodes, it is prefer to do housekeeping from local node, fallback to global online cpumask if failed to find houseeking CPU from local node. Signed-off-by: Wanpeng Li <wanpengli@tencent.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/1561711901-4755-2-git-send-email-wanpengli@tencent.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Vincent Guittot
|
8ec59c0f5f |
sched/topology: Remove unused 'sd' parameter from arch_scale_cpu_capacity()
The 'struct sched_domain *sd' parameter to arch_scale_cpu_capacity() is unused since commit: 765d0af19f5f ("sched/topology: Remove the ::smt_gain field from 'struct sched_domain'") Remove it. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: gregkh@linuxfoundation.org Cc: linux@armlinux.org.uk Cc: quentin.perret@arm.com Cc: rafael@kernel.org Link: https://lkml.kernel.org/r/1560783617-5827-1-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Dietmar Eggemann
|
0e1fef63d9 |
sched/core: Remove sd->*_idx
The sched domain per rq load index files also disappear from the /proc/sys/kernel/sched_domain/cpuX/domainY directories. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Rik van Riel <riel@surriel.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Patrick Bellasi <patrick.bellasi@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20190527062116.11512-6-dietmar.eggemann@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Juri Lelli
|
cb0c04143b |
sched/topology: Update init_sched_domains() comment
Holding hotplug lock is not a requirement anymore for callers of sched_ init_domains after commit: 6acce3ef8452 ("sched: Remove get_online_cpus() usage") Update the relative comment preceding init_sched_domains(). Signed-off-by: Juri Lelli <juri.lelli@redhat.com> Acked-by: Tejun Heo <tj@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: cgroups@vger.kernel.org Cc: lizefan@huawei.com Link: http://lkml.kernel.org/r/20181219133445.31982-2-juri.lelli@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Valentin Schneider
|
67d4f6ff2f |
sched/topology: Skip duplicate group rewrites in build_sched_groups()
While staring at build_sched_domains(), I realized that get_group() does several duplicate (thus useless) writes. If you take the Arm Juno r0 (LITTLEs = [0, 3, 4, 5], bigs = [1, 2]), the sched_group build flow would look like this: ('MC[cpu]->sg' means 'per_cpu_ptr(&tl->data->sg, cpu)' with 'tl == MC') build_sched_groups(MC[CPU0]->sd, CPU0) get_group(0) -> MC[CPU0]->sg get_group(3) -> MC[CPU3]->sg get_group(4) -> MC[CPU4]->sg get_group(5) -> MC[CPU5]->sg build_sched_groups(DIE[CPU0]->sd, CPU0) get_group(0) -> DIE[CPU0]->sg get_group(1) -> DIE[CPU1]->sg <=================+ | build_sched_groups(MC[CPU1]->sd, CPU1) | get_group(1) -> MC[CPU1]->sg | get_group(2) -> MC[CPU2]->sg | | build_sched_groups(DIE[CPU1]->sd, CPU1) ^ get_group(1) -> DIE[CPU1]->sg } We've set up these two up here! get_group(3) -> DIE[CPU0]->sg } From this point on, we will only use sched_groups that have been previously visited & initialized. The only new operation will be which group pointer we affect to sd->groups. On the Juno r0 we get 32 get_group() calls, every single one of them writing to a sched_group->cpumask. However, all of the data structures we need are set up after 8 visits (see above). Return early from get_group() if we've already visited (and thus initialized) the sched_group we're looking at. Overlapping domains are not affected as they do not use build_sched_groups(). Tested on a Juno and a 2 * (Xeon E5-2690) system. ( FWIW I initially checked the refs for both sg && sg->sgc, but figured if they weren't both 0 or > 1 then something must have gone wrong, so I threw in a WARN_ON(). ) No change in functionality intended. Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Valentin Schneider
|
d8743230c9 |
sched/topology: Fix build_sched_groups() comment
The comment was introduced (pre 2.6.12) by: 8a7a2318dc07 ("[PATCH] sched: consolidate sched domains") and referred to sched_group->cpu_power. This was folded into sched_group->sched_group_power in commit 9c3f75cbd144 ("sched: Break out cpu_power from the sched_group structure") The comment was then updated in: ced549fa5fc1 ("sched: Remove remaining dubious usage of "power"") but should have replaced "sg->cpu_capacity" with "sg->sched_group_capacity". Do that now. Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Cc: Dietmar.Eggemann@arm.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: morten.rasmussen@arm.com Cc: qais.yousef@arm.com Link: http://lkml.kernel.org/r/20190409173546.4747-3-valentin.schneider@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Joel Fernandes (Google)
|
994aeb7a93 |
sched_domain: Annotate RCU pointers properly
The scheduler uses RCU API in various places to access sched_domain pointers. These cause sparse errors as below. Many new errors show up because of an annotation check I added to rcu_assign_pointer(). Let us annotate the pointers correctly which also will help sparse catch any potential future bugs. This fixes the following sparse errors: rt.c:1681:9: error: incompatible types in comparison expression deadline.c:1904:9: error: incompatible types in comparison expression core.c:519:9: error: incompatible types in comparison expression core.c:1634:17: error: incompatible types in comparison expression fair.c:6193:14: error: incompatible types in comparison expression fair.c:9883:22: error: incompatible types in comparison expression fair.c:9897:9: error: incompatible types in comparison expression sched.h:1287:9: error: incompatible types in comparison expression topology.c:612:9: error: incompatible types in comparison expression topology.c:615:9: error: incompatible types in comparison expression sched.h:1300:9: error: incompatible types in comparison expression topology.c:618:9: error: incompatible types in comparison expression sched.h:1287:9: error: incompatible types in comparison expression topology.c:621:9: error: incompatible types in comparison expression sched.h:1300:9: error: incompatible types in comparison expression topology.c:624:9: error: incompatible types in comparison expression topology.c:671:9: error: incompatible types in comparison expression stats.c:45:17: error: incompatible types in comparison expression fair.c:5998:15: error: incompatible types in comparison expression fair.c:5989:15: error: incompatible types in comparison expression fair.c:5998:15: error: incompatible types in comparison expression fair.c:5989:15: error: incompatible types in comparison expression fair.c:6120:19: error: incompatible types in comparison expression fair.c:6506:14: error: incompatible types in comparison expression fair.c:6515:14: error: incompatible types in comparison expression fair.c:6623:9: error: incompatible types in comparison expression fair.c:5970:17: error: incompatible types in comparison expression fair.c:8642:21: error: incompatible types in comparison expression fair.c:9253:9: error: incompatible types in comparison expression fair.c:9331:9: error: incompatible types in comparison expression fair.c:9519:15: error: incompatible types in comparison expression fair.c:9533:14: error: incompatible types in comparison expression fair.c:9542:14: error: incompatible types in comparison expression fair.c:9567:14: error: incompatible types in comparison expression fair.c:9597:14: error: incompatible types in comparison expression fair.c:9421:16: error: incompatible types in comparison expression fair.c:9421:16: error: incompatible types in comparison expression Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> [ From an RCU perspective. ] Reviewed-by: Paul E. McKenney <paulmck@linux.ibm.com> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luc Van Oostenryck <luc.vanoostenryck@gmail.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: keescook@chromium.org Cc: kernel-hardening@lists.openwall.com Cc: kernel-team@android.com Link: https://lkml.kernel.org/r/20190321003426.160260-3-joel@joelfernandes.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Linus Torvalds
|
45802da05e |
Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar: "The main changes in this cycle were: - refcount conversions - Solve the rq->leaf_cfs_rq_list can of worms for real. - improve power-aware scheduling - add sysctl knob for Energy Aware Scheduling - documentation updates - misc other changes" * 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (34 commits) kthread: Do not use TIMER_IRQSAFE kthread: Convert worker lock to raw spinlock sched/fair: Use non-atomic cpumask_{set,clear}_cpu() sched/fair: Remove unused 'sd' parameter from select_idle_smt() sched/wait: Use freezable_schedule() when possible sched/fair: Prune, fix and simplify the nohz_balancer_kick() comment block sched/fair: Explain LLC nohz kick condition sched/fair: Simplify nohz_balancer_kick() sched/topology: Fix percpu data types in struct sd_data & struct s_data sched/fair: Simplify post_init_entity_util_avg() by calling it with a task_struct pointer argument sched/fair: Fix O(nr_cgroups) in the load balancing path sched/fair: Optimize update_blocked_averages() sched/fair: Fix insertion in rq->leaf_cfs_rq_list sched/fair: Add tmp_alone_branch assertion sched/core: Use READ_ONCE()/WRITE_ONCE() in move_queued_task()/task_rq_lock() sched/debug: Initialize sd_sysctl_cpus if !CONFIG_CPUMASK_OFFSTACK sched/pelt: Skip updating util_est when utilization is higher than CPU's capacity sched/fair: Update scale invariance of PELT sched/fair: Move the rq_of() helper function sched/core: Convert task_struct.stack_refcount to refcount_t ... |
||
Luc Van Oostenryck
|
99687cdbb3 |
sched/topology: Fix percpu data types in struct sd_data & struct s_data
The percpu members of struct sd_data and s_data are declared as: struct ... ** __percpu member; So their type is: __percpu pointer to pointer to struct ... But looking at how they're used, their type should be: pointer to __percpu pointer to struct ... and they should thus be declared as: struct ... * __percpu *member; So fix the placement of '__percpu' in the definition of these structures. This addresses a bunch of Sparse's warnings like: warning: incorrect type in initializer (different address spaces) expected void const [noderef] <asn:3> *__vpp_verify got struct sched_domain ** Signed-off-by: Luc Van Oostenryck <luc.vanoostenryck@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190118144936.79158-1-luc.vanoostenryck@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Peter Zijlstra
|
f8a696f25b |
sched/core: Give DCE a fighting chance
All that fancy new Energy-Aware scheduling foo is hidden behind a static_key, which is awesome if you have the stuff enabled in your config. However, when you lack all the prerequisites it doesn't make any sense to pretend we'll ever actually run this, so provide a little more clue to the compiler so it can more agressively delete the code. text data bss dec hex filename 50297 976 96 51369 c8a9 defconfig-build/kernel/sched/fair.o 49227 944 96 50267 c45b defconfig-build/kernel/sched/fair.o Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Quentin Perret
|
8d5d0cfb63 |
sched/topology: Introduce a sysctl for Energy Aware Scheduling
In its current state, Energy Aware Scheduling (EAS) starts automatically on asymmetric platforms having an Energy Model (EM). However, there are users who want to have an EM (for thermal management for example), but don't want EAS with it. In order to let users disable EAS explicitly, introduce a new sysctl called 'sched_energy_aware'. It is enabled by default so that EAS can start automatically on platforms where it makes sense. Flipping it to 0 rebuilds the scheduling domains and disables EAS. Signed-off-by: Quentin Perret <quentin.perret@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: adharmap@codeaurora.org Cc: chris.redpath@arm.com Cc: currojerez@riseup.net Cc: dietmar.eggemann@arm.com Cc: edubezval@gmail.com Cc: gregkh@linuxfoundation.org Cc: javi.merino@kernel.org Cc: joel@joelfernandes.org Cc: juri.lelli@redhat.com Cc: morten.rasmussen@arm.com Cc: patrick.bellasi@arm.com Cc: pkondeti@codeaurora.org Cc: rjw@rjwysocki.net Cc: skannan@codeaurora.org Cc: smuckle@google.com Cc: srinivas.pandruvada@linux.intel.com Cc: thara.gopinath@linaro.org Cc: tkjos@google.com Cc: valentin.schneider@arm.com Cc: vincent.guittot@linaro.org Cc: viresh.kumar@linaro.org Link: https://lkml.kernel.org/r/20181203095628.11858-11-quentin.perret@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Paul E. McKenney
|
337e9b07db |
sched: Replace call_rcu_sched() with call_rcu()
Now that call_rcu()'s callback is not invoked until after all preempt-disable regions of code have completed (in addition to explicitly marked RCU read-side critical sections), call_rcu() can be used in place of call_rcu_sched(). This commit therefore makes that change. While in the area, this commit also updates an outdated header comment for for_each_domain(). Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> |
||
Quentin Perret
|
1f74de8798 |
sched/toplogy: Introduce the 'sched_energy_present' static key
In order to make sure Energy Aware Scheduling (EAS) will not impact systems where no Energy Model is available, introduce a static key guarding the access to EAS code. Since EAS is enabled on a per-root-domain basis, the static key is enabled when at least one root domain meets all conditions for EAS. Signed-off-by: Quentin Perret <quentin.perret@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: adharmap@codeaurora.org Cc: chris.redpath@arm.com Cc: currojerez@riseup.net Cc: dietmar.eggemann@arm.com Cc: edubezval@gmail.com Cc: gregkh@linuxfoundation.org Cc: javi.merino@kernel.org Cc: joel@joelfernandes.org Cc: juri.lelli@redhat.com Cc: morten.rasmussen@arm.com Cc: patrick.bellasi@arm.com Cc: pkondeti@codeaurora.org Cc: rjw@rjwysocki.net Cc: skannan@codeaurora.org Cc: smuckle@google.com Cc: srinivas.pandruvada@linux.intel.com Cc: thara.gopinath@linaro.org Cc: tkjos@google.com Cc: valentin.schneider@arm.com Cc: vincent.guittot@linaro.org Cc: viresh.kumar@linaro.org Link: https://lkml.kernel.org/r/20181203095628.11858-10-quentin.perret@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Quentin Perret
|
531b5c9f5c |
sched/topology: Make Energy Aware Scheduling depend on schedutil
Energy Aware Scheduling (EAS) is designed with the assumption that frequencies of CPUs follow their utilization value. When using a CPUFreq governor other than schedutil, the chances of this assumption being true are small, if any. When schedutil is being used, EAS' predictions are at least consistent with the frequency requests. Although those requests have no guarantees to be honored by the hardware, they should at least guide DVFS in the right direction and provide some hope in regards to the EAS model being accurate. To make sure EAS is only used in a sane configuration, create a strong dependency on schedutil being used. Since having sugov compiled-in does not provide that guarantee, make CPUFreq call a scheduler function on governor changes hence letting it rebuild the scheduling domains, check the governors of the online CPUs, and enable/disable EAS accordingly. Signed-off-by: Quentin Perret <quentin.perret@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rafael J. Wysocki <rjw@rjwysocki.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: adharmap@codeaurora.org Cc: chris.redpath@arm.com Cc: currojerez@riseup.net Cc: dietmar.eggemann@arm.com Cc: edubezval@gmail.com Cc: gregkh@linuxfoundation.org Cc: javi.merino@kernel.org Cc: joel@joelfernandes.org Cc: juri.lelli@redhat.com Cc: morten.rasmussen@arm.com Cc: patrick.bellasi@arm.com Cc: pkondeti@codeaurora.org Cc: skannan@codeaurora.org Cc: smuckle@google.com Cc: srinivas.pandruvada@linux.intel.com Cc: thara.gopinath@linaro.org Cc: tkjos@google.com Cc: valentin.schneider@arm.com Cc: vincent.guittot@linaro.org Cc: viresh.kumar@linaro.org Link: https://lkml.kernel.org/r/20181203095628.11858-9-quentin.perret@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Quentin Perret
|
b68a4c0dba |
sched/topology: Disable EAS on inappropriate platforms
Energy Aware Scheduling (EAS) in its current form is most relevant on platforms with asymmetric CPU topologies (e.g. Arm big.LITTLE) since this is where there is a lot of potential for saving energy through scheduling. This is particularly true since the Energy Model only includes the active power costs of CPUs, hence not providing enough data to compare packing-vs-spreading strategies. As such, disable EAS on root domains where the SD_ASYM_CPUCAPACITY flag is not set. While at it, disable EAS on systems where the complexity of the Energy Model is too high since that could lead to unacceptable scheduling overhead. All in all, EAS can be used on a root domain if and only if: 1. an Energy Model is available; 2. the root domain has an asymmetric CPU capacity topology; 3. the complexity of the root domain's EM is low enough to keep scheduling overheads low. Signed-off-by: Quentin Perret <quentin.perret@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: adharmap@codeaurora.org Cc: chris.redpath@arm.com Cc: currojerez@riseup.net Cc: dietmar.eggemann@arm.com Cc: edubezval@gmail.com Cc: gregkh@linuxfoundation.org Cc: javi.merino@kernel.org Cc: joel@joelfernandes.org Cc: juri.lelli@redhat.com Cc: morten.rasmussen@arm.com Cc: patrick.bellasi@arm.com Cc: pkondeti@codeaurora.org Cc: rjw@rjwysocki.net Cc: skannan@codeaurora.org Cc: smuckle@google.com Cc: srinivas.pandruvada@linux.intel.com Cc: thara.gopinath@linaro.org Cc: tkjos@google.com Cc: valentin.schneider@arm.com Cc: vincent.guittot@linaro.org Cc: viresh.kumar@linaro.org Link: https://lkml.kernel.org/r/20181203095628.11858-8-quentin.perret@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Quentin Perret
|
011b27bb5d |
sched/topology: Add lowest CPU asymmetry sched_domain level pointer
Add another member to the family of per-cpu sched_domain shortcut pointers. This one, sd_asym_cpucapacity, points to the lowest level at which the SD_ASYM_CPUCAPACITY flag is set. While at it, rename the sd_asym shortcut to sd_asym_packing to avoid confusions. Generally speaking, the largest opportunity to save energy via scheduling comes from a smarter exploitation of heterogeneous platforms (i.e. big.LITTLE). Consequently, the sd_asym_cpucapacity shortcut will be used at first as the lowest domain where Energy-Aware Scheduling (EAS) should be applied. For example, it is possible to apply EAS within a socket on a multi-socket system, as long as each socket has an asymmetric topology. Energy-aware cross-sockets wake-up balancing will only happen when the system is over-utilized, or this_cpu and prev_cpu are in different sockets. Suggested-by: Morten Rasmussen <morten.rasmussen@arm.com> Signed-off-by: Quentin Perret <quentin.perret@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: adharmap@codeaurora.org Cc: chris.redpath@arm.com Cc: currojerez@riseup.net Cc: dietmar.eggemann@arm.com Cc: edubezval@gmail.com Cc: gregkh@linuxfoundation.org Cc: javi.merino@kernel.org Cc: joel@joelfernandes.org Cc: juri.lelli@redhat.com Cc: patrick.bellasi@arm.com Cc: pkondeti@codeaurora.org Cc: rjw@rjwysocki.net Cc: skannan@codeaurora.org Cc: smuckle@google.com Cc: srinivas.pandruvada@linux.intel.com Cc: thara.gopinath@linaro.org Cc: tkjos@google.com Cc: valentin.schneider@arm.com Cc: vincent.guittot@linaro.org Cc: viresh.kumar@linaro.org Link: https://lkml.kernel.org/r/20181203095628.11858-7-quentin.perret@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Quentin Perret
|
6aa140fa45 |
sched/topology: Reference the Energy Model of CPUs when available
The existing scheduling domain hierarchy is defined to map to the cache topology of the system. However, Energy Aware Scheduling (EAS) requires more knowledge about the platform, and specifically needs to know about the span of Performance Domains (PD), which do not always align with caches. To address this issue, use the Energy Model (EM) of the system to extend the scheduler topology code with a representation of the PDs, alongside the scheduling domains. More specifically, a linked list of PDs is attached to each root domain. When multiple root domains are in use, each list contains only the PDs covering the CPUs of its root domain. If a PD spans over CPUs of multiple different root domains, it will be duplicated in all lists. The lists are fully maintained by the scheduler from partition_sched_domains() in order to cope with hotplug and cpuset changes. As for scheduling domains, the list are protected by RCU to ensure safe concurrent updates. Signed-off-by: Quentin Perret <quentin.perret@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: adharmap@codeaurora.org Cc: chris.redpath@arm.com Cc: currojerez@riseup.net Cc: dietmar.eggemann@arm.com Cc: edubezval@gmail.com Cc: gregkh@linuxfoundation.org Cc: javi.merino@kernel.org Cc: joel@joelfernandes.org Cc: juri.lelli@redhat.com Cc: morten.rasmussen@arm.com Cc: patrick.bellasi@arm.com Cc: pkondeti@codeaurora.org Cc: rjw@rjwysocki.net Cc: skannan@codeaurora.org Cc: smuckle@google.com Cc: srinivas.pandruvada@linux.intel.com Cc: thara.gopinath@linaro.org Cc: tkjos@google.com Cc: valentin.schneider@arm.com Cc: vincent.guittot@linaro.org Cc: viresh.kumar@linaro.org Link: https://lkml.kernel.org/r/20181203095628.11858-6-quentin.perret@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Vincent Guittot
|
765d0af19f |
sched/topology: Remove the ::smt_gain field from 'struct sched_domain'
::smt_gain is used to compute the capacity of CPUs of a SMT core with the constraint 1 < ::smt_gain < 2 in order to be able to compute number of CPUs per core. The field has_free_capacity of struct numa_stat, which was the last user of this computation of number of CPUs per core, has been removed by: 2d4056fafa19 ("sched/numa: Remove numa_has_capacity()") We can now remove this constraint on core capacity and use the defautl value SCHED_CAPACITY_SCALE for SMT CPUs. With this remove, SCHED_CAPACITY_SCALE becomes the maximum compute capacity of CPUs on every systems. This should help to simplify some code and remove fields like rd->max_cpu_capacity Furthermore, arch_scale_cpu_capacity() is used with a NULL sd in several other places in the code when it wants the capacity of a CPUs to scale some metrics like in pelt, deadline or schedutil. In case on SMT, the value returned is not the capacity of SMT CPUs but default SCHED_CAPACITY_SCALE. So remove it. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1535548752-4434-4-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Peter Zijlstra
|
993f0b0510 |
sched/topology: Fix off by one bug
With the addition of the NUMA identity level, we increased @level by one and will run off the end of the array in the distance sort loop. Fixed: 051f3ca02e46 ("sched/topology: Introduce NUMA identity node sched domain") Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
zhong jiang
|
ace8031099 |
sched/topology: Make local variables static
Fix the following warnings: kernel/sched/topology.c:10:15: warning: symbol 'sched_domains_tmpmask' was not declared. Should it be static? kernel/sched/topology.c:11:15: warning: symbol 'sched_domains_tmpmask2' was not declared. Should it be static? Signed-off-by: zhong jiang <zhongjiang@huawei.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1533299852-26941-1-git-send-email-zhongjiang@huawei.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Morten Rasmussen
|
9c63e84db2 |
sched/core: Disable SD_PREFER_SIBLING on asymmetric CPU capacity domains
The 'prefer sibling' sched_domain flag is intended to encourage spreading tasks to sibling sched_domain to take advantage of more caches and core for SMT systems. It has recently been changed to be on all non-NUMA topology level. However, spreading across domains with CPU capacity asymmetry isn't desirable, e.g. spreading from high capacity to low capacity CPUs even if high capacity CPUs aren't overutilized might give access to more cache but the CPU will be slower and possibly lead to worse overall throughput. To prevent this, we need to remove SD_PREFER_SIBLING on the sched_domain level immediately below SD_ASYM_CPUCAPACITY. Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dietmar.eggemann@arm.com Cc: gaku.inami.xh@renesas.com Cc: valentin.schneider@arm.com Cc: vincent.guittot@linaro.org Link: http://lkml.kernel.org/r/1530699470-29808-13-git-send-email-morten.rasmussen@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Morten Rasmussen
|
e3d6d0cb66 |
sched/fair: Add sched_group per-CPU max capacity
The current sg->min_capacity tracks the lowest per-CPU compute capacity available in the sched_group when rt/irq pressure is taken into account. Minimum capacity isn't the ideal metric for tracking if a sched_group needs offloading to another sched_group for some scenarios, e.g. a sched_group with multiple CPUs if only one is under heavy pressure. Tracking maximum capacity isn't perfect either but a better choice for some situations as it indicates that the sched_group definitely compute capacity constrained either due to rt/irq pressure on all CPUs or asymmetric CPU capacities (e.g. big.LITTLE). Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dietmar.eggemann@arm.com Cc: gaku.inami.xh@renesas.com Cc: valentin.schneider@arm.com Cc: vincent.guittot@linaro.org Link: http://lkml.kernel.org/r/1530699470-29808-4-git-send-email-morten.rasmussen@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Morten Rasmussen
|
df054e8445 |
sched/topology: Add static_key for asymmetric CPU capacity optimizations
The existing asymmetric CPU capacity code should cause minimal overhead for others. Putting it behind a static_key, it has been done for SMT optimizations, would make it easier to extend and improve without causing harm to others moving forward. Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dietmar.eggemann@arm.com Cc: gaku.inami.xh@renesas.com Cc: valentin.schneider@arm.com Cc: vincent.guittot@linaro.org Link: http://lkml.kernel.org/r/1530699470-29808-2-git-send-email-morten.rasmussen@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Morten Rasmussen
|
05484e0984 |
sched/topology: Add SD_ASYM_CPUCAPACITY flag detection
The SD_ASYM_CPUCAPACITY sched_domain flag is supposed to mark the sched_domain in the hierarchy where all CPU capacities are visible for any CPU's point of view on asymmetric CPU capacity systems. The scheduler can then take to take capacity asymmetry into account when balancing at this level. It also serves as an indicator for how wide task placement heuristics have to search to consider all available CPU capacities as asymmetric systems might often appear symmetric at smallest level(s) of the sched_domain hierarchy. The flag has been around for while but so far only been set by out-of-tree code in Android kernels. One solution is to let each architecture provide the flag through a custom sched_domain topology array and associated mask and flag functions. However, SD_ASYM_CPUCAPACITY is special in the sense that it depends on the capacity and presence of all CPUs in the system, i.e. when hotplugging all CPUs out except those with one particular CPU capacity the flag should disappear even if the sched_domains don't collapse. Similarly, the flag is affected by cpusets where load-balancing is turned off. Detecting when the flags should be set therefore depends not only on topology information but also the cpuset configuration and hotplug state. The arch code doesn't have easy access to the cpuset configuration. Instead, this patch implements the flag detection in generic code where cpusets and hotplug state is already taken care of. All the arch is responsible for is to implement arch_scale_cpu_capacity() and force a full rebuild of the sched_domain hierarchy if capacities are updated, e.g. later in the boot process when cpufreq has initialized. Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dietmar.eggemann@arm.com Cc: valentin.schneider@arm.com Cc: vincent.guittot@linaro.org Link: http://lkml.kernel.org/r/1532093554-30504-2-git-send-email-morten.rasmussen@arm.com [ Fixed 'CPU' capitalization. ] Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Srikar Dronamraju
|
e5e96fafd9 |
sched/topology: Set correct NUMA topology type
With the following commit: 051f3ca02e46 ("sched/topology: Introduce NUMA identity node sched domain") the scheduler introduced a new NUMA level. However this leads to the NUMA topology on 2 node systems to not be marked as NUMA_DIRECT anymore. After this commit, it gets reported as NUMA_BACKPLANE, because sched_domains_numa_level is now 2 on 2 node systems. Fix this by allowing setting systems that have up to 2 NUMA levels as NUMA_DIRECT. While here remove code that assumes that level can be 0. Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andre Wild <wild@linux.vnet.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linuxppc-dev <linuxppc-dev@lists.ozlabs.org> Fixes: 051f3ca02e46 "Introduce NUMA identity node sched domain" Link: http://lkml.kernel.org/r/1533920419-17410-1-git-send-email-srikar@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Yi Wang
|
6cd0c583b0 |
sched/topology: Check variable group before dereferencing it
The 'group' variable in sched_domain_debug_one() is not checked when firstly used in cpumask_test_cpu(cpu, sched_group_span(group)), but it might be NULL (it is checked later in the following while loop) and may cause NULL pointer dereference. We need to check it before using to avoid NULL dereference. Signed-off-by: Yi Wang <wang.yi59@zte.com.cn> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Jiang Biao <jiang.biao2@zte.com.cn> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: zhong.weidong@zte.com.cn Link: http://lkml.kernel.org/r/1532319547-33335-1-git-send-email-wang.yi59@zte.com.cn Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Kees Cook
|
6da2ec5605 |
treewide: kmalloc() -> kmalloc_array()
The kmalloc() function has a 2-factor argument form, kmalloc_array(). This patch replaces cases of: kmalloc(a * b, gfp) with: kmalloc_array(a * b, gfp) as well as handling cases of: kmalloc(a * b * c, gfp) with: kmalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kmalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kmalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The tools/ directory was manually excluded, since it has its own implementation of kmalloc(). The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(char) * COUNT + COUNT , ...) | kmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kmalloc + kmalloc_array ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kmalloc(C1 * C2 * C3, ...) | kmalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kmalloc(sizeof(THING) * C2, ...) | kmalloc(sizeof(TYPE) * C2, ...) | kmalloc(C1 * C2 * C3, ...) | kmalloc(C1 * C2, ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - (E1) * E2 + E1, E2 , ...) | - kmalloc + kmalloc_array ( - (E1) * (E2) + E1, E2 , ...) | - kmalloc + kmalloc_array ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org> |
||
Juri Lelli
|
bf5015a50f |
sched/topology: Clarify root domain(s) debug string
When scheduler debug is enabled, building scheduling domains outputs information about how the domains are laid out and to which root domain each CPU (or sets of CPUs) belongs, e.g.: CPU0 attaching sched-domain(s): domain-0: span=0-5 level=MC groups: 0:{ span=0 }, 1:{ span=1 }, 2:{ span=2 }, 3:{ span=3 }, 4:{ span=4 }, 5:{ span=5 } CPU1 attaching sched-domain(s): domain-0: span=0-5 level=MC groups: 1:{ span=1 }, 2:{ span=2 }, 3:{ span=3 }, 4:{ span=4 }, 5:{ span=5 }, 0:{ span=0 } [...] span: 0-5 (max cpu_capacity = 1024) The fact that latest line refers to CPUs 0-5 root domain doesn't however look immediately obvious to me: one might wonder why span 0-5 is reported "again". Make it more clear by adding "root domain" to it, as to end with the following: CPU0 attaching sched-domain(s): domain-0: span=0-5 level=MC groups: 0:{ span=0 }, 1:{ span=1 }, 2:{ span=2 }, 3:{ span=3 }, 4:{ span=4 }, 5:{ span=5 } CPU1 attaching sched-domain(s): domain-0: span=0-5 level=MC groups: 1:{ span=1 }, 2:{ span=2 }, 3:{ span=3 }, 4:{ span=4 }, 5:{ span=5 }, 0:{ span=0 } [...] root domain span: 0-5 (max cpu_capacity = 1024) Signed-off-by: Juri Lelli <juri.lelli@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Patrick Bellasi <patrick.bellasi@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180524152936.17611-1-juri.lelli@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Ingo Molnar
|
325ea10c08 |
sched/headers: Simplify and clean up header usage in the scheduler
Do the following cleanups and simplifications: - sched/sched.h already includes <asm/paravirt.h>, so no need to include it in sched/core.c again. - order the <linux/sched/*.h> headers alphabetically - add all <linux/sched/*.h> headers to kernel/sched/sched.h - remove all unnecessary includes from the .c files that are already included in kernel/sched/sched.h. Finally, make all scheduler .c files use a single common header: #include "sched.h" ... which now contains a union of the relied upon headers. This makes the various .c files easier to read and easier to handle. Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Ingo Molnar
|
97fb7a0a89 |
sched: Clean up and harmonize the coding style of the scheduler code base
A good number of small style inconsistencies have accumulated in the scheduler core, so do a pass over them to harmonize all these details: - fix speling in comments, - use curly braces for multi-line statements, - remove unnecessary parentheses from integer literals, - capitalize consistently, - remove stray newlines, - add comments where necessary, - remove invalid/unnecessary comments, - align structure definitions and other data types vertically, - add missing newlines for increased readability, - fix vertical tabulation where it's misaligned, - harmonize preprocessor conditional block labeling and vertical alignment, - remove line-breaks where they uglify the code, - add newline after local variable definitions, No change in functionality: md5: 1191fa0a890cfa8132156d2959d7e9e2 built-in.o.before.asm 1191fa0a890cfa8132156d2959d7e9e2 built-in.o.after.asm Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Steven Rostedt (VMware)
|
364f566537 |
sched/rt: Up the root domain ref count when passing it around via IPIs
When issuing an IPI RT push, where an IPI is sent to each CPU that has more than one RT task scheduled on it, it references the root domain's rto_mask, that contains all the CPUs within the root domain that has more than one RT task in the runable state. The problem is, after the IPIs are initiated, the rq->lock is released. This means that the root domain that is associated to the run queue could be freed while the IPIs are going around. Add a sched_get_rd() and a sched_put_rd() that will increment and decrement the root domain's ref count respectively. This way when initiating the IPIs, the scheduler will up the root domain's ref count before releasing the rq->lock, ensuring that the root domain does not go away until the IPI round is complete. Reported-by: Pavan Kondeti <pkondeti@codeaurora.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 4bdced5c9a292 ("sched/rt: Simplify the IPI based RT balancing logic") Link: http://lkml.kernel.org/r/CAEU1=PkiHO35Dzna8EQqNSKW1fr1y1zRQ5y66X117MG06sQtNA@mail.gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Ingo Molnar
|
8a103df440 |
Merge branch 'linus' into sched/core, to pick up fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Greg Kroah-Hartman
|
b24413180f |
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Frederic Weisbecker
|
edb9382175 |
sched/isolation: Move isolcpus= handling to the housekeeping code
We want to centralize the isolation features, to be done by the housekeeping subsystem and scheduler domain isolation is a significant part of it. No intended behaviour change, we just reuse the housekeeping cpumask and core code. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Christoph Lameter <cl@linux.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Wanpeng Li <kernellwp@gmail.com> Link: http://lkml.kernel.org/r/1509072159-31808-11-git-send-email-frederic@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Rakib Mullick
|
e22cdc3fc5 |
sched/isolcpus: Fix "isolcpus=" boot parameter handling when !CONFIG_CPUMASK_OFFSTACK
cpulist_parse() uses nr_cpumask_bits as a limit to parse the passed buffer from kernel commandline. What nr_cpumask_bits represents varies depending upon the CONFIG_CPUMASK_OFFSTACK option: - If CONFIG_CPUMASK_OFFSTACK=n, then nr_cpumask_bits is the same as NR_CPUS, which might not represent the # of CPUs that really exist (default 64). So, there's a chance of a gap between nr_cpu_ids and NR_CPUS, which ultimately lead towards invalid cpulist_parse() operation. For example, if isolcpus=9 is passed on an 8 cpu system (CONFIG_CPUMASK_OFFSTACK=n) it doesn't show the error that it's supposed to. This patch fixes this bug by finding the last CPU of the passed isolcpus= list and checking it against nr_cpu_ids. It also fixes the error message where the nr_cpu_ids should be nr_cpu_ids-1, since CPU numbering starts from 0. Signed-off-by: Rakib Mullick <rakib.mullick@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: adobriyan@gmail.com Cc: akpm@linux-foundation.org Cc: longman@redhat.com Cc: mka@chromium.org Cc: tj@kernel.org Link: http://lkml.kernel.org/r/20171023130154.9050-1-rakib.mullick@gmail.com [ Enhanced the changelog and the kernel message. ] Signed-off-by: Ingo Molnar <mingo@kernel.org> include/linux/cpumask.h | 16 ++++++++++++++++ kernel/sched/topology.c | 4 ++-- 2 files changed, 18 insertions(+), 2 deletions(-) |
||
Steven Rostedt (Red Hat)
|
4bdced5c9a |
sched/rt: Simplify the IPI based RT balancing logic
When a CPU lowers its priority (schedules out a high priority task for a lower priority one), a check is made to see if any other CPU has overloaded RT tasks (more than one). It checks the rto_mask to determine this and if so it will request to pull one of those tasks to itself if the non running RT task is of higher priority than the new priority of the next task to run on the current CPU. When we deal with large number of CPUs, the original pull logic suffered from large lock contention on a single CPU run queue, which caused a huge latency across all CPUs. This was caused by only having one CPU having overloaded RT tasks and a bunch of other CPUs lowering their priority. To solve this issue, commit: b6366f048e0c ("sched/rt: Use IPI to trigger RT task push migration instead of pulling") changed the way to request a pull. Instead of grabbing the lock of the overloaded CPU's runqueue, it simply sent an IPI to that CPU to do the work. Although the IPI logic worked very well in removing the large latency build up, it still could suffer from a large number of IPIs being sent to a single CPU. On a 80 CPU box, I measured over 200us of processing IPIs. Worse yet, when I tested this on a 120 CPU box, with a stress test that had lots of RT tasks scheduling on all CPUs, it actually triggered the hard lockup detector! One CPU had so many IPIs sent to it, and due to the restart mechanism that is triggered when the source run queue has a priority status change, the CPU spent minutes! processing the IPIs. Thinking about this further, I realized there's no reason for each run queue to send its own IPI. As all CPUs with overloaded tasks must be scanned regardless if there's one or many CPUs lowering their priority, because there's no current way to find the CPU with the highest priority task that can schedule to one of these CPUs, there really only needs to be one IPI being sent around at a time. This greatly simplifies the code! The new approach is to have each root domain have its own irq work, as the rto_mask is per root domain. The root domain has the following fields attached to it: rto_push_work - the irq work to process each CPU set in rto_mask rto_lock - the lock to protect some of the other rto fields rto_loop_start - an atomic that keeps contention down on rto_lock the first CPU scheduling in a lower priority task is the one to kick off the process. rto_loop_next - an atomic that gets incremented for each CPU that schedules in a lower priority task. rto_loop - a variable protected by rto_lock that is used to compare against rto_loop_next rto_cpu - The cpu to send the next IPI to, also protected by the rto_lock. When a CPU schedules in a lower priority task and wants to make sure overloaded CPUs know about it. It increments the rto_loop_next. Then it atomically sets rto_loop_start with a cmpxchg. If the old value is not "0", then it is done, as another CPU is kicking off the IPI loop. If the old value is "0", then it will take the rto_lock to synchronize with a possible IPI being sent around to the overloaded CPUs. If rto_cpu is greater than or equal to nr_cpu_ids, then there's either no IPI being sent around, or one is about to finish. Then rto_cpu is set to the first CPU in rto_mask and an IPI is sent to that CPU. If there's no CPUs set in rto_mask, then there's nothing to be done. When the CPU receives the IPI, it will first try to push any RT tasks that is queued on the CPU but can't run because a higher priority RT task is currently running on that CPU. Then it takes the rto_lock and looks for the next CPU in the rto_mask. If it finds one, it simply sends an IPI to that CPU and the process continues. If there's no more CPUs in the rto_mask, then rto_loop is compared with rto_loop_next. If they match, everything is done and the process is over. If they do not match, then a CPU scheduled in a lower priority task as the IPI was being passed around, and the process needs to start again. The first CPU in rto_mask is sent the IPI. This change removes this duplication of work in the IPI logic, and greatly lowers the latency caused by the IPIs. This removed the lockup happening on the 120 CPU machine. It also simplifies the code tremendously. What else could anyone ask for? Thanks to Peter Zijlstra for simplifying the rto_loop_start atomic logic and supplying me with the rto_start_trylock() and rto_start_unlock() helper functions. Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Clark Williams <williams@redhat.com> Cc: Daniel Bristot de Oliveira <bristot@redhat.com> Cc: John Kacur <jkacur@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Scott Wood <swood@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20170424114732.1aac6dc4@gandalf.local.home Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Suravee Suthikulpanit
|
051f3ca02e |
sched/topology: Introduce NUMA identity node sched domain
On AMD Family17h-based (EPYC) system, a logical NUMA node can contain upto 8 cores (16 threads) with the following topology. ---------------------------- C0 | T0 T1 | || | T0 T1 | C4 --------| || |-------- C1 | T0 T1 | L3 || L3 | T0 T1 | C5 --------| || |-------- C2 | T0 T1 | #0 || #1 | T0 T1 | C6 --------| || |-------- C3 | T0 T1 | || | T0 T1 | C7 ---------------------------- Here, there are 2 last-level (L3) caches per logical NUMA node. A socket can contain upto 4 NUMA nodes, and a system can support upto 2 sockets. With full system configuration, current scheduler creates 4 sched domains: domain0 SMT (span a core) domain1 MC (span a last-level-cache) domain2 NUMA (span a socket: 4 nodes) domain3 NUMA (span a system: 8 nodes) Note that there is no domain to represent cpus spaning a logical NUMA node. With this hierarchy of sched domains, the scheduler does not balance properly in the following cases: Case1: When running 8 tasks, a properly balanced system should schedule a task per logical NUMA node. This is not the case for the current scheduler. Case2: In some cases, threads are scheduled on the same cpu, while other cpus are idle. This results in run-to-run inconsistency. For example: taskset -c 0-7 sysbench --num-threads=8 --test=cpu \ --cpu-max-prime=100000 run Total execution time ranges from 25.1s to 33.5s depending on threads placement, where 25.1s is when all 8 threads are balanced properly on 8 cpus. Introducing NUMA identity node sched domain, which is based on how SRAT/SLIT table define a logical NUMA node. This results in the following hierarchy of sched domains on the same system described above. domain0 SMT (span a core) domain1 MC (span a last-level-cache) domain2 NODE (span a logical NUMA node) domain3 NUMA (span a socket: 4 nodes) domain4 NUMA (span a system: 8 nodes) This fixes the improper load balancing cases mentioned above. Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: bp@suse.de Link: http://lkml.kernel.org/r/1504768805-46716-1-git-send-email-suravee.suthikulpanit@amd.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Peter Zijlstra
|
ed4ad1ca08 |
sched/topology: Restore SD_PREFER_SIBLING on MC domains
The normal x86_topology on NHM+ machines degenerates because the MC and CPU domains are of the same size, therefore MC inherits SD_PREFER_SIBLING from CPU (which then gets taken out). The result is that we'll spread tasks across the first NUMA level in order to maximize cache utilization. However, for the x86_numa_in_package_topology we loose the CPU domain, and we'll not have SD_PREFER_SIBLING set anywhere, giving a distinct difference in behaviour. Commit: 8e7fbcbc22c1 ("sched: Remove stale power aware scheduling remnants and dysfunctional knobs") made a fail by not preserving the SD_PREFER_SIBLING for the !power_saving case on both CPU and MC. Then commit: 6956dc568f34 ("sched/numa: Add SD_PERFER_SIBLING to CPU domain") adds it back to the CPU but not MC. Restore that now, such that we get consistent spreading behaviour wrt L3 and NUMA. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Linus Torvalds
|
ec846ecd63 |
Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Ingo Molnar: "Three CPU hotplug related fixes and a debugging improvement" * 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: sched/debug: Add debugfs knob for "sched_debug" sched/core: WARN() when migrating to an offline CPU sched/fair: Plug hole between hotplug and active_load_balance() sched/fair: Avoid newidle balance for !active CPUs |
||
Peter Zijlstra
|
9469eb01db |
sched/debug: Add debugfs knob for "sched_debug"
I'm forever late for editing my kernel cmdline, add a runtime knob to disable the "sched_debug" thing. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20170907150614.142924283@infradead.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Alexey Dobriyan
|
9b130ad5bb |
treewide: make "nr_cpu_ids" unsigned
First, number of CPUs can't be negative number. Second, different signnnedness leads to suboptimal code in the following cases: 1) kmalloc(nr_cpu_ids * sizeof(X)); "int" has to be sign extended to size_t. 2) while (loff_t *pos < nr_cpu_ids) MOVSXD is 1 byte longed than the same MOV. Other cases exist as well. Basically compiler is told that nr_cpu_ids can't be negative which can't be deduced if it is "int". Code savings on allyesconfig kernel: -3KB add/remove: 0/0 grow/shrink: 25/264 up/down: 261/-3631 (-3370) function old new delta coretemp_cpu_online 450 512 +62 rcu_init_one 1234 1272 +38 pci_device_probe 374 399 +25 ... pgdat_reclaimable_pages 628 556 -72 select_fallback_rq 446 369 -77 task_numa_find_cpu 1923 1807 -116 Link: http://lkml.kernel.org/r/20170819114959.GA30580@avx2 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Peter Zijlstra
|
bbdacdfed2 |
sched/debug: Optimize sched_domain sysctl generation
Currently we unconditionally destroy all sysctl bits and regenerate them after we've rebuild the domains (even if that rebuild is a no-op). And since we unconditionally (re)build the sysctl for all possible CPUs, onlining all CPUs gets us O(n^2) time. Instead change this to only rebuild the bits for CPUs we've actually installed new domains on. Reported-by: Ofer Levi(SW) <oferle@mellanox.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Peter Zijlstra
|
09e0dd8e0f |
sched/topology: Avoid pointless rebuild
Fix partition_sched_domains() to try and preserve the existing machine wide domain instead of unconditionally destroying it. We do this by attempting to allocate the new single domain, only when that fails to we reuse the fallback_doms. When using fallback_doms we need to first destroy and then recreate because both the old and new could be backed by it. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Ofer Levi(SW) <oferle@mellanox.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vineet.Gupta1@synopsys.com <Vineet.Gupta1@synopsys.com> Cc: rusty@rustcorp.com.au <rusty@rustcorp.com.au> Signed-off-by: Ingo Molnar <mingo@kernel.org> |