IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
- Add check whether the required facilities are installed
before using the s390-specific ChaCha20 implementation.
- Key blobs for s390 protected key interface IOCTLs commands
PKEY_VERIFYKEY2 and PKEY_VERIFYKEY3 may contain clear key
material. Zeroize copies of these keys in kernel memory
after creating protected keys.
- Set CONFIG_INIT_STACK_NONE=y in defconfigs to avoid extra
overhead of initializing all stack variables by default.
- Make sure that when a new channel-path is enabled all
subchannels are evaluated: with and without any devices
connected on it.
- When SMT thread CPUs are added to CPU topology masks the
nr_cpu_ids limit is not checked and could be exceeded.
Respect the nr_cpu_ids limit and avoid a warning when
CONFIG_DEBUG_PER_CPU_MAPS is set.
- The pointer to IPL Parameter Information Block is stored
in the absolute lowcore as a virtual address. Save it as
the physical address for later use by dump tools.
- Fix a Queued Direct I/O (QDIO) problem on z/VM guests using
QIOASSIST with dedicated (pass through) QDIO-based devices
such as FCP, real OSA or HiperSockets.
- s390's struct statfs and struct statfs64 contain padding,
which field-by-field copying does not set. Initialize the
respective structures with zeros before filling them and
copying to userspace.
- Grow s390 compat_statfs64, statfs and statfs64 structures
f_spare array member to cover padding and simplify things.
- Remove obsolete SCHED_BOOK and SCHED_DRAWER configs.
- Remove unneeded S390_CCW_IOMMU and S390_AP_IOM configs.
-----BEGIN PGP SIGNATURE-----
iI0EABYIADUWIQQrtrZiYVkVzKQcYivNdxKlNrRb8AUCZGd5BRccYWdvcmRlZXZA
bGludXguaWJtLmNvbQAKCRDNdxKlNrRb8OqMAQCsdBG7eR3dp3mY8ao34dqlWt98
rDQD8oiMgCkFyn77jQEAoo3HhqWY8oTu88fl82dkF0OpGW+7zgoNHUYhH8Z0gAY=
=wtTO
-----END PGP SIGNATURE-----
Merge tag 's390-6.4-2' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
Pull s390 fixes from Alexander Gordeev:
- Add check whether the required facilities are installed before using
the s390-specific ChaCha20 implementation
- Key blobs for s390 protected key interface IOCTLs commands
PKEY_VERIFYKEY2 and PKEY_VERIFYKEY3 may contain clear key material.
Zeroize copies of these keys in kernel memory after creating
protected keys
- Set CONFIG_INIT_STACK_NONE=y in defconfigs to avoid extra overhead of
initializing all stack variables by default
- Make sure that when a new channel-path is enabled all subchannels are
evaluated: with and without any devices connected on it
- When SMT thread CPUs are added to CPU topology masks the nr_cpu_ids
limit is not checked and could be exceeded. Respect the nr_cpu_ids
limit and avoid a warning when CONFIG_DEBUG_PER_CPU_MAPS is set
- The pointer to IPL Parameter Information Block is stored in the
absolute lowcore as a virtual address. Save it as the physical
address for later use by dump tools
- Fix a Queued Direct I/O (QDIO) problem on z/VM guests using QIOASSIST
with dedicated (pass through) QDIO-based devices such as FCP, real
OSA or HiperSockets
- s390's struct statfs and struct statfs64 contain padding, which
field-by-field copying does not set. Initialize the respective
structures with zeros before filling them and copying to userspace
- Grow s390 compat_statfs64, statfs and statfs64 structures f_spare
array member to cover padding and simplify things
- Remove obsolete SCHED_BOOK and SCHED_DRAWER configs
- Remove unneeded S390_CCW_IOMMU and S390_AP_IOM configs
* tag 's390-6.4-2' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux:
s390/iommu: get rid of S390_CCW_IOMMU and S390_AP_IOMMU
s390/Kconfig: remove obsolete configs SCHED_{BOOK,DRAWER}
s390/uapi: cover statfs padding by growing f_spare
statfs: enforce statfs[64] structure initialization
s390/qdio: fix do_sqbs() inline assembly constraint
s390/ipl: fix IPIB virtual vs physical address confusion
s390/topology: honour nr_cpu_ids when adding CPUs
s390/cio: include subchannels without devices also for evaluation
s390/defconfigs: set CONFIG_INIT_STACK_NONE=y
s390/pkey: zeroize key blobs
s390/crypto: use vector instructions only if available for ChaCha20
These functions are already marked as NOKPROBE to prevent recursion and
we have the same reason to blacklist them if rethook is used with fprobe,
since they are beyond the recursion-free region ftrace can guard.
Link: https://lore.kernel.org/all/20230517034510.15639-5-zegao@tencent.com/
Fixes: f3a112c0c40d ("x86,rethook,kprobes: Replace kretprobe with rethook on x86")
Signed-off-by: Ze Gao <zegao@tencent.com>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Cc: stable@vger.kernel.org
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
The pointer to IPL Parameter Information Block is stored
in the absolute lowcore for later use by dump tools. That
pointer is a virtual address, though it should be physical
instead.
Note, this does not fix a real issue, since virtual and
physical addresses are currently the same.
Suggested-by: Heiko Carstens <hca@linux.ibm.com>
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
When SMT thread CPUs are added to CPU masks the nr_cpu_ids
limit is not checked and could be exceeded. This leads to
a warning for example if CONFIG_DEBUG_PER_CPU_MAPS is set
and the command line parameter nr_cpus is set to 1.
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Fix a potential race in gmap_make_secure() and remove the last user of
follow_page() without FOLL_GET.
The old code is locking something it doesn't have a reference to, and
as explained by Jason and David in this discussion:
https://lore.kernel.org/linux-mm/Y9J4P%2FRNvY1Ztn0Q@nvidia.com/
it can lead to all kind of bad things, including the page getting
unmapped (MADV_DONTNEED), freed, reallocated as a larger folio and the
unlock_page() would target the wrong bit.
There is also another race with the FOLL_WRITE, which could race
between the follow_page() and the get_locked_pte().
The main point is to remove the last use of follow_page() without
FOLL_GET or FOLL_PIN, removing the races can be considered a nice
bonus.
Link: https://lore.kernel.org/linux-mm/Y9J4P%2FRNvY1Ztn0Q@nvidia.com/
Suggested-by: Jason Gunthorpe <jgg@nvidia.com>
Fixes: 214d9bbcd3a6 ("s390/mm: provide memory management functions for protected KVM guests")
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Message-Id: <20230428092753.27913-2-imbrenda@linux.ibm.com>
- Add support for stackleak feature. Also allow specifying
architecture-specific stackleak poison function to enable faster
implementation. On s390, the mvc-based implementation helps decrease
typical overhead from a factor of 3 to just 25%
- Convert all assembler files to use SYM* style macros, deprecating the
ENTRY() macro and other annotations. Select ARCH_USE_SYM_ANNOTATIONS
- Improve KASLR to also randomize module and special amode31 code
base load addresses
- Rework decompressor memory tracking to support memory holes and improve
error handling
- Add support for protected virtualization AP binding
- Add support for set_direct_map() calls
- Implement set_memory_rox() and noexec module_alloc()
- Remove obsolete overriding of mem*() functions for KASAN
- Rework kexec/kdump to avoid using nodat_stack to call purgatory
- Convert the rest of the s390 code to use flexible-array member instead
of a zero-length array
- Clean up uaccess inline asm
- Enable ARCH_HAS_MEMBARRIER_SYNC_CORE
- Convert to using CONFIG_FUNCTION_ALIGNMENT and enable
DEBUG_FORCE_FUNCTION_ALIGN_64B
- Resolve last_break in userspace fault reports
- Simplify one-level sysctl registration
- Clean up branch prediction handling
- Rework CPU counter facility to retrieve available counter sets just
once
- Other various small fixes and improvements all over the code
-----BEGIN PGP SIGNATURE-----
iQEzBAABCAAdFiEE3QHqV+H2a8xAv27vjYWKoQLXFBgFAmRM8pwACgkQjYWKoQLX
FBjV1AgAlvAhu1XkwOdwqdT4GqE8pcN4XXzydog1MYihrSO2PdgWAxpEW7o2QURN
W+3xa6RIqt7nX2YBiwTanMZ12TYaFY7noGl3eUpD/NhueprweVirVl7VZUEuRoW/
j0mbx77xsVzLfuDFxkpVwE6/j+tTO78kLyjUHwcN9rFVUaL7/orJneDJf+V8fZG0
sHLOv0aljF7Jr2IIkw82lCmW/vdk7k0dACWMXK2kj1H3dIK34B9X4AdKDDf/WKXk
/OSElBeZ93tSGEfNDRIda6iR52xocROaRnQAaDtargKFl9VO0/dN9ADxO+SLNHjN
pFE/9VD6xT/xo4IuZZh/Z3TcYfiLvA==
=Geqx
-----END PGP SIGNATURE-----
Merge tag 's390-6.4-1' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
Pull s390 updates from Vasily Gorbik:
- Add support for stackleak feature. Also allow specifying
architecture-specific stackleak poison function to enable faster
implementation. On s390, the mvc-based implementation helps decrease
typical overhead from a factor of 3 to just 25%
- Convert all assembler files to use SYM* style macros, deprecating the
ENTRY() macro and other annotations. Select ARCH_USE_SYM_ANNOTATIONS
- Improve KASLR to also randomize module and special amode31 code base
load addresses
- Rework decompressor memory tracking to support memory holes and
improve error handling
- Add support for protected virtualization AP binding
- Add support for set_direct_map() calls
- Implement set_memory_rox() and noexec module_alloc()
- Remove obsolete overriding of mem*() functions for KASAN
- Rework kexec/kdump to avoid using nodat_stack to call purgatory
- Convert the rest of the s390 code to use flexible-array member
instead of a zero-length array
- Clean up uaccess inline asm
- Enable ARCH_HAS_MEMBARRIER_SYNC_CORE
- Convert to using CONFIG_FUNCTION_ALIGNMENT and enable
DEBUG_FORCE_FUNCTION_ALIGN_64B
- Resolve last_break in userspace fault reports
- Simplify one-level sysctl registration
- Clean up branch prediction handling
- Rework CPU counter facility to retrieve available counter sets just
once
- Other various small fixes and improvements all over the code
* tag 's390-6.4-1' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (118 commits)
s390/stackleak: provide fast __stackleak_poison() implementation
stackleak: allow to specify arch specific stackleak poison function
s390: select ARCH_USE_SYM_ANNOTATIONS
s390/mm: use VM_FLUSH_RESET_PERMS in module_alloc()
s390: wire up memfd_secret system call
s390/mm: enable ARCH_HAS_SET_DIRECT_MAP
s390/mm: use BIT macro to generate SET_MEMORY bit masks
s390/relocate_kernel: adjust indentation
s390/relocate_kernel: use SYM* macros instead of ENTRY(), etc.
s390/entry: use SYM* macros instead of ENTRY(), etc.
s390/purgatory: use SYM* macros instead of ENTRY(), etc.
s390/kprobes: use SYM* macros instead of ENTRY(), etc.
s390/reipl: use SYM* macros instead of ENTRY(), etc.
s390/head64: use SYM* macros instead of ENTRY(), etc.
s390/earlypgm: use SYM* macros instead of ENTRY(), etc.
s390/mcount: use SYM* macros instead of ENTRY(), etc.
s390/crc32le: use SYM* macros instead of ENTRY(), etc.
s390/crc32be: use SYM* macros instead of ENTRY(), etc.
s390/crypto,chacha: use SYM* macros instead of ENTRY(), etc.
s390/amode31: use SYM* macros instead of ENTRY(), etc.
...
- Remove diagnostics and adjust config for CSD lock diagnostics
- Add a generic IPI-sending tracepoint, as currently there's no easy
way to instrument IPI origins: it's arch dependent and for some
major architectures it's not even consistently available.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmRK438RHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1jJ5Q/5AZ0HGpyqwdFK8GmGznyu5qjP5HwV9pPq
gZQScqSy4tZEeza4TFMi83CoXSg9uJ7GlYJqqQMKm78LGEPomnZtXXC7oWvTA9M5
M/jAvzytmvZloSCXV6kK7jzSejMHhag97J/BjTYhZYQpJ9T+hNC87XO6J6COsKr9
lPIYqkFrIkQNr6B0U11AQfFejRYP1ics2fnbnZL86G/zZAc6x8EveM3KgSer2iHl
KbrO+xcYyGY8Ef9P2F72HhEGFfM3WslpT1yzqR3sm4Y+fuMG0oW3qOQuMJx0ZhxT
AloterY0uo6gJwI0P9k/K4klWgz81Tf/zLb0eBAtY2uJV9Fo3YhPHuZC7jGPGAy3
JusW2yNYqc8erHVEMAKDUsl/1KN4TE2uKlkZy98wno+KOoMufK5MA2e2kPPqXvUi
Jk9RvFolnWUsexaPmCftti0OCv3YFiviVAJ/t0pchfmvvJA2da0VC9hzmEXpLJVF
25nBTV/1uAOrWvOpCyo3ElrC2CkQVkFmK5rXMDdvf6ib0Nid4vFcCkCSLVfu+ePB
11mi7QYro+CcnOug1K+yKogUDmsZgV/u1kUwgQzTIpZ05Kkb49gUiXw9L2RGcBJh
yoDoiI66KPR7PWQ2qBdQoXug4zfEEtWG0O9HNLB0FFRC3hu7I+HHyiUkBWs9jasK
PA5+V7HcQRk=
=Wp7f
-----END PGP SIGNATURE-----
Merge tag 'smp-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull SMP cross-CPU function-call updates from Ingo Molnar:
- Remove diagnostics and adjust config for CSD lock diagnostics
- Add a generic IPI-sending tracepoint, as currently there's no easy
way to instrument IPI origins: it's arch dependent and for some major
architectures it's not even consistently available.
* tag 'smp-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
trace,smp: Trace all smp_function_call*() invocations
trace: Add trace_ipi_send_cpu()
sched, smp: Trace smp callback causing an IPI
smp: reword smp call IPI comment
treewide: Trace IPIs sent via smp_send_reschedule()
irq_work: Trace self-IPIs sent via arch_irq_work_raise()
smp: Trace IPIs sent via arch_send_call_function_ipi_mask()
sched, smp: Trace IPIs sent via send_call_function_single_ipi()
trace: Add trace_ipi_send_cpumask()
kernel/smp: Make csdlock_debug= resettable
locking/csd_lock: Remove per-CPU data indirection from CSD lock debugging
locking/csd_lock: Remove added data from CSD lock debugging
locking/csd_lock: Add Kconfig option for csd_debug default
- Mark arch_cpu_idle_dead() __noreturn, make all architectures & drivers that did
this inconsistently follow this new, common convention, and fix all the fallout
that objtool can now detect statically.
- Fix/improve the ORC unwinder becoming unreliable due to UNWIND_HINT_EMPTY ambiguity,
split it into UNWIND_HINT_END_OF_STACK and UNWIND_HINT_UNDEFINED to resolve it.
- Fix noinstr violations in the KCSAN code and the lkdtm/stackleak code.
- Generate ORC data for __pfx code
- Add more __noreturn annotations to various kernel startup/shutdown/panic functions.
- Misc improvements & fixes.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmRK1x0RHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1ghxQ/+IkCynMYtdF5OG9YwbcGJqsPSfOPMEcEM
pUSFYg+gGPBDT/fJfcVSqvUtdnWbLC2kXt9yiswXz3X3J2nmNkBk5YKQftsNDcul
TmKeqIIAK51XTncpegKH0EGnOX63oZ9Vxa8CTPdDlb+YF23Km2FoudGRI9F5qbUd
LoraXqGYeiaeySkGyWmZVl6Uc8dIxnMkTN3H/oI9aB6TOrsi059hAtFcSaFfyemP
c4LqXXCH7k2baiQt+qaLZ8cuZVG/+K5r2N2cmjO5kmJc6ynIaFnfMe4XxZLjp5LT
/PulYI15bXkvSARKx5CRh/CDHMOx5Blw+ASO0RhWbdy0WH4ZhhcaVF5AeIpPW86a
1LBcz97rMp72WmvKgrJeVO1r9+ll4SI6/YKGJRsxsCMdP3hgFpqntXyVjTFNdTM1
0gH6H5v55x06vJHvhtTk8SR3PfMTEM2fRU5jXEOrGowoGifx+wNUwORiwj6LE3KQ
SKUdT19RNzoW3VkFxhgk65ThK1S7YsJUKRoac3YdhttpqqqtFV//erenrZoR4k/p
vzvKy68EQ7RCNyD5wNWNFe0YjeJl5G8gQ8bUm4Xmab7djjgz+pn4WpQB8yYKJLAo
x9dqQ+6eUbw3Hcgk6qQ9E+r/svbulnAL0AeALAWK/91DwnZ2mCzKroFkLN7napKi
fRho4CqzrtM=
=NwEV
-----END PGP SIGNATURE-----
Merge tag 'objtool-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull objtool updates from Ingo Molnar:
- Mark arch_cpu_idle_dead() __noreturn, make all architectures &
drivers that did this inconsistently follow this new, common
convention, and fix all the fallout that objtool can now detect
statically
- Fix/improve the ORC unwinder becoming unreliable due to
UNWIND_HINT_EMPTY ambiguity, split it into UNWIND_HINT_END_OF_STACK
and UNWIND_HINT_UNDEFINED to resolve it
- Fix noinstr violations in the KCSAN code and the lkdtm/stackleak code
- Generate ORC data for __pfx code
- Add more __noreturn annotations to various kernel startup/shutdown
and panic functions
- Misc improvements & fixes
* tag 'objtool-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (52 commits)
x86/hyperv: Mark hv_ghcb_terminate() as noreturn
scsi: message: fusion: Mark mpt_halt_firmware() __noreturn
x86/cpu: Mark {hlt,resume}_play_dead() __noreturn
btrfs: Mark btrfs_assertfail() __noreturn
objtool: Include weak functions in global_noreturns check
cpu: Mark nmi_panic_self_stop() __noreturn
cpu: Mark panic_smp_self_stop() __noreturn
arm64/cpu: Mark cpu_park_loop() and friends __noreturn
x86/head: Mark *_start_kernel() __noreturn
init: Mark start_kernel() __noreturn
init: Mark [arch_call_]rest_init() __noreturn
objtool: Generate ORC data for __pfx code
x86/linkage: Fix padding for typed functions
objtool: Separate prefix code from stack validation code
objtool: Remove superfluous dead_end_function() check
objtool: Add symbol iteration helpers
objtool: Add WARN_INSN()
scripts/objdump-func: Support multiple functions
context_tracking: Fix KCSAN noinstr violation
objtool: Add stackleak instrumentation to uaccess safe list
...
The summary of the changes for this pull requests is:
* Song Liu's new struct module_memory replacement
* Nick Alcock's MODULE_LICENSE() removal for non-modules
* My cleanups and enhancements to reduce the areas where we vmalloc
module memory for duplicates, and the respective debug code which
proves the remaining vmalloc pressure comes from userspace.
Most of the changes have been in linux-next for quite some time except
the minor fixes I made to check if a module was already loaded
prior to allocating the final module memory with vmalloc and the
respective debug code it introduces to help clarify the issue. Although
the functional change is small it is rather safe as it can only *help*
reduce vmalloc space for duplicates and is confirmed to fix a bootup
issue with over 400 CPUs with KASAN enabled. I don't expect stable
kernels to pick up that fix as the cleanups would have also had to have
been picked up. Folks on larger CPU systems with modules will want to
just upgrade if vmalloc space has been an issue on bootup.
Given the size of this request, here's some more elaborate details
on this pull request.
The functional change change in this pull request is the very first
patch from Song Liu which replaces the struct module_layout with a new
struct module memory. The old data structure tried to put together all
types of supported module memory types in one data structure, the new
one abstracts the differences in memory types in a module to allow each
one to provide their own set of details. This paves the way in the
future so we can deal with them in a cleaner way. If you look at changes
they also provide a nice cleanup of how we handle these different memory
areas in a module. This change has been in linux-next since before the
merge window opened for v6.3 so to provide more than a full kernel cycle
of testing. It's a good thing as quite a bit of fixes have been found
for it.
Jason Baron then made dynamic debug a first class citizen module user by
using module notifier callbacks to allocate / remove module specific
dynamic debug information.
Nick Alcock has done quite a bit of work cross-tree to remove module
license tags from things which cannot possibly be module at my request
so to:
a) help him with his longer term tooling goals which require a
deterministic evaluation if a piece a symbol code could ever be
part of a module or not. But quite recently it is has been made
clear that tooling is not the only one that would benefit.
Disambiguating symbols also helps efforts such as live patching,
kprobes and BPF, but for other reasons and R&D on this area
is active with no clear solution in sight.
b) help us inch closer to the now generally accepted long term goal
of automating all the MODULE_LICENSE() tags from SPDX license tags
In so far as a) is concerned, although module license tags are a no-op
for non-modules, tools which would want create a mapping of possible
modules can only rely on the module license tag after the commit
8b41fc4454e ("kbuild: create modules.builtin without Makefile.modbuiltin
or tristate.conf"). Nick has been working on this *for years* and
AFAICT I was the only one to suggest two alternatives to this approach
for tooling. The complexity in one of my suggested approaches lies in
that we'd need a possible-obj-m and a could-be-module which would check
if the object being built is part of any kconfig build which could ever
lead to it being part of a module, and if so define a new define
-DPOSSIBLE_MODULE [0]. A more obvious yet theoretical approach I've
suggested would be to have a tristate in kconfig imply the same new
-DPOSSIBLE_MODULE as well but that means getting kconfig symbol names
mapping to modules always, and I don't think that's the case today. I am
not aware of Nick or anyone exploring either of these options. Quite
recently Josh Poimboeuf has pointed out that live patching, kprobes and
BPF would benefit from resolving some part of the disambiguation as
well but for other reasons. The function granularity KASLR (fgkaslr)
patches were mentioned but Joe Lawrence has clarified this effort has
been dropped with no clear solution in sight [1].
In the meantime removing module license tags from code which could never
be modules is welcomed for both objectives mentioned above. Some
developers have also welcomed these changes as it has helped clarify
when a module was never possible and they forgot to clean this up,
and so you'll see quite a bit of Nick's patches in other pull
requests for this merge window. I just picked up the stragglers after
rc3. LWN has good coverage on the motivation behind this work [2] and
the typical cross-tree issues he ran into along the way. The only
concrete blocker issue he ran into was that we should not remove the
MODULE_LICENSE() tags from files which have no SPDX tags yet, even if
they can never be modules. Nick ended up giving up on his efforts due
to having to do this vetting and backlash he ran into from folks who
really did *not understand* the core of the issue nor were providing
any alternative / guidance. I've gone through his changes and dropped
the patches which dropped the module license tags where an SPDX
license tag was missing, it only consisted of 11 drivers. To see
if a pull request deals with a file which lacks SPDX tags you
can just use:
./scripts/spdxcheck.py -f \
$(git diff --name-only commid-id | xargs echo)
You'll see a core module file in this pull request for the above,
but that's not related to his changes. WE just need to add the SPDX
license tag for the kernel/module/kmod.c file in the future but
it demonstrates the effectiveness of the script.
Most of Nick's changes were spread out through different trees,
and I just picked up the slack after rc3 for the last kernel was out.
Those changes have been in linux-next for over two weeks.
The cleanups, debug code I added and final fix I added for modules
were motivated by David Hildenbrand's report of boot failing on
a systems with over 400 CPUs when KASAN was enabled due to running
out of virtual memory space. Although the functional change only
consists of 3 lines in the patch "module: avoid allocation if module is
already present and ready", proving that this was the best we can
do on the modules side took quite a bit of effort and new debug code.
The initial cleanups I did on the modules side of things has been
in linux-next since around rc3 of the last kernel, the actual final
fix for and debug code however have only been in linux-next for about a
week or so but I think it is worth getting that code in for this merge
window as it does help fix / prove / evaluate the issues reported
with larger number of CPUs. Userspace is not yet fixed as it is taking
a bit of time for folks to understand the crux of the issue and find a
proper resolution. Worst come to worst, I have a kludge-of-concept [3]
of how to make kernel_read*() calls for modules unique / converge them,
but I'm currently inclined to just see if userspace can fix this
instead.
[0] https://lore.kernel.org/all/Y/kXDqW+7d71C4wz@bombadil.infradead.org/
[1] https://lkml.kernel.org/r/025f2151-ce7c-5630-9b90-98742c97ac65@redhat.com
[2] https://lwn.net/Articles/927569/
[3] https://lkml.kernel.org/r/20230414052840.1994456-3-mcgrof@kernel.org
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEENnNq2KuOejlQLZofziMdCjCSiKcFAmRG4m0SHG1jZ3JvZkBr
ZXJuZWwub3JnAAoJEM4jHQowkoinQ2oP/0xlvKwJg6Ey8fHZF0qv8VOskE80zoLF
hMazU3xfqLA+1TQvouW1YBxt3jwS3t1Ehs+NrV+nY9Yzcm0MzRX/n3fASJVe7nRr
oqWWQU+voYl5Pw1xsfdp6C8IXpBQorpYby3Vp0MAMoZyl2W2YrNo36NV488wM9KC
jD4HF5Z6xpnPSZTRR7AgW9mo7FdAtxPeKJ76Bch7lH8U6omT7n36WqTw+5B1eAYU
YTOvrjRs294oqmWE+LeebyiOOXhH/yEYx4JNQgCwPdxwnRiGJWKsk5va0hRApqF/
WW8dIqdEnjsa84lCuxnmWgbcPK8cgmlO0rT0DyneACCldNlldCW1LJ0HOwLk9pea
p3JFAsBL7TKue4Tos6I7/4rx1ufyBGGIigqw9/VX5g0Iif+3BhWnqKRfz+p9wiMa
Fl7cU6u7yC68CHu1HBSisK16cYMCPeOnTSd89upHj8JU/t74O6k/ARvjrQ9qmNUt
c5U+OY+WpNJ1nXQydhY/yIDhFdYg8SSpNuIO90r4L8/8jRQYXNG80FDd1UtvVDuy
eq0r2yZ8C0XHSlOT9QHaua/tWV/aaKtyC/c0hDRrigfUrq8UOlGujMXbUnrmrWJI
tLJLAc7ePWAAoZXGSHrt0U27l029GzLwRdKqJ6kkDANVnTeOdV+mmBg9zGh3/Mp6
agiwdHUMVN7X
=56WK
-----END PGP SIGNATURE-----
Merge tag 'modules-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux
Pull module updates from Luis Chamberlain:
"The summary of the changes for this pull requests is:
- Song Liu's new struct module_memory replacement
- Nick Alcock's MODULE_LICENSE() removal for non-modules
- My cleanups and enhancements to reduce the areas where we vmalloc
module memory for duplicates, and the respective debug code which
proves the remaining vmalloc pressure comes from userspace.
Most of the changes have been in linux-next for quite some time except
the minor fixes I made to check if a module was already loaded prior
to allocating the final module memory with vmalloc and the respective
debug code it introduces to help clarify the issue. Although the
functional change is small it is rather safe as it can only *help*
reduce vmalloc space for duplicates and is confirmed to fix a bootup
issue with over 400 CPUs with KASAN enabled. I don't expect stable
kernels to pick up that fix as the cleanups would have also had to
have been picked up. Folks on larger CPU systems with modules will
want to just upgrade if vmalloc space has been an issue on bootup.
Given the size of this request, here's some more elaborate details:
The functional change change in this pull request is the very first
patch from Song Liu which replaces the 'struct module_layout' with a
new 'struct module_memory'. The old data structure tried to put
together all types of supported module memory types in one data
structure, the new one abstracts the differences in memory types in a
module to allow each one to provide their own set of details. This
paves the way in the future so we can deal with them in a cleaner way.
If you look at changes they also provide a nice cleanup of how we
handle these different memory areas in a module. This change has been
in linux-next since before the merge window opened for v6.3 so to
provide more than a full kernel cycle of testing. It's a good thing as
quite a bit of fixes have been found for it.
Jason Baron then made dynamic debug a first class citizen module user
by using module notifier callbacks to allocate / remove module
specific dynamic debug information.
Nick Alcock has done quite a bit of work cross-tree to remove module
license tags from things which cannot possibly be module at my request
so to:
a) help him with his longer term tooling goals which require a
deterministic evaluation if a piece a symbol code could ever be
part of a module or not. But quite recently it is has been made
clear that tooling is not the only one that would benefit.
Disambiguating symbols also helps efforts such as live patching,
kprobes and BPF, but for other reasons and R&D on this area is
active with no clear solution in sight.
b) help us inch closer to the now generally accepted long term goal
of automating all the MODULE_LICENSE() tags from SPDX license tags
In so far as a) is concerned, although module license tags are a no-op
for non-modules, tools which would want create a mapping of possible
modules can only rely on the module license tag after the commit
8b41fc4454e ("kbuild: create modules.builtin without
Makefile.modbuiltin or tristate.conf").
Nick has been working on this *for years* and AFAICT I was the only
one to suggest two alternatives to this approach for tooling. The
complexity in one of my suggested approaches lies in that we'd need a
possible-obj-m and a could-be-module which would check if the object
being built is part of any kconfig build which could ever lead to it
being part of a module, and if so define a new define
-DPOSSIBLE_MODULE [0].
A more obvious yet theoretical approach I've suggested would be to
have a tristate in kconfig imply the same new -DPOSSIBLE_MODULE as
well but that means getting kconfig symbol names mapping to modules
always, and I don't think that's the case today. I am not aware of
Nick or anyone exploring either of these options. Quite recently Josh
Poimboeuf has pointed out that live patching, kprobes and BPF would
benefit from resolving some part of the disambiguation as well but for
other reasons. The function granularity KASLR (fgkaslr) patches were
mentioned but Joe Lawrence has clarified this effort has been dropped
with no clear solution in sight [1].
In the meantime removing module license tags from code which could
never be modules is welcomed for both objectives mentioned above. Some
developers have also welcomed these changes as it has helped clarify
when a module was never possible and they forgot to clean this up, and
so you'll see quite a bit of Nick's patches in other pull requests for
this merge window. I just picked up the stragglers after rc3. LWN has
good coverage on the motivation behind this work [2] and the typical
cross-tree issues he ran into along the way. The only concrete blocker
issue he ran into was that we should not remove the MODULE_LICENSE()
tags from files which have no SPDX tags yet, even if they can never be
modules. Nick ended up giving up on his efforts due to having to do
this vetting and backlash he ran into from folks who really did *not
understand* the core of the issue nor were providing any alternative /
guidance. I've gone through his changes and dropped the patches which
dropped the module license tags where an SPDX license tag was missing,
it only consisted of 11 drivers. To see if a pull request deals with a
file which lacks SPDX tags you can just use:
./scripts/spdxcheck.py -f \
$(git diff --name-only commid-id | xargs echo)
You'll see a core module file in this pull request for the above, but
that's not related to his changes. WE just need to add the SPDX
license tag for the kernel/module/kmod.c file in the future but it
demonstrates the effectiveness of the script.
Most of Nick's changes were spread out through different trees, and I
just picked up the slack after rc3 for the last kernel was out. Those
changes have been in linux-next for over two weeks.
The cleanups, debug code I added and final fix I added for modules
were motivated by David Hildenbrand's report of boot failing on a
systems with over 400 CPUs when KASAN was enabled due to running out
of virtual memory space. Although the functional change only consists
of 3 lines in the patch "module: avoid allocation if module is already
present and ready", proving that this was the best we can do on the
modules side took quite a bit of effort and new debug code.
The initial cleanups I did on the modules side of things has been in
linux-next since around rc3 of the last kernel, the actual final fix
for and debug code however have only been in linux-next for about a
week or so but I think it is worth getting that code in for this merge
window as it does help fix / prove / evaluate the issues reported with
larger number of CPUs. Userspace is not yet fixed as it is taking a
bit of time for folks to understand the crux of the issue and find a
proper resolution. Worst come to worst, I have a kludge-of-concept [3]
of how to make kernel_read*() calls for modules unique / converge
them, but I'm currently inclined to just see if userspace can fix this
instead"
Link: https://lore.kernel.org/all/Y/kXDqW+7d71C4wz@bombadil.infradead.org/ [0]
Link: https://lkml.kernel.org/r/025f2151-ce7c-5630-9b90-98742c97ac65@redhat.com [1]
Link: https://lwn.net/Articles/927569/ [2]
Link: https://lkml.kernel.org/r/20230414052840.1994456-3-mcgrof@kernel.org [3]
* tag 'modules-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux: (121 commits)
module: add debugging auto-load duplicate module support
module: stats: fix invalid_mod_bytes typo
module: remove use of uninitialized variable len
module: fix building stats for 32-bit targets
module: stats: include uapi/linux/module.h
module: avoid allocation if module is already present and ready
module: add debug stats to help identify memory pressure
module: extract patient module check into helper
modules/kmod: replace implementation with a semaphore
Change DEFINE_SEMAPHORE() to take a number argument
module: fix kmemleak annotations for non init ELF sections
module: Ignore L0 and rename is_arm_mapping_symbol()
module: Move is_arm_mapping_symbol() to module_symbol.h
module: Sync code of is_arm_mapping_symbol()
scripts/gdb: use mem instead of core_layout to get the module address
interconnect: remove module-related code
interconnect: remove MODULE_LICENSE in non-modules
zswap: remove MODULE_LICENSE in non-modules
zpool: remove MODULE_LICENSE in non-modules
x86/mm/dump_pagetables: remove MODULE_LICENSE in non-modules
...
Here is the large set of driver core changes for 6.4-rc1.
Once again, a busy development cycle, with lots of changes happening in
the driver core in the quest to be able to move "struct bus" and "struct
class" into read-only memory, a task now complete with these changes.
This will make the future rust interactions with the driver core more
"provably correct" as well as providing more obvious lifetime rules for
all busses and classes in the kernel.
The changes required for this did touch many individual classes and
busses as many callbacks were changed to take const * parameters
instead. All of these changes have been submitted to the various
subsystem maintainers, giving them plenty of time to review, and most of
them actually did so.
Other than those changes, included in here are a small set of other
things:
- kobject logging improvements
- cacheinfo improvements and updates
- obligatory fw_devlink updates and fixes
- documentation updates
- device property cleanups and const * changes
- firwmare loader dependency fixes.
All of these have been in linux-next for a while with no reported
problems.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCZEp7Sw8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ykitQCfamUHpxGcKOAGuLXMotXNakTEsxgAoIquENm5
LEGadNS38k5fs+73UaxV
=7K4B
-----END PGP SIGNATURE-----
Merge tag 'driver-core-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core updates from Greg KH:
"Here is the large set of driver core changes for 6.4-rc1.
Once again, a busy development cycle, with lots of changes happening
in the driver core in the quest to be able to move "struct bus" and
"struct class" into read-only memory, a task now complete with these
changes.
This will make the future rust interactions with the driver core more
"provably correct" as well as providing more obvious lifetime rules
for all busses and classes in the kernel.
The changes required for this did touch many individual classes and
busses as many callbacks were changed to take const * parameters
instead. All of these changes have been submitted to the various
subsystem maintainers, giving them plenty of time to review, and most
of them actually did so.
Other than those changes, included in here are a small set of other
things:
- kobject logging improvements
- cacheinfo improvements and updates
- obligatory fw_devlink updates and fixes
- documentation updates
- device property cleanups and const * changes
- firwmare loader dependency fixes.
All of these have been in linux-next for a while with no reported
problems"
* tag 'driver-core-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (120 commits)
device property: make device_property functions take const device *
driver core: update comments in device_rename()
driver core: Don't require dynamic_debug for initcall_debug probe timing
firmware_loader: rework crypto dependencies
firmware_loader: Strip off \n from customized path
zram: fix up permission for the hot_add sysfs file
cacheinfo: Add use_arch[|_cache]_info field/function
arch_topology: Remove early cacheinfo error message if -ENOENT
cacheinfo: Check cache properties are present in DT
cacheinfo: Check sib_leaf in cache_leaves_are_shared()
cacheinfo: Allow early level detection when DT/ACPI info is missing/broken
cacheinfo: Add arm64 early level initializer implementation
cacheinfo: Add arch specific early level initializer
tty: make tty_class a static const structure
driver core: class: remove struct class_interface * from callbacks
driver core: class: mark the struct class in struct class_interface constant
driver core: class: make class_register() take a const *
driver core: class: mark class_release() as taking a const *
driver core: remove incorrect comment for device_create*
MIPS: vpe-cmp: remove module owner pointer from struct class usage.
...
ACPI:
* Improve error reporting when failing to manage SDEI on AGDI device
removal
Assembly routines:
* Improve register constraints so that the compiler can make use of
the zero register instead of moving an immediate #0 into a GPR
* Allow the compiler to allocate the registers used for CAS
instructions
CPU features and system registers:
* Cleanups to the way in which CPU features are identified from the
ID register fields
* Extend system register definition generation to handle Enum types
when defining shared register fields
* Generate definitions for new _EL2 registers and add new fields
for ID_AA64PFR1_EL1
* Allow SVE to be disabled separately from SME on the kernel
command-line
Tracing:
* Support for "direct calls" in ftrace, which enables BPF tracing
for arm64
Kdump:
* Don't bother unmapping the crashkernel from the linear mapping,
which then allows us to use huge (block) mappings and reduce
TLB pressure when a crashkernel is loaded.
Memory management:
* Try again to remove data cache invalidation from the coherent DMA
allocation path
* Simplify the fixmap code by mapping at page granularity
* Allow the kfence pool to be allocated early, preventing the rest
of the linear mapping from being forced to page granularity
Perf and PMU:
* Move CPU PMU code out to drivers/perf/ where it can be reused
by the 32-bit ARM architecture when running on ARMv8 CPUs
* Fix race between CPU PMU probing and pKVM host de-privilege
* Add support for Apple M2 CPU PMU
* Adjust the generic PERF_COUNT_HW_BRANCH_INSTRUCTIONS event
dynamically, depending on what the CPU actually supports
* Minor fixes and cleanups to system PMU drivers
Stack tracing:
* Use the XPACLRI instruction to strip PAC from pointers, rather
than rolling our own function in C
* Remove redundant PAC removal for toolchains that handle this in
their builtins
* Make backtracing more resilient in the face of instrumentation
Miscellaneous:
* Fix single-step with KGDB
* Remove harmless warning when 'nokaslr' is passed on the kernel
command-line
* Minor fixes and cleanups across the board
-----BEGIN PGP SIGNATURE-----
iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAmRChcwQHHdpbGxAa2Vy
bmVsLm9yZwAKCRC3rHDchMFjNCgBCADFvkYY9ESztSnd3EpiMbbAzgRCQBiA5H7U
F2Wc+hIWgeAeUEttSH22+F16r6Jb0gbaDvsuhtN2W/rwQhKNbCU0MaUME05MPmg2
AOp+RZb2vdT5i5S5dC6ZM6G3T6u9O78LBWv2JWBdd6RIybamEn+RL00ep2WAduH7
n1FgTbsKgnbScD2qd4K1ejZ1W/BQMwYulkNpyTsmCIijXM12lkzFlxWnMtky3uhR
POpawcIZzXvWI02QAX+SIdynGChQV3VP+dh9GuFbt7ASigDEhgunvfUYhZNSaqf4
+/q0O8toCtmQJBUhF0DEDSB5T8SOz5v9CKxKuwfaX6Trq0ixFQpZ
=78L9
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"ACPI:
- Improve error reporting when failing to manage SDEI on AGDI device
removal
Assembly routines:
- Improve register constraints so that the compiler can make use of
the zero register instead of moving an immediate #0 into a GPR
- Allow the compiler to allocate the registers used for CAS
instructions
CPU features and system registers:
- Cleanups to the way in which CPU features are identified from the
ID register fields
- Extend system register definition generation to handle Enum types
when defining shared register fields
- Generate definitions for new _EL2 registers and add new fields for
ID_AA64PFR1_EL1
- Allow SVE to be disabled separately from SME on the kernel
command-line
Tracing:
- Support for "direct calls" in ftrace, which enables BPF tracing for
arm64
Kdump:
- Don't bother unmapping the crashkernel from the linear mapping,
which then allows us to use huge (block) mappings and reduce TLB
pressure when a crashkernel is loaded.
Memory management:
- Try again to remove data cache invalidation from the coherent DMA
allocation path
- Simplify the fixmap code by mapping at page granularity
- Allow the kfence pool to be allocated early, preventing the rest of
the linear mapping from being forced to page granularity
Perf and PMU:
- Move CPU PMU code out to drivers/perf/ where it can be reused by
the 32-bit ARM architecture when running on ARMv8 CPUs
- Fix race between CPU PMU probing and pKVM host de-privilege
- Add support for Apple M2 CPU PMU
- Adjust the generic PERF_COUNT_HW_BRANCH_INSTRUCTIONS event
dynamically, depending on what the CPU actually supports
- Minor fixes and cleanups to system PMU drivers
Stack tracing:
- Use the XPACLRI instruction to strip PAC from pointers, rather than
rolling our own function in C
- Remove redundant PAC removal for toolchains that handle this in
their builtins
- Make backtracing more resilient in the face of instrumentation
Miscellaneous:
- Fix single-step with KGDB
- Remove harmless warning when 'nokaslr' is passed on the kernel
command-line
- Minor fixes and cleanups across the board"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (72 commits)
KVM: arm64: Ensure CPU PMU probes before pKVM host de-privilege
arm64: kexec: include reboot.h
arm64: delete dead code in this_cpu_set_vectors()
arm64/cpufeature: Use helper macro to specify ID register for capabilites
drivers/perf: hisi: add NULL check for name
drivers/perf: hisi: Remove redundant initialized of pmu->name
arm64/cpufeature: Consistently use symbolic constants for min_field_value
arm64/cpufeature: Pull out helper for CPUID register definitions
arm64/sysreg: Convert HFGITR_EL2 to automatic generation
ACPI: AGDI: Improve error reporting for problems during .remove()
arm64: kernel: Fix kernel warning when nokaslr is passed to commandline
perf/arm-cmn: Fix port detection for CMN-700
arm64: kgdb: Set PSTATE.SS to 1 to re-enable single-step
arm64: move PAC masks to <asm/pointer_auth.h>
arm64: use XPACLRI to strip PAC
arm64: avoid redundant PAC stripping in __builtin_return_address()
arm64/sme: Fix some comments of ARM SME
arm64/signal: Alloc tpidr2 sigframe after checking system_supports_tpidr2()
arm64/signal: Use system_supports_tpidr2() to check TPIDR2
arm64/idreg: Don't disable SME when disabling SVE
...
- Improve the VDSO build time checks to cover all dynamic relocations
VDSO does not allow dynamic relcations, but the build time check is
incomplete and fragile.
It's based on architectures specifying the relocation types to search
for and does not handle R_*_NONE relocation entries correctly.
R_*_NONE relocations are injected by some GNU ld variants if they fail
to determine the exact .rel[a]/dyn_size to cover trailing zeros.
R_*_NONE relocations must be ignored by dynamic loaders, so they
should be ignored in the build time check too.
Remove the architecture specific relocation types to check for and
validate strictly that no other relocations than R_*_NONE end up
in the VSDO .so file.
- Prefer signal delivery to the current thread for
CLOCK_PROCESS_CPUTIME_ID based posix-timers
Such timers prefer to deliver the signal to the main thread of a
process even if the context in which the timer expires is the current
task. This has the downside that it might wake up an idle thread.
As there is no requirement or guarantee that the signal has to be
delivered to the main thread, avoid this by preferring the current
task if it is part of the thread group which shares sighand.
This not only avoids waking idle threads, it also distributes the
signal delivery in case of multiple timers firing in the context
of different threads close to each other better.
- Align the tick period properly (again)
For a long time the tick was starting at CLOCK_MONOTONIC zero, which
allowed users space applications to either align with the tick or to
place a periodic computation so that it does not interfere with the
tick. The alignement of the tick period was more by chance than by
intention as the tick is set up before a high resolution clocksource is
installed, i.e. timekeeping is still tick based and the tick period
advances from there.
The early enablement of sched_clock() broke this alignement as the time
accumulated by sched_clock() is taken into account when timekeeping is
initialized. So the base value now(CLOCK_MONOTONIC) is not longer a
multiple of tick periods, which breaks applications which relied on
that behaviour.
Cure this by aligning the tick starting point to the next multiple of
tick periods, i.e 1000ms/CONFIG_HZ.
- A set of NOHZ fixes and enhancements
- Cure the concurrent writer race for idle and IO sleeptime statistics
The statitic values which are exposed via /proc/stat are updated from
the CPU local idle exit and remotely by cpufreq, but that happens
without any form of serialization. As a consequence sleeptimes can be
accounted twice or worse.
Prevent this by restricting the accumulation writeback to the CPU
local idle exit and let the remote access compute the accumulated
value.
- Protect idle/iowait sleep time with a sequence count
Reading idle/iowait sleep time, e.g. from /proc/stat, can race with
idle exit updates. As a consequence the readout may result in random
and potentially going backwards values.
Protect this by a sequence count, which fixes the idle time
statistics issue, but cannot fix the iowait time problem because
iowait time accounting races with remote wake ups decrementing the
remote runqueues nr_iowait counter. The latter is impossible to fix,
so the only way to deal with that is to document it properly and to
remove the assertion in the selftest which triggers occasionally due
to that.
- Restructure struct tick_sched for better cache layout
- Some small cleanups and a better cache layout for struct tick_sched
- Implement the missing timer_wait_running() callback for POSIX CPU timers
For unknown reason the introduction of the timer_wait_running() callback
missed to fixup posix CPU timers, which went unnoticed for almost four
years.
While initially only targeted to prevent livelocks between a timer
deletion and the timer expiry function on PREEMPT_RT enabled kernels, it
turned out that fixing this for mainline is not as trivial as just
implementing a stub similar to the hrtimer/timer callbacks.
The reason is that for CONFIG_POSIX_CPU_TIMERS_TASK_WORK enabled systems
there is a livelock issue independent of RT.
CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y moves the expiry of POSIX CPU timers
out from hard interrupt context to task work, which is handled before
returning to user space or to a VM. The expiry mechanism moves the
expired timers to a stack local list head with sighand lock held. Once
sighand is dropped the task can be preempted and a task which wants to
delete a timer will spin-wait until the expiry task is scheduled back
in. In the worst case this will end up in a livelock when the preempting
task and the expiry task are pinned on the same CPU.
The timer wheel has a timer_wait_running() mechanism for RT, which uses
a per CPU timer-base expiry lock which is held by the expiry code and the
task waiting for the timer function to complete blocks on that lock.
This does not work in the same way for posix CPU timers as there is no
timer base and expiry for process wide timers can run on any task
belonging to that process, but the concept of waiting on an expiry lock
can be used too in a slightly different way.
Add a per task mutex to struct posix_cputimers_work, let the expiry task
hold it accross the expiry function and let the deleting task which
waits for the expiry to complete block on the mutex.
In the non-contended case this results in an extra mutex_lock()/unlock()
pair on both sides.
This avoids spin-waiting on a task which is scheduled out, prevents the
livelock and cures the problem for RT and !RT systems.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmRGrj4THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoZhdEAC/lwfDWCnTXHC8ExQQRDIVNyXmDlLb
EHB8ZY7Wc4gNZ8UEXEOLOXJHMG9bsbtPGctVewJwRGnXZWKVhpPwQba6kCRycyX0
0J6l5DlvUaGGrpoOzOZwgETRmtIZE9tEArZR8xlfRScYd93a7yLhwIjO8JaV9vKs
IQpAQMeJ/ysp6gHrS59qakYfoHU/ERUAu3Tk4GqHUtPtcyz3nX3eTlLWV8LySqs+
00qr2yc0bQFUFoKzTCxtM8lcEi9ja9SOj1rw28348O+BXE4d0HC12Ie7eU/CDN2Y
OAlWYxVjy4LMh24LDrRQKTzoVqx9MXDx2g+09B3t8NK5LgeS+EJIjujDhZF147/H
5y906nplZUKa8BiZW5Rpm/HKH8tFI80T9XWSQCRBeMgTEJyRyRU1yASAwO4xw+dY
Dn3tGmFGymcV/72o4ic9JFKQd8cTSxPjEJS3qqzMkEAtyI/zPBmKxj/Tce50OH40
6FSZq1uU21ZQzszwSHISwgFtNr75laUSK4Z1te5OhPOOz+C7O9YqHvqS/1jwhPj2
tMd8X17fRW3UTUBlBj+zqxqiEGBl/Yk2AvKrJIXGUtfWYCtjMJ7ieCf0kZ7NSVJx
9ewubA0gqseMD783YomZsy8LLtMKnhclJeslUOVb1oKs1q/WF1R/k6qjy9vUwYaB
nIJuHl8mxSetag==
=SVnj
-----END PGP SIGNATURE-----
Merge tag 'timers-core-2023-04-24' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timers and timekeeping updates from Thomas Gleixner:
- Improve the VDSO build time checks to cover all dynamic relocations
VDSO does not allow dynamic relocations, but the build time check is
incomplete and fragile.
It's based on architectures specifying the relocation types to search
for and does not handle R_*_NONE relocation entries correctly.
R_*_NONE relocations are injected by some GNU ld variants if they
fail to determine the exact .rel[a]/dyn_size to cover trailing zeros.
R_*_NONE relocations must be ignored by dynamic loaders, so they
should be ignored in the build time check too.
Remove the architecture specific relocation types to check for and
validate strictly that no other relocations than R_*_NONE end up in
the VSDO .so file.
- Prefer signal delivery to the current thread for
CLOCK_PROCESS_CPUTIME_ID based posix-timers
Such timers prefer to deliver the signal to the main thread of a
process even if the context in which the timer expires is the current
task. This has the downside that it might wake up an idle thread.
As there is no requirement or guarantee that the signal has to be
delivered to the main thread, avoid this by preferring the current
task if it is part of the thread group which shares sighand.
This not only avoids waking idle threads, it also distributes the
signal delivery in case of multiple timers firing in the context of
different threads close to each other better.
- Align the tick period properly (again)
For a long time the tick was starting at CLOCK_MONOTONIC zero, which
allowed users space applications to either align with the tick or to
place a periodic computation so that it does not interfere with the
tick. The alignement of the tick period was more by chance than by
intention as the tick is set up before a high resolution clocksource
is installed, i.e. timekeeping is still tick based and the tick
period advances from there.
The early enablement of sched_clock() broke this alignement as the
time accumulated by sched_clock() is taken into account when
timekeeping is initialized. So the base value now(CLOCK_MONOTONIC) is
not longer a multiple of tick periods, which breaks applications
which relied on that behaviour.
Cure this by aligning the tick starting point to the next multiple of
tick periods, i.e 1000ms/CONFIG_HZ.
- A set of NOHZ fixes and enhancements:
* Cure the concurrent writer race for idle and IO sleeptime
statistics
The statitic values which are exposed via /proc/stat are updated
from the CPU local idle exit and remotely by cpufreq, but that
happens without any form of serialization. As a consequence
sleeptimes can be accounted twice or worse.
Prevent this by restricting the accumulation writeback to the CPU
local idle exit and let the remote access compute the accumulated
value.
* Protect idle/iowait sleep time with a sequence count
Reading idle/iowait sleep time, e.g. from /proc/stat, can race
with idle exit updates. As a consequence the readout may result
in random and potentially going backwards values.
Protect this by a sequence count, which fixes the idle time
statistics issue, but cannot fix the iowait time problem because
iowait time accounting races with remote wake ups decrementing
the remote runqueues nr_iowait counter. The latter is impossible
to fix, so the only way to deal with that is to document it
properly and to remove the assertion in the selftest which
triggers occasionally due to that.
* Restructure struct tick_sched for better cache layout
* Some small cleanups and a better cache layout for struct
tick_sched
- Implement the missing timer_wait_running() callback for POSIX CPU
timers
For unknown reason the introduction of the timer_wait_running()
callback missed to fixup posix CPU timers, which went unnoticed for
almost four years.
While initially only targeted to prevent livelocks between a timer
deletion and the timer expiry function on PREEMPT_RT enabled kernels,
it turned out that fixing this for mainline is not as trivial as just
implementing a stub similar to the hrtimer/timer callbacks.
The reason is that for CONFIG_POSIX_CPU_TIMERS_TASK_WORK enabled
systems there is a livelock issue independent of RT.
CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y moves the expiry of POSIX CPU
timers out from hard interrupt context to task work, which is handled
before returning to user space or to a VM. The expiry mechanism moves
the expired timers to a stack local list head with sighand lock held.
Once sighand is dropped the task can be preempted and a task which
wants to delete a timer will spin-wait until the expiry task is
scheduled back in. In the worst case this will end up in a livelock
when the preempting task and the expiry task are pinned on the same
CPU.
The timer wheel has a timer_wait_running() mechanism for RT, which
uses a per CPU timer-base expiry lock which is held by the expiry
code and the task waiting for the timer function to complete blocks
on that lock.
This does not work in the same way for posix CPU timers as there is
no timer base and expiry for process wide timers can run on any task
belonging to that process, but the concept of waiting on an expiry
lock can be used too in a slightly different way.
Add a per task mutex to struct posix_cputimers_work, let the expiry
task hold it accross the expiry function and let the deleting task
which waits for the expiry to complete block on the mutex.
In the non-contended case this results in an extra
mutex_lock()/unlock() pair on both sides.
This avoids spin-waiting on a task which is scheduled out, prevents
the livelock and cures the problem for RT and !RT systems
* tag 'timers-core-2023-04-24' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
posix-cpu-timers: Implement the missing timer_wait_running callback
selftests/proc: Assert clock_gettime(CLOCK_BOOTTIME) VS /proc/uptime monotonicity
selftests/proc: Remove idle time monotonicity assertions
MAINTAINERS: Remove stale email address
timers/nohz: Remove middle-function __tick_nohz_idle_stop_tick()
timers/nohz: Add a comment about broken iowait counter update race
timers/nohz: Protect idle/iowait sleep time under seqcount
timers/nohz: Only ever update sleeptime from idle exit
timers/nohz: Restructure and reshuffle struct tick_sched
tick/common: Align tick period with the HZ tick.
selftests/timers/posix_timers: Test delivery of signals across threads
posix-timers: Prefer delivery of signals to the current thread
vdso: Improve cmd_vdso_check to check all dynamic relocations
Make use of the set_direct_map() calls for module allocations.
In particular:
- All changes to read-only permissions in kernel VA mappings are also
applied to the direct mapping. Note that execute permissions are
intentionally not applied to the direct mapping in order to make
sure that all allocated pages within the direct mapping stay
non-executable
- module_alloc() passes the VM_FLUSH_RESET_PERMS to __vmalloc_node_range()
to make sure that all implicit permission changes made to the direct
mapping are reset when the allocated vm area is freed again
Side effects: the direct mapping will be fragmented depending on how many
vm areas with VM_FLUSH_RESET_PERMS and/or explicit page permission changes
are allocated and freed again.
For example, just after boot of a system the direct mapping statistics look
like:
$cat /proc/meminfo
...
DirectMap4k: 111628 kB
DirectMap1M: 16665600 kB
DirectMap2G: 0 kB
Acked-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
s390 supports ARCH_HAS_SET_DIRECT_MAP, therefore wire up the
memfd_secret system call, which depends on it.
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
relocate_kernel.S seems to be the only assembler file which doesn't
follow the standard way of indentation. Adjust this for the sake of
consistency.
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Consistently use the SYM* family of macros instead of the
deprecated ENTRY(), ENDPROC(), etc. family of macros.
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Consistently use the SYM* family of macros instead of the
deprecated ENTRY(), ENDPROC(), etc. family of macros.
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Consistently use the SYM* family of macros instead of the
deprecated ENTRY(), ENDPROC(), etc. family of macros.
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Consistently use the SYM* family of macros instead of the
deprecated ENTRY(), ENDPROC(), etc. family of macros.
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Consistently use the SYM* family of macros instead of the
deprecated ENTRY(), ENDPROC(), etc. family of macros.
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Consistently use the SYM* family of macros instead of the
deprecated ENTRY(), ENDPROC(), etc. family of macros.
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Consistently use the SYM* family of macros instead of the
deprecated ENTRY(), ENDPROC(), etc. family of macros.
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Consistently use the SYM* family of macros instead of the
deprecated ENTRY(), ENDPROC(), etc. family of macros.
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
To allow calling of DAT-off code from kernel the stack needs
to be switched to nodat_stack (or other stack mapped as 1:1).
Before call_nodat() macro was introduced that was necessary
to provide the very same memory address for STNSM and STOSM
instructions. If the kernel would stay on a random stack
(e.g. a virtually mapped one) then a virtual address provided
for STNSM instruction could differ from the physical address
needed for the corresponding STOSM instruction.
After call_nodat() macro is introduced the kernel stack does
not need to be mapped 1:1 anymore, since the macro stores the
physical memory address of return PSW in a register before
entering DAT-off mode. This way the return LPSWE instruction
is able to pick the correct memory location and restore the
DAT-on mode. That however might fail in case the 16-byte return
PSW happened to cross page boundary: PSW mask and PSW address
could end up in two separate non-contiguous physical pages.
Align the return PSW on 16-byte boundary so it always fits
into a single physical page. As result any stack (including
the virtually mapped one) could be used for calling DAT-off
code and prior switching to nodat_stack becomes unnecessary.
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Calling kdump kernel is a two-step process that involves
invocation of the purgatory code: first time - to verify
the new kernel checksum and second time - to call the new
kernel itself.
The purgatory code operates on real addresses and does not
expect any memory protection. Therefore, before the purgatory
code is entered the DAT mode is always turned off. However,
it is only restored upon return from the new kernel checksum
verification. In case the purgatory was called to start the
new kernel and failed the control is returned to the old
kernel, but the DAT mode continues staying off.
The new kernel start failure is unlikely and leads to the
disabled wait state anyway. Still that poses a risk, since
the kernel code in general is not DAT-off safe and even
calling the disabled_wait() function might crash.
Introduce call_nodat() macro that allows entering DAT-off
mode, calling an arbitrary function and restoring DAT mode
back on. Switch all invocations of DAT-off code to that
macro and avoid the above described scenario altogether.
Name the call_nodat() macro in small letters after the
already existing call_on_stack() and put it to the same
header file.
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
[hca@linux.ibm.com: some small modifications to call_nodat() macro]
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Avoid unnecessary run-time and compile-time type
conversions of do_start_kdump() function return
value and parameter.
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
The kernel code is not guaranteed DAT-off mode safe.
Turn the DAT mode off immediately before entering the
purgatory.
Further, to avoid subtle side effects reset the system
immediately before turning DAT mode off while making
all necessary preparations in advance.
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Remove function validate_ctr_auth() and replace this very small
function by its body.
No functional change.
Signed-off-by: Thomas Richter <tmricht@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Acked-by: Sumanth Korikkar <sumanthk@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Function validate_ctr_version() first parameter is a pointer to
a large structure, but only member hw_perf_event::config is used.
Supply this structure member value in the function invocation.
No functional change.
Signed-off-by: Thomas Richter <tmricht@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Acked-by: Sumanth Korikkar <sumanthk@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
The CPU measurement facility counter information instruction qctri()
retrieves information about the available counter sets.
The information varies between machine generations, but is constant
when running on a particular machine.
For example the CPU measurement facility counter first and second
version numbers determine the amount of counters in a counter
set. This information never changes.
The counter sets are identical for all CPUs in the system. It does
not matter which CPU performs the instruction.
Authorization control of the CPU Measurement facility can only
be changed in the activation profile while the LPAR is not running.
Retrieve the CPU measurement counter information at device driver
initialization time and use its constant values.
Function validate_ctr_version() verifies if a user provided
CPU Measurement counter facility counter is valid and defined.
It now uses the newly introduced static CPU counter facility
information.
To avoid repeated recalculation of the counter set sizes (numbers of
counters per set), which never changes on a running machine,
calculate the counter set size once at device driver initialization
and store the result in an array. Functions cpum_cf_make_setsize()
and cpum_cf_read_setsize() are introduced.
Finally remove cpu_cf_events::info member and use the static CPU
counter facility information instead.
Signed-off-by: Thomas Richter <tmricht@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Acked-by: Sumanth Korikkar <sumanthk@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
In preparation for improving objtool's handling of weak noreturn
functions, mark start_kernel(), arch_call_rest_init(), and rest_init()
__noreturn.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Link: https://lore.kernel.org/r/7194ed8a989a85b98d92e62df660f4a90435a723.1681342859.git.jpoimboe@kernel.org
Simplify pr_err() statement into one line and omit return statement.
No functional change.
Signed-off-by: Thomas Richter <tmricht@linux.ibm.com>
Acked-by: Sumanth Korikkar <sumanthk@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Struct s390_ctrset_read userdata is filled by ioctl_read operation
using put_user/copy_to_user. However, the ctrset->data value access
is not performed anywhere during the ioctl_read operation.
Remove unnecessary copy_from_user() call.
No functional change.
Signed-off-by: Thomas Richter <tmricht@linux.ibm.com>
Suggested-by: Sumanth Korikkar <sumanthk@linux.ibm.com>
Acked-by: Sumanth Korikkar <sumanthk@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
When function cfset_all_copy() fails, also log the bad return code
in the debug statement (when turned on).
No functional change
Signed-off-by: Thomas Richter <tmricht@linux.ibm.com>
Acked-by: Sumanth Korikkar <sumanthk@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
This is the s390 variant of commit 7dfac3c5f40e ("arm64: module: create
module allocations without exec permissions"):
"The core code manages the executable permissions of code regions of
modules explicitly. It is no longer necessary to create the module vmalloc
regions with RWX permissions. So create them with RW- permissions instead,
which is preferred from a security perspective."
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
The ftrace code assumes at two places that module_alloc() returns
executable memory. While this is currently true, this will be changed
with a subsequent patch to follow other architectures which implement
ARCH_HAS_STRICT_MODULE_RWX.
Acked-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Given that set_memory_rox() and set_memory_rwnx() exist, it is possible
to get rid of all open coded __set_memory() usages and replace them with
proper helper calls everywhere.
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Diag 308 subcodes expect a physical address as their parameter.
This currently is not a bug, but in the future physical and virtual
addresses might differ.
Fix the confusion by doing a virtual-to-physical conversion in the
exported diag308() and leave the assembly wrapper __diag308() alone.
Note that several callers pass NULL as addr, so check for the case when
NULL is passed and pass 0 to hardware since virt_to_phys(0) might be
nonzero.
Suggested-by: Marc Hartmayer <mhartmay@linux.ibm.com>
Signed-off-by: Nico Boehr <nrb@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Randomize the load address of modules in the kernel to make KASLR effective
for modules.
This is the s390 variant of commit e2b32e678513 ("x86, kaslr: randomize
module base load address").
Reviewed-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Just like other architectures provide a kaslr_enabled() function, instead
of directly accessing a global variable.
Also pass the renamed __kaslr_enabled variable from the decompressor to the
kernel, so that kalsr_enabled() is available there too. This will be used
by a subsequent patch which randomizes the module base load address.
Reviewed-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Add support for the stackleak feature. Whenever the kernel returns to user
space the kernel stack is filled with a poison value.
Enabling this feature is quite expensive: e.g. after instrumenting the
getpid() system call function to have a 4kb stack the result is an
increased runtime of the system call by a factor of 3.
Reviewed-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Allocate early async stack like other early stacks and get rid of
arch_early_irq_init(). This way the async stack is allocated earlier,
and handled like all other stacks.
Reviewed-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
s390 is the only architecture which switches from the initial stack to a
later on allocated different stack for the first process.
This is (at least) problematic for the stackleak feature, which instruments
functions to save the current stackpointer within the task structure of the
running process.
The stackleak code compares stack pointers of the current process - and
doesn't expect that the kernel stack of a task can change. Even though the
stackleak feature itself will not cause any harm, the assumption about
kernel stacks being consistent is there, and only s390 doesn't follow that.
Therefore switch back to use init_thread_union, just like all other
architectures.
Reviewed-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Make sure the lowcore kernel stack pointer reflects the kernel stack of the
current task as early as possible, instead of having a NULL pointer there.
Reviewed-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Make STACK_INIT_OFFSET also available for assembler code, and
use it everywhere instead of open-coding it at several places.
Reviewed-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
The pattern for all in_<type>_stack() functions is the same; especially
also the size of all stacks is the same. Simplify the code by passing only
the stack address to the generic in_stack() helper, which then can assume a
THREAD_SIZE sized stack.
Reviewed-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Currently, exception tables are marked as ro_after_init. However,
since they are sorted during compile time using scripts/sorttable,
they can be moved to RO_DATA using the RO_EXCEPTION_TABLE_ALIGN macro,
which is specifically designed for this purpose.
Suggested-by: Heiko Carstens <hca@linux.ibm.com>
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>