IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Having code for the pkey_mprotect, pkey_alloc and pkey_free system calls
makes only sense if ARCH_HAS_PKEYS is selected. If not selected these
system calls will always return -ENOSPC or -EINVAL.
To simplify things and have less code generate the pkey system call code
only if ARCH_HAS_PKEYS is selected.
For architectures which have already wired up the system calls, but do
not select ARCH_HAS_PKEYS this will result in less generated code and a
different return code: the three system calls will now always return
-ENOSYS, using the cond_syscall mechanism.
For architectures which have not wired up the system calls less
unreachable code will be generated.
Link: http://lkml.kernel.org/r/20161114111251.70084-1-heiko.carstens@de.ibm.com
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When movable nodes are enabled, any node containing only hotpluggable
memory is made movable at boot time.
On x86, hotpluggable memory is discovered by parsing the ACPI SRAT,
making corresponding calls to memblock_mark_hotplug().
If we introduce a dt property to describe memory as hotpluggable,
configs supporting early fdt may then also do this marking and use
movable nodes.
Link: http://lkml.kernel.org/r/1479160961-25840-5-git-send-email-arbab@linux.vnet.ibm.com
Signed-off-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Tested-by: Balbir Singh <bsingharora@gmail.com>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Alistair Popple <apopple@au1.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Cc: Frank Rowand <frowand.list@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Stewart Smith <stewart@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To support movable memory nodes (CONFIG_MOVABLE_NODE), at least one of
the following must be true:
1. This config has the capability to identify movable nodes at boot.
Right now, only x86 can do this.
2. Our config supports memory hotplug, which means that a movable node
can be created by hotplugging all of its memory into ZONE_MOVABLE.
Fix the Kconfig definition of CONFIG_MOVABLE_NODE, which currently
recognizes (1), but not (2).
Link: http://lkml.kernel.org/r/1479160961-25840-4-git-send-email-arbab@linux.vnet.ibm.com
Signed-off-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Alistair Popple <apopple@au1.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Cc: Frank Rowand <frowand.list@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Stewart Smith <stewart@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In commit c5320926e370 ("mem-hotplug: introduce movable_node boot
option"), the memblock allocation direction is changed to bottom-up and
then back to top-down like this:
1. memblock_set_bottom_up(true), called by cmdline_parse_movable_node().
2. memblock_set_bottom_up(false), called by x86's numa_init().
Even though (1) occurs in generic mm code, it is wrapped by #ifdef
CONFIG_MOVABLE_NODE, which depends on X86_64.
This means that when we extend CONFIG_MOVABLE_NODE to non-x86 arches,
things will be unbalanced. (1) will happen for them, but (2) will not.
This toggle was added in the first place because x86 has a delay between
adding memblocks and marking them as hotpluggable. Since other arches
do this marking either immediately or not at all, they do not require
the bottom-up toggle.
So, resolve things by moving (1) from cmdline_parse_movable_node() to
x86's setup_arch(), immediately after the movable_node parameter has
been parsed.
Link: http://lkml.kernel.org/r/1479160961-25840-3-git-send-email-arbab@linux.vnet.ibm.com
Signed-off-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Alistair Popple <apopple@au1.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Cc: Frank Rowand <frowand.list@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Stewart Smith <stewart@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "enable movable nodes on non-x86 configs", v7.
This patchset allows more configs to make use of movable nodes. When
CONFIG_MOVABLE_NODE is selected, there are two ways to introduce such
nodes into the system:
1. Discover movable nodes at boot. Currently this is only possible on
x86, but we will enable configs supporting fdt to do the same.
2. Hotplug and online all of a node's memory using online_movable. This
is already possible on any config supporting memory hotplug, not
just x86, but the Kconfig doesn't say so. We will fix that.
We'll also remove some cruft on power which would prevent (2).
This patch (of 5):
Remove the check which prevents us from hotplugging into an empty node.
The original commit b226e4621245 ("[PATCH] powerpc: don't add memory to
empty node/zone"), states that this was intended to be a temporary measure.
It is a workaround for an oops which no longer occurs.
Link: http://lkml.kernel.org/r/1479160961-25840-2-git-send-email-arbab@linux.vnet.ibm.com
Signed-off-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Alistair Popple <apopple@au1.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Cc: Frank Rowand <frowand.list@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Stewart Smith <stewart@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The MPOL_F_STATIC_NODES and MPOL_F_RELATIVE_NODES flags are irrelevant
when setting them for MPOL_LOCAL NUMA memory policy via set_mempolicy or
mbind.
Return the "invalid argument" from set_mempolicy and mbind whenever any
of these flags is passed along with MPOL_LOCAL.
It is consistent with MPOL_PREFERRED passed with empty nodemask.
It slightly shortens the execution time in paths where these flags are
used e.g. when trying to rebind the NUMA nodes for changes in cgroups
cpuset mems (mpol_rebind_preferred()) or when just printing the mempolicy
structure (/proc/PID/numa_maps). Isolated tests done.
Link: http://lkml.kernel.org/r/20161027163037.4089-1-kwapulinski.piotr@gmail.com
Signed-off-by: Piotr Kwapulinski <kwapulinski.piotr@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Liang Chen <liangchen.linux@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Nathan Zimmer <nzimmer@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In the previous round of get_user_pages* changes comments attached to
__get_user_pages_unlocked() and get_user_pages_unlocked() were rendered
incorrect, this patch corrects them.
In addition the get_user_pages_unlocked() comment seems to have already
been outdated as it referred to tsk, mm parameters which were removed in
c12d2da5 ("mm/gup: Remove the macro overload API migration helpers from
the get_user*() APIs"), this patch fixes this also.
Link: http://lkml.kernel.org/r/20161025233435.5338-1-lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that we check for page size change early in the loop, we can
partially revert e9d55e157034a ("mm: change the interface for
__tlb_remove_page").
This simplies the code much, by removing the need to track the last
address with which we adjusted the range. We also go back to the older
way of filling the mmu_gather array, ie, we add an entry and then check
whether the gather batch is full.
Link: http://lkml.kernel.org/r/20161026084839.27299-6-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With commit e77b0852b551 ("mm/mmu_gather: track page size with mmu
gather and force flush if page size change") we added the ability to
force a tlb flush when the page size change in a mmu_gather loop. We
did that by checking for a page size change every time we added a page
to mmu_gather for lazy flush/remove. We can improve that by moving the
page size change check early and not doing it every time we add a page.
This also helps us to do tlb flush when invalidating a range covering
dax mapping. Wrt dax mapping we don't have a backing struct page and
hence we don't call tlb_remove_page, which earlier forced the tlb flush
on page size change. Moving the page size change check earlier means we
will do the same even for dax mapping.
We also avoid doing this check on architecture other than powerpc.
In a later patch we will remove page size check from tlb_remove_page().
Link: http://lkml.kernel.org/r/20161026084839.27299-5-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This add tlb_remove_hugetlb_entry similar to tlb_remove_pmd_tlb_entry.
Link: http://lkml.kernel.org/r/20161026084839.27299-4-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We use __tlb_adjust_range to update range convered by mmu_gather struct.
We later use the 'start' and 'end' to do a mmu_notifier_invalidate_range
in tlb_flush_mmu_tlbonly(). Update the 'end' correctly in
__tlb_adjust_range so that we call mmu_notifier_invalidate_range with
the correct range values.
Wrt tlbflush, this should not have any impact, because a flush with
correct start address will flush tlb mapping for the range.
Also add comment w.r.t updating the range when we free pagetable pages.
For now we don't support a range based page table cache flush.
Link: http://lkml.kernel.org/r/20161026084839.27299-3-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We are removing a pmd hugepage here. Use the correct page size.
Link: http://lkml.kernel.org/r/20161026084839.27299-2-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After enabling -Wmaybe-uninitialized warnings, we get a false-postive
warning for shmem:
mm/shmem.c: In function `shmem_getpage_gfp':
include/linux/spinlock.h:332:21: error: `info' may be used uninitialized in this function [-Werror=maybe-uninitialized]
This can be easily avoided, since the correct 'info' pointer is known at
the time we first enter the function, so we can simply move the
initialization up. Moving it before the first label avoids the warning
and lets us remove two later initializations.
Note that the function is so hard to read that it not only confuses the
compiler, but also most readers and without this patch it could\ easily
break if one of the 'goto's changed.
Link: https://www.spinics.net/lists/kernel/msg2368133.html
Link: http://lkml.kernel.org/r/20161024205725.786455-1-arnd@arndb.de
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit bda807d44454 ("mm: migrate: support non-lru movable page
migration") isolate_migratepages_block) can isolate !PageLRU pages which
would acct_isolated account as NR_ISOLATED_*. Accounting these non-lru
pages NR_ISOLATED_{ANON,FILE} doesn't make any sense and it can misguide
heuristics based on those counters such as pgdat_reclaimable_pages resp.
too_many_isolated which would lead to unexpected stalls during the
direct reclaim without any good reason. Note that
__alloc_contig_migrate_range can isolate a lot of pages at once.
On mobile devices such as 512M ram android Phone, it may use a big zram
swap. In some cases zram(zsmalloc) uses too many non-lru but
migratedable pages, such as:
MemTotal: 468148 kB
Normal free:5620kB
Free swap:4736kB
Total swap:409596kB
ZRAM: 164616kB(zsmalloc non-lru pages)
active_anon:60700kB
inactive_anon:60744kB
active_file:34420kB
inactive_file:37532kB
Fix this by only accounting lru pages to NR_ISOLATED_* in
isolate_migratepages_block right after they were isolated and we still
know they were on LRU. Drop acct_isolated because it is called after
the fact and we've lost that information. Batching per-cpu counter
doesn't make much improvement anyway. Also make sure that we uncharge
only LRU pages when putting them back on the LRU in
putback_movable_pages resp. when unmap_and_move migrates the page.
[mhocko@suse.com: replace acct_isolated() with direct counting]
Fixes: bda807d44454 ("mm: migrate: support non-lru movable page migration")
Link: http://lkml.kernel.org/r/20161019080240.9682-1-mhocko@kernel.org
Signed-off-by: Ming Ling <ming.ling@spreadtrum.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__GFP_THISNODE is documented to enforce the allocation to be satisified
from the requested node with no fallbacks or placement policy
enforcements. policy_zonelist seemingly breaks this semantic if the
current policy is MPOL_MBIND and instead of taking the node it will
fallback to the first node in the mask if the requested one is not in
the mask. This is confusing to say the least because it fact we
shouldn't ever go that path. First tasks shouldn't be scheduled on CPUs
with nodes outside of their mempolicy binding. And secondly
policy_zonelist is called only from 3 places:
- huge_zonelist - never should do __GFP_THISNODE when going this path
- alloc_pages_vma - which shouldn't depend on __GFP_THISNODE either
- alloc_pages_current - which uses default_policy id __GFP_THISNODE is
used
So we shouldn't even need to care about this possibility and can drop
the confusing code. Let's keep a WARN_ON_ONCE in place to catch
potential users and fix them up properly (aka use a different allocation
function which ignores mempolicy).
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20161013125958.32155-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While doing MADV_DONTNEED on a large area of thp memory, I noticed we
encountered many unlikely() branches in profiles for each backing
hugepage. This is because zap_pmd_range() would call split_huge_pmd(),
which rechecked the conditions that were already validated, but as part
of an unlikely() branch.
Avoid the unlikely() branch when in a context where pmd is known to be
good for __split_huge_pmd() directly.
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1610181600300.84525@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Many seq_file helpers exist for simplifying implementation of virtual
files especially, for /proc nodes. however, the helpers for iteration
over list_head are available but aren't adopted to implement
/proc/vmallocinfo currently.
Simplify /proc/vmallocinfo implementation by using existing seq_file
helpers.
Link: http://lkml.kernel.org/r/57FDF2E5.1000201@zoho.com
Signed-off-by: zijun_hu <zijun_hu@htc.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, unreserve_highatomic_pageblock bails out if it found
highatomic pageblock regardless of really moving free pages from the one
so that it could mitigate unreserve logic's goal which saves OOM of a
process.
This patch makes unreserve functions bail out only if it moves some
pages out of !highatomic free list to avoid such false positive.
Another potential problem is that by race between page freeing and
reserve highatomic function, pages could be in highatomic free list even
though the pageblock is !high atomic migratetype. In that case,
unreserve_highatomic_pageblock can be void if count of highatomic
reserve is less than pageblock_nr_pages. We could solve it simply via
draining all of reserved pages before the OOM. It would have a
safeguard role to exhuast reserved pages before converging to OOM.
Link: http://lkml.kernel.org/r/1476259429-18279-5-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sangseok Lee <sangseok.lee@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is race between page freeing and unreserved highatomic.
CPU 0 CPU 1
free_hot_cold_page
mt = get_pfnblock_migratetype
set_pcppage_migratetype(page, mt)
unreserve_highatomic_pageblock
spin_lock_irqsave(&zone->lock)
move_freepages_block
set_pageblock_migratetype(page)
spin_unlock_irqrestore(&zone->lock)
free_pcppages_bulk
__free_one_page(mt) <- mt is stale
By above race, a page on CPU 0 could go non-highorderatomic free list
since the pageblock's type is changed. By that, unreserve logic of
highorderatomic can decrease reserved count on a same pageblock severak
times and then it will make mismatch between nr_reserved_highatomic and
the number of reserved pageblock.
So, this patch verifies whether the pageblock is highatomic or not and
decrease the count only if the pageblock is highatomic.
Link: http://lkml.kernel.org/r/1476259429-18279-3-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sangseok Lee <sangseok.lee@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "use up highorder free pages before OOM", v3.
I got OOM report from production team with v4.4 kernel. It had enough
free memory but failed to allocate GFP_KERNEL order-0 page and finally
encountered OOM kill. It occured during QA process which launches
several apps, switching and so on. It happned rarely. IOW, In normal
situation, it was not a problem but if we are unluck so that several
apps uses peak memory at the same time, it can happen. If we manage to
pass the phase, the system can go working well.
I could reproduce it with my test(memory spike easily. Look at below.
The reason is free pages(19M) of DMA32 zone are reserved for
HIGHORDERATOMIC and doesn't unreserved before the OOM.
balloon invoked oom-killer: gfp_mask=0x24280ca(GFP_HIGHUSER_MOVABLE|__GFP_ZERO), order=0, oom_score_adj=0
balloon cpuset=/ mems_allowed=0
CPU: 1 PID: 8473 Comm: balloon Tainted: G W OE 4.8.0-rc7-00219-g3f74c9559583-dirty #3161
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
Call Trace:
dump_stack+0x63/0x90
dump_header+0x5c/0x1ce
oom_kill_process+0x22e/0x400
out_of_memory+0x1ac/0x210
__alloc_pages_nodemask+0x101e/0x1040
handle_mm_fault+0xa0a/0xbf0
__do_page_fault+0x1dd/0x4d0
trace_do_page_fault+0x43/0x130
do_async_page_fault+0x1a/0xa0
async_page_fault+0x28/0x30
Mem-Info:
active_anon:383949 inactive_anon:106724 isolated_anon:0
active_file:15 inactive_file:44 isolated_file:0
unevictable:0 dirty:0 writeback:24 unstable:0
slab_reclaimable:2483 slab_unreclaimable:3326
mapped:0 shmem:0 pagetables:1906 bounce:0
free:6898 free_pcp:291 free_cma:0
Node 0 active_anon:1535796kB inactive_anon:426896kB active_file:60kB inactive_file:176kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:0kB dirty:0kB writeback:96kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:1418 all_unreclaimable? no
DMA free:8188kB min:44kB low:56kB high:68kB active_anon:7648kB inactive_anon:0kB active_file:0kB inactive_file:4kB unevictable:0kB writepending:0kB present:15992kB managed:15908kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:20kB kernel_stack:0kB pagetables:0kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
lowmem_reserve[]: 0 1952 1952 1952
DMA32 free:19404kB min:5628kB low:7624kB high:9620kB active_anon:1528148kB inactive_anon:426896kB active_file:60kB inactive_file:420kB unevictable:0kB writepending:96kB present:2080640kB managed:2030092kB mlocked:0kB slab_reclaimable:9932kB slab_unreclaimable:13284kB kernel_stack:2496kB pagetables:7624kB bounce:0kB free_pcp:900kB local_pcp:112kB free_cma:0kB
lowmem_reserve[]: 0 0 0 0
DMA: 0*4kB 0*8kB 0*16kB 0*32kB 0*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 2*4096kB (H) = 8192kB
DMA32: 7*4kB (H) 8*8kB (H) 30*16kB (H) 31*32kB (H) 14*64kB (H) 9*128kB (H) 2*256kB (H) 2*512kB (H) 4*1024kB (H) 5*2048kB (H) 0*4096kB = 19484kB
51131 total pagecache pages
50795 pages in swap cache
Swap cache stats: add 3532405601, delete 3532354806, find 124289150/1822712228
Free swap = 8kB
Total swap = 255996kB
524158 pages RAM
0 pages HighMem/MovableOnly
12658 pages reserved
0 pages cma reserved
0 pages hwpoisoned
Another example exceeded the limit by the race is
in:imklog: page allocation failure: order:0, mode:0x2280020(GFP_ATOMIC|__GFP_NOTRACK)
CPU: 0 PID: 476 Comm: in:imklog Tainted: G E 4.8.0-rc7-00217-g266ef83c51e5-dirty #3135
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
Call Trace:
dump_stack+0x63/0x90
warn_alloc_failed+0xdb/0x130
__alloc_pages_nodemask+0x4d6/0xdb0
new_slab+0x339/0x490
___slab_alloc.constprop.74+0x367/0x480
__slab_alloc.constprop.73+0x20/0x40
__kmalloc+0x1a4/0x1e0
alloc_indirect.isra.14+0x1d/0x50
virtqueue_add_sgs+0x1c4/0x470
__virtblk_add_req+0xae/0x1f0
virtio_queue_rq+0x12d/0x290
__blk_mq_run_hw_queue+0x239/0x370
blk_mq_run_hw_queue+0x8f/0xb0
blk_mq_insert_requests+0x18c/0x1a0
blk_mq_flush_plug_list+0x125/0x140
blk_flush_plug_list+0xc7/0x220
blk_finish_plug+0x2c/0x40
__do_page_cache_readahead+0x196/0x230
filemap_fault+0x448/0x4f0
ext4_filemap_fault+0x36/0x50
__do_fault+0x75/0x140
handle_mm_fault+0x84d/0xbe0
__do_page_fault+0x1dd/0x4d0
trace_do_page_fault+0x43/0x130
do_async_page_fault+0x1a/0xa0
async_page_fault+0x28/0x30
Mem-Info:
active_anon:363826 inactive_anon:121283 isolated_anon:32
active_file:65 inactive_file:152 isolated_file:0
unevictable:0 dirty:0 writeback:46 unstable:0
slab_reclaimable:2778 slab_unreclaimable:3070
mapped:112 shmem:0 pagetables:1822 bounce:0
free:9469 free_pcp:231 free_cma:0
Node 0 active_anon:1455304kB inactive_anon:485132kB active_file:260kB inactive_file:608kB unevictable:0kB isolated(anon):128kB isolated(file):0kB mapped:448kB dirty:0kB writeback:184kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:13641 all_unreclaimable? no
DMA free:7748kB min:44kB low:56kB high:68kB active_anon:7944kB inactive_anon:104kB active_file:0kB inactive_file:0kB unevictable:0kB writepending:0kB present:15992kB managed:15908kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:108kB kernel_stack:0kB pagetables:4kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
lowmem_reserve[]: 0 1952 1952 1952
DMA32 free:30128kB min:5628kB low:7624kB high:9620kB active_anon:1447360kB inactive_anon:485028kB active_file:260kB inactive_file:608kB unevictable:0kB writepending:184kB present:2080640kB managed:2030132kB mlocked:0kB slab_reclaimable:11112kB slab_unreclaimable:12172kB kernel_stack:2400kB pagetables:7284kB bounce:0kB free_pcp:924kB local_pcp:72kB free_cma:0kB
lowmem_reserve[]: 0 0 0 0
DMA: 7*4kB (UE) 3*8kB (UH) 1*16kB (M) 0*32kB 2*64kB (U) 1*128kB (M) 1*256kB (U) 0*512kB 1*1024kB (U) 1*2048kB (U) 1*4096kB (H) = 7748kB
DMA32: 10*4kB (H) 3*8kB (H) 47*16kB (H) 38*32kB (H) 5*64kB (H) 1*128kB (H) 2*256kB (H) 3*512kB (H) 3*1024kB (H) 3*2048kB (H) 4*4096kB (H) = 30128kB
2775 total pagecache pages
2536 pages in swap cache
Swap cache stats: add 206786828, delete 206784292, find 7323106/106686077
Free swap = 108744kB
Total swap = 255996kB
524158 pages RAM
0 pages HighMem/MovableOnly
12648 pages reserved
0 pages cma reserved
0 pages hwpoisoned
During the investigation, I found some problems with highatomic so this
patch aims to solve the problems and the final goal is to unreserve
every highatomic free pages before the OOM kill.
This patch (of 4):
In page freeing path, migratetype is racy so that a highorderatomic page
could free into non-highorderatomic free list. If that page is
allocated, VM can change the pageblock from higorderatomic to something.
In that case, highatomic pageblock accounting is broken so it doesn't
work(e.g., VM cannot reserve highorderatomic pageblocks any more
although it doesn't reach 1% limit).
So, this patch prohibits the changing from highatomic to other type.
It's no problem because MIGRATE_HIGHATOMIC is not listed in fallback
array so stealing will only happen due to unexpected races which is
really rare. Also, such prohibiting keeps highatomic pageblock more
longer so it would be better for highorderatomic page allocation.
Link: http://lkml.kernel.org/r/1476259429-18279-2-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sangseok Lee <sangseok.lee@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Documentation/kmemleak.txt was moved to Documentation/dev-tools/kmemleak.rst,
this fixes the reference to the new location.
Link: http://lkml.kernel.org/r/1476544946-18804-1-git-send-email-andreas.platschek@opentech.at
Signed-off-by: Andreas Platschek <andreas.platschek@opentech.at>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We cannot use the pte value used in set_pte_at for pte_same comparison,
because archs like ppc64, filter/add new pte flag in set_pte_at.
Instead fetch the pte value inside hugetlb_cow. We are comparing pte
value to make sure the pte didn't change since we dropped the page table
lock. hugetlb_cow get called with page table lock held, and we can take
a copy of the pte value before we drop the page table lock.
With hugetlbfs, we optimize the MAP_PRIVATE write fault path with no
previous mapping (huge_pte_none entries), by forcing a cow in the fault
path. This avoid take an addition fault to covert a read-only mapping
to read/write. Here we were comparing a recently instantiated pte (via
set_pte_at) to the pte values from linux page table. As explained above
on ppc64 such pte_same check returned wrong result, resulting in us
taking an additional fault on ppc64.
Fixes: 6a119eae942c ("powerpc/mm: Add a _PAGE_PTE bit")
Link: http://lkml.kernel.org/r/20161018154245.18023-1-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reported-by: Jan Stancek <jstancek@redhat.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Scott Wood <scottwood@freescale.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make vma_permits_fault() static as it is only used in mm/gup.c
This fixes a sparse warning.
Link: http://lkml.kernel.org/r/20161017122353.31598-1-tklauser@distanz.ch
Signed-off-by: Tobias Klauser <tklauser@distanz.ch>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Our system uses significantly more slab memory with memcg enabled with
the latest kernel. With 3.10 kernel, slab uses 2G memory, while with
4.6 kernel, 6G memory is used. The shrinker has problem. Let's see we
have two memcg for one shrinker. In do_shrink_slab:
1. Check cg1. nr_deferred = 0, assume total_scan = 700. batch size
is 1024, then no memory is freed. nr_deferred = 700
2. Check cg2. nr_deferred = 700. Assume freeable = 20, then
total_scan = 10 or 40. Let's assume it's 10. No memory is freed.
nr_deferred = 10.
The deferred share of cg1 is lost in this case. kswapd will free no
memory even run above steps again and again.
The fix makes sure one memcg's deferred share isn't lost.
Link: http://lkml.kernel.org/r/2414be961b5d25892060315fbb56bb19d81d0c07.1476227351.git.shli@fb.com
Signed-off-by: Shaohua Li <shli@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: <stable@vger.kernel.org> [4.0+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We had some problems with pages getting unmapped in single threaded
affinitized processes. It was tracked down to NUMA scanning.
In this case it doesn't make any sense to unmap pages if the process is
single threaded and the page is already on the node the process is
running on.
Add a check for this case into the numa protection code, and skip
unmapping if true.
In theory the process could be migrated later, but we will eventually
rescan and unmap and migrate then.
In theory this could be made more fancy: remembering this state per
process or even whole mm. However that would need extra tracking and be
more complicated, and the simple check seems to work fine so far.
[ak@linux.intel.com: v3: Minor updates from Mel. Change code layout]
Link: http://lkml.kernel.org/r/1476382117-5440-1-git-send-email-andi@firstfloor.org
Link: http://lkml.kernel.org/r/1476288949-20970-1-git-send-email-andi@firstfloor.org
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rather than tracking the number of active slabs for each node, track the
total number of slabs. This is a minor improvement that avoids active
slab tracking when a slab goes from free to partial or partial to free.
For slab debugging, this also removes an explicit free count since it
can easily be inferred by the difference in number of total objects and
number of active objects.
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1612042020110.115755@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Suggested-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Aruna Ramakrishna <aruna.ramakrishna@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Reading /proc/slabinfo or monitoring slabtop(1) can become very
expensive if there are many slab caches and if there are very lengthy
per-node partial and/or free lists.
Commit 07a63c41fa1f ("mm/slab: improve performance of gathering slabinfo
stats") addressed the per-node full lists which showed a significant
improvement when no objects were freed. This patch has the same
motivation and optimizes the remainder of the usecases where there are
very lengthy partial and free lists.
This patch maintains per-node active_slabs (full and partial) and
free_slabs rather than iterating the lists at runtime when reading
/proc/slabinfo.
When allocating 100GB of slab from a test cache where every slab page is
on the partial list, reading /proc/slabinfo (includes all other slab
caches on the system) takes ~247ms on average with 48 samples.
As a result of this patch, the same read takes ~0.856ms on average.
[rientjes@google.com: changelog]
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1611081505240.13403@chino.kir.corp.google.com
Signed-off-by: Greg Thelen <gthelen@google.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Verify that kmem_create_cache flags are not allocator specific. It is
done before removing flags that are not available with the current
configuration.
The current kmem_cache_create removes incorrect flags but do not
validate the callers are using them right. This change will ensure that
callers are not trying to create caches with flags that won't be used
because allocator specific.
Link: http://lkml.kernel.org/r/1478553075-120242-2-git-send-email-thgarnie@google.com
Signed-off-by: Thomas Garnier <thgarnie@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The slub allocator gives us some incorrect warnings when
CONFIG_PROFILE_ANNOTATED_BRANCHES is set, as the unlikely() macro
prevents it from seeing that the return code matches what it was before:
mm/slub.c: In function `kmem_cache_free_bulk':
mm/slub.c:262:23: error: `df.s' may be used uninitialized in this function [-Werror=maybe-uninitialized]
mm/slub.c:2943:3: error: `df.cnt' may be used uninitialized in this function [-Werror=maybe-uninitialized]
mm/slub.c:2933:4470: error: `df.freelist' may be used uninitialized in this function [-Werror=maybe-uninitialized]
mm/slub.c:2943:3: error: `df.tail' may be used uninitialized in this function [-Werror=maybe-uninitialized]
I have not been able to come up with a perfect way for dealing with
this, the three options I see are:
- add a bogus initialization, which would increase the runtime overhead
- replace unlikely() with unlikely_notrace()
- remove the unlikely() annotation completely
I checked the object code for a typical x86 configuration and the last
two cases produce the same result, so I went for the last one, which is
the simplest.
Link: http://lkml.kernel.org/r/20161024155704.3114445-1-arnd@arndb.de
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Laura Abbott <labbott@fedoraproject.org>
Cc: Alexander Potapenko <glider@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
synchronize_sched() is a heavy operation and calling it per each cache
owned by a memory cgroup being destroyed may take quite some time. What
is worse, it's currently called under the slab_mutex, stalling all works
doing cache creation/destruction.
Actually, there isn't much point in calling synchronize_sched() for each
cache - it's enough to call it just once - after setting cpu_partial for
all caches and before shrinking them. This way, we can also move it out
of the slab_mutex, which we have to hold for iterating over the slab
cache list.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=172991
Link: http://lkml.kernel.org/r/0a10d71ecae3db00fb4421bcd3f82bcc911f4be4.1475329751.git.vdavydov.dev@gmail.com
Signed-off-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Reported-by: Doug Smythies <dsmythies@telus.net>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Creating a lot of cgroups at the same time might stall all worker
threads with kmem cache creation works, because kmem cache creation is
done with the slab_mutex held. The problem was amplified by commits
801faf0db894 ("mm/slab: lockless decision to grow cache") in case of
SLAB and 81ae6d03952c ("mm/slub.c: replace kick_all_cpus_sync() with
synchronize_sched() in kmem_cache_shrink()") in case of SLUB, which
increased the maximal time the slab_mutex can be held.
To prevent that from happening, let's use a special ordered single
threaded workqueue for kmem cache creation. This shouldn't introduce
any functional changes regarding how kmem caches are created, as the
work function holds the global slab_mutex during its whole runtime
anyway, making it impossible to run more than one work at a time. By
using a single threaded workqueue, we just avoid creating a thread per
each work. Ordering is required to avoid a situation when a cgroup's
work is put off indefinitely because there are other cgroups to serve,
in other words to guarantee fairness.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=172981
Link: http://lkml.kernel.org/r/20161004131417.GC1862@esperanza
Signed-off-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Reported-by: Doug Smythies <dsmythies@telus.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
CURRENT_TIME is not y2038 safe.
Use y2038 safe ktime_get_real_seconds() here for timestamps. struct
heartbeat_block's hb_seq and deletetion time are already 64 bits wide
and accommodate times beyond y2038.
Also use y2038 safe ktime_get_real_ts64() for on disk inode timestamps.
These are also wide enough to accommodate time64_t.
Link: http://lkml.kernel.org/r/1475365298-29236-1-git-send-email-deepa.kernel@gmail.com
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Cc: Mark Fasheh <mfasheh@versity.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Joseph Qi <jiangqi903@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
struct timespec is not y2038 safe. Use time64_t which is y2038 safe to
represent orphan scan times. time64_t is sufficient here as only the
seconds delta times are relevant.
Also use appropriate time functions that return time in time64_t format.
Time functions now return monotonic time instead of real time as only
delta scan times are relevant and these values are not persistent across
reboots.
The format string for the debug print is still using long as this is
only the time elapsed since the last scan and long is sufficient to
represent this value.
Link: http://lkml.kernel.org/r/1475365138-20567-1-git-send-email-deepa.kernel@gmail.com
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Cc: Mark Fasheh <mfasheh@versity.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Joseph Qi <jiangqi903@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In ocfs2_lock_refcount_tree, if ocfs2_read_refcount_block() returns an
error, we do ocfs2_refcount_tree_put twice (once in
ocfs2_unlock_refcount_tree and once outside it), thereby reducing the
refcount of the refcount tree twice, but we dont delete the tree in this
case. This will make refcnt of the tree = 0 and the
ocfs2_refcount_tree_put will eventually call ocfs2_mark_lockres_freeing,
setting OCFS2_LOCK_FREEING for the refcount_tree->rf_lockres.
The error returned by ocfs2_read_refcount_block is propagated all the
way back and for next iteration of write, ocfs2_lock_refcount_tree gets
the same tree back from ocfs2_get_refcount_tree because we havent
deleted the tree. Now we have the same tree, but OCFS2_LOCK_FREEING is
set for rf_lockres and eventually, when _ocfs2_lock_refcount_tree is
called in this iteration, BUG_ON( __ocfs2_cluster_lock:1395 ERROR:
Cluster lock called on freeing lockres T00000000000000000386019775b08d!
flags 0x81) is triggerred.
Call stack:
(loop16,11155,0):ocfs2_lock_refcount_tree:482 ERROR: status = -5
(loop16,11155,0):ocfs2_refcount_cow_hunk:3497 ERROR: status = -5
(loop16,11155,0):ocfs2_refcount_cow:3560 ERROR: status = -5
(loop16,11155,0):ocfs2_prepare_inode_for_refcount:2111 ERROR: status = -5
(loop16,11155,0):ocfs2_prepare_inode_for_write:2190 ERROR: status = -5
(loop16,11155,0):ocfs2_file_write_iter:2331 ERROR: status = -5
(loop16,11155,0):__ocfs2_cluster_lock:1395 ERROR: bug expression:
lockres->l_flags & OCFS2_LOCK_FREEING
(loop16,11155,0):__ocfs2_cluster_lock:1395 ERROR: Cluster lock called on
freeing lockres T00000000000000000386019775b08d! flags 0x81
kernel BUG at fs/ocfs2/dlmglue.c:1395!
invalid opcode: 0000 [#1] SMP CPU 0
Modules linked in: tun ocfs2 jbd2 xen_blkback xen_netback xen_gntdev .. sd_mod crc_t10dif ext3 jbd mbcache
RIP: __ocfs2_cluster_lock+0x31c/0x740 [ocfs2]
RSP: e02b:ffff88017c0138a0 EFLAGS: 00010086
Process loop16 (pid: 11155, threadinfo ffff88017c010000, task ffff8801b5374300)
Call Trace:
ocfs2_refcount_lock+0xae/0x130 [ocfs2]
__ocfs2_lock_refcount_tree+0x29/0xe0 [ocfs2]
ocfs2_lock_refcount_tree+0xdd/0x320 [ocfs2]
ocfs2_refcount_cow_hunk+0x1cb/0x440 [ocfs2]
ocfs2_refcount_cow+0xa9/0x1d0 [ocfs2]
ocfs2_prepare_inode_for_refcount+0x115/0x200 [ocfs2]
ocfs2_prepare_inode_for_write+0x33b/0x470 [ocfs2]
ocfs2_file_write_iter+0x220/0x8c0 [ocfs2]
aio_write_iter+0x2e/0x30
Fix this by avoiding the second call to ocfs2_refcount_tree_put()
Link: http://lkml.kernel.org/r/1473984404-32011-1-git-send-email-ashish.samant@oracle.com
Signed-off-by: Ashish Samant <ashish.samant@oracle.com>
Reviewed-by: Eric Ren <zren@suse.com>
Cc: Mark Fasheh <mfasheh@versity.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Joseph Qi <jiangqi903@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
'page' parameter in ocfs2_write_end_nolock() is never used.
Link: http://lkml.kernel.org/r/582FD91A.5000902@huawei.com
Signed-off-by: Jun Piao <piaojun@huawei.com>
Reviewed-by: Joseph Qi <jiangqi903@gmail.com>
Cc: Mark Fasheh <mfasheh@versity.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When 'dispatch_assert' is set, 'response' must be DLM_MASTER_RESP_YES,
and 'res' won't be null, so execution can't reach these two branch.
Link: http://lkml.kernel.org/r/58174C91.3040004@huawei.com
Signed-off-by: Jun Piao <piaojun@huawei.com>
Reviewed-by: Joseph Qi Joseph Qi <jiangqi903@gmail.com>
Cc: Mark Fasheh <mfasheh@versity.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The variable `set_maybe' is redundant when the mle has been found in the
map. So it is ok to set the node_idx into mle's maybe_map directly.
Link: http://lkml.kernel.org/r/71604351584F6A4EBAE558C676F37CA4A3D490DD@H3CMLB12-EX.srv.huawei-3com.com
Signed-off-by: Guozhonghua <guozhonghua@h3c.com>
Reviewed-by: Mark Fasheh <mfasheh@versity.com>
Reviewed-by: Joseph Qi <jiangqi903@gmail.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The value of 'stage' must be between 1 and 2, so the switch can't reach
the default case.
Link: http://lkml.kernel.org/r/57FB5EB2.7050002@huawei.com
Signed-off-by: Jun Piao <piaojun@huawei.com>
Cc: Mark Fasheh <mfasheh@versity.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Joseph Qi <jiangqi903@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If request_irq() fails it passes the error to the caller. The caller
now checks it and jumps to the common error path on failure.
Link: http://lkml.kernel.org/r/1474237304-897-3-git-send-email-sudipm.mukherjee@gmail.com
Signed-off-by: Sudip Mukherjee <sudip.mukherjee@codethink.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While building m32r allmodconfig we were getting warning:
drivers/pcmcia/m32r_pcc.c:331:2: warning: ignoring return value of 'request_irq', declared with attribute warn_unused_result
request_irq() can fail and we should always be checking the result from
it. Check the result and return it to the caller.
Link: http://lkml.kernel.org/r/1474237304-897-1-git-send-email-sudipm.mukherjee@gmail.com
Signed-off-by: Sudip Mukherjee <sudip.mukherjee@codethink.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While building m32r defconfig we got warnings:
arch/m32r/platforms/m32700ut/setup.c:249:24: warning: 'm32700ut_lcdpld_irq_type' defined but not used [-Wunused-variable]
m32700ut_lcdpld_irq_type is only used when CONFIG_USB is enabled.
Modify the code to declare the related variables and functions only when
CONFIG_USB is enabled.
Link: http://lkml.kernel.org/r/1479244406-7507-1-git-send-email-sudipm.mukherjee@gmail.com
Signed-off-by: Sudip Mukherjee <sudip.mukherjee@codethink.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some builds of m32r were failing as it tried to build few drivers which
needed dma but m32r is not having dma support. Objections were raised
when it was tried to make those drivers depend on HAS_DMA. So the next
best thing is to add dma support to m32r. dma_noop is a very simple dma
with 1:1 memory mapping.
Link: http://lkml.kernel.org/r/1475949198-31623-1-git-send-email-sudipm.mukherjee@gmail.com
Signed-off-by: Sudip Mukherjee <sudip.mukherjee@codethink.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When SUBARCH is "omap1" or "omap2", plat-omap/ directory must be
indexed. Handle this special case properly.
While at it, check if mach- directory exists at all.
Link: http://lkml.kernel.org/r/20161202122148.15001-1-joe.skb7@gmail.com
Signed-off-by: Sam Protsenko <semen.protsenko@linaro.org>
Cc: Michal Marek <mmarek@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Every often used regex is better be compiled in Python.
Speedup is about ~9.8% (whee!)
$ perf stat -r 16 taskset -c 15 ./scripts/bloat-o-meter ../vmlinux-000 ../obj/vmlinux >/dev/null
7.091202853 seconds time elapsed ( +- 0.15% )
+re.compile
6.397564973 seconds time elapsed ( +- 0.34% )
Link: http://lkml.kernel.org/r/20161119004417.GB1200@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
readlines() conses whole list before doing anything which is slower for
big object files. Use per line iterator.
Speed up is ~2% on "allyesconfig" type of kernel.
$ perf stat -r 16 taskset -c 15 ./scripts/bloat-o-meter ../vmlinux-000 ../obj/vmlinux >/dev/null
...
Before: 7.247708646 seconds time elapsed ( +- 0.28% )
After: 7.091202853 seconds time elapsed ( +- 0.15% )
Link: http://lkml.kernel.org/r/20161119004143.GA1200@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This limitation came with the reason to remove "another way for
malicious code to obscure a compromised program and masquerade as a
benign process" by allowing "security-concious program can use this
prctl once during its early initialization to ensure the prctl cannot
later be abused for this purpose":
http://marc.info/?l=linux-kernel&m=133160684517468&w=2
This explanation doesn't look sufficient. The only thing "exe" link is
indicating is the file, used to execve, which is basically nothing and
not reliable immediately after process has returned from execve system
call.
Moreover, to use this feture, all the mappings to previous exe file have
to be unmapped and all the new exe file permissions must be satisfied.
Which means, that changing exe link is very similar to calling execve on
the binary.
The need to remove this limitations comes from migration of NFS mount
point, which is not accessible during restore and replaced by other file
system. Because of this exe link has to be changed twice.
[akpm@linux-foundation.org: fix up comment]
Link: http://lkml.kernel.org/r/20160927153755.9337.69650.stgit@localhost.localdomain
Signed-off-by: Stanislav Kinsburskiy <skinsbursky@virtuozzo.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>